首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonfullerene polymer solar cells (PSCs) are fabricated by using one wide bandgap donor PBDB‐T and one ultranarrow bandgap acceptor IEICO‐4F as the active layers. One medium bandgap donor PTB7‐Th is selected as the third component due to the similar highest occupied molecular orbital level compared to that of PBDB‐T and their complementary absorption spectra. The champion power conversion efficiency (PCE) of PSCs is increased from 10.25% to 11.62% via incorporating 20 wt% PTB7‐Th in donors, with enhanced short‐circuit current (JSC) of 24.14 mA cm?2 and fill factor (FF) of 65.03%. The 11.62% PCE should be the highest value for ternary nonfullerene PSCs. The main contribution of PTB7‐Th can be summarized as the improved photon harvesting and enhanced exciton utilization of PBDB‐T due to the efficient energy transfer from PBDB‐T to PTB7‐Th. Meanwhile, PTB7‐Th can also act as a regulator to adjust PBDB‐T molecular arrangement for optimizing charge transport, resulting in the enhanced FF of ternary PSCs. This experimental result may provide new insight for developing high‐performance ternary nonfullerene PSCs by selecting two well‐compatible donors with different bandgap and one ultranarrow bandgap acceptor.  相似文献   

2.
In this study, a wavelength selective semitransparent polymer solar cell (ST‐PSC) with a proper transmission spectrum for plant growth is proposed for greenhouse applications. A ternary strategy combining a wide bandgap polymer donor with a near‐infrared absorbing nonfullerene acceptor and a high electron mobility fullerene acceptor is introduced to achieve PSCs with power conversion efficiency (PCE) over 10%. The addition of PC71BM into J52:IEICO‐4F binary blend contributes to the suppressed trap‐assisted recombination, enhanced charge extraction, and improved open‐circuit voltage simultaneously. ST‐PSC based on the J52:IEICO‐4F:PC71BM ternary blend shows an optimized performance with PCE of 7.75% and a defined crop growth factor of 24.8%. Such high‐performance ST‐PSC is achieved by carefully engineering the absorption spectrum of the light harvesting materials. As a result, the transmission spectra of the semitransparent devices are well‐matched with the absorption spectra of the photoreceptors, such as chlorophylls, in green plants, which provides adequate lighting conditions for photosynthesis and plant growth, and therefore making it a competitive candidate for photovoltaic greenhouse applications.  相似文献   

3.
A tandem organic solar cell (OSC) is a valid structure to widen the photon response range and suppress the transmission loss and thermalization loss. In the past few years, the development of low‐bandgap materials with broad absorption in long‐wavelength region for back subcells has attracted considerable attention. However, wide‐bandgap materials for front cells that have both high short‐circuit current density (JSC) and open‐circuit voltage (VOC) are scarce. In this work, a new fluorine‐substituted wide‐bandgap small molecule nonfullerene acceptor TfIF‐4FIC is reported, which has an optical bandgap of 1.61 eV. When PBDB‐T‐2F is selected as the donor, the device offers an extremely high VOC of 0.98 V, a high JSC of 17.6 mA cm?2, and a power conversion efficiency of 13.1%. This is the best performing acceptor with such a wide bandgap. More importantly, the energy loss in this combination is 0.63 eV. These properties ensure that PBDB‐T‐2F:TfIF‐4FIC is an ideal candidate for the fabrication of tandem OSCs. When PBDB‐T‐2F:TfIF‐4FIC and PTB7‐Th:PCDTBT:IEICO‐4F are used as the front cell and the back cell to construct tandem solar cells, a PCE of 15% is obtained, which is one of best results reported to date in the field of organic solar cells.  相似文献   

4.
Two n‐type organic semiconductor (n‐OS) small molecules m‐ITIC‐2F and m‐ITIC‐4F with fluorinated 2‐(2,3‐dihydro‐3‐oxo‐1H‐inden‐1‐ylidene)propanedinitrile (IC) terminal moieties are prepared, for the application as an acceptor in polymer solar cells (PSCs), to further improve the photovoltaic performance of the n‐OS acceptor 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene) indanone) ‐5,5,11,11‐tetrakis(3‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐sindaceno[1,2‐b:5,6‐b′]‐dithiophene (m‐ITIC). Compared to m‐ITIC, these two new acceptors show redshifted absorption, higher molecular packing order, and improved electron mobilities. The power conversion efficiencies (PCE) of the as‐cast PSCs with m‐ITIC‐2F or m‐ITIC‐4F as an acceptor and a low‐cost donor–acceptor (D–A) copolymer PTQ10 as a donor reach 11.57% and 11.64%, respectively, which are among the highest efficiency for the as‐cast PSCs so far. Furthermore, after thermal annealing treatment, improved molecular packing and enhanced phase separation are observed, and the higher PCE of 12.53% is achieved for both PSCs based on the two acceptors. The respective and unique advantage with the intrinsic high degree of order, molecular packing, and electron mobilities of these two acceptors will be suitable to match with different p‐type organic semiconductor donors for higher PCE values, which provide a great potential for the PSCs commercialization in the near future. These results indicate that rational molecular structure optimization is of great importance to further improve photovoltaic properties of the photovoltaic materials.  相似文献   

5.
A new 2D‐conjugated medium bandgap donor–acceptor copolymer, J81 , based on benzodifuran with trialkylsilyl thiophene side chains as donor unit and fluorobenzothiazole as acceptor, is synthesized and successfully used in nonfullerene polymer solar cells (PSCs) with low bandgap n‐type organic semiconductor (n‐OS) 3,9‐bis(2‐methylene‐ (3‐(1,1‐dicyanomethylene)‐indanone)‐5,5,11,11‐tetrakis(4‐ hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno[1,2‐b:5,6‐b′]‐ dithiophene (ITIC) and m ‐ITIC as acceptor. J81 possesses a lower‐lying highest occupied molecular orbital (HOMO) energy level of ?5.43 eV and medium bandgap of 1.93 eV with complementary absorption in the visible–near infrared region with the n‐OS acceptor. The PSCs based on J81 :ITIC and J81 :m ‐ITIC yield high power conversion efficiency of 10.60% and 11.05%, respectively, with high V oc of 0.95–0.96 V benefit from the lower‐lying HOMO energy level of J81 donor. The work indicates that J81 is another promising polymer donor for the nonfullerene PSCs.  相似文献   

6.
This work deals with the investigation of burn‐in loss in ternary blended organic photovoltaics (OPVs) prepared from a UV‐crosslinkable semiconducting polymer (P2FBTT‐Br) and a nonfullerene acceptor (IEICO‐4F) via a green solvent process. The synthesized P2FBTT‐Br can be crosslinked by UV irradiation for 150 s and dissolved in 2‐methylanisole due to its asymmetric structure. In OPV performance and burn‐in loss tests performed at 75 °C or AM 1.5G Sun illumination for 90 h, UV‐crosslinked devices with PC71BM show 9.2% power conversion efficiency (PCE) and better stability against burn‐in loss than pristine devices. The frozen morphology resulting from the crosslinking prevents lateral crystallization and aggregation related to morphological degradation. When IEICO‐4F is introduced in place of a fullerene‐based acceptor, the burn‐in loss due to thermal aging and light soaking is dramatically suppressed because of the frozen morphology and high miscibility of the nonfullerene acceptor (18.7% → 90.8% after 90 h at 75 °C and 37.9% → 77.5% after 90 h at AM 1.5G). The resulting crosslinked device shows 9.4% PCE (9.8% in chlorobenzene), which is the highest value reported to date for crosslinked active materials, in the first green processing approach.  相似文献   

7.
Long device lifetime is still a missing key requirement in the commercialization of nonfullerene acceptor (NFA) organic solar cell technology. Understanding thermodynamic factors driving morphology degradation or stabilization is correspondingly lacking. In this report, thermodynamics is combined with morphology to elucidate the instability of highly efficient PTB7‐Th:IEICO‐4F binary solar cells and to rationally use PC71BM in ternary solar cells to reduce the loss in the power conversion efficiency from ≈35% to <10% after storage for 90 days and at the same time improve performance. The hypomiscibility observed for IEICO‐4F in PTB7‐Th (below the percolation threshold) leads to overpurification of the mixed domains. By contrast, the hypermiscibility of PC71BM in PTB7‐Th of 48 vol% is well above the percolation threshold. At the same time, PC71BM is partly miscible in IEICO‐4F suppressing crystallization of IEICO‐4F. This work systematically illustrates the origin of the intrinsic degradation of PTB7‐Th:IEICO‐4F binary solar cells, demonstrates the structure–function relations among thermodynamics, morphology, and photovoltaic performance, and finally carries out a rational strategy to suppress the degradation: the third component needs to have a miscibility in the donor polymer at or above the percolation threshold, yet also needs to be partly miscible with the crystallizable acceptor.  相似文献   

8.
“Nonfullerene” acceptors are proving effective in bulk heterojunction (BHJ) solar cells when paired with selected polymer donors. However, the principles that guide the selection of adequate polymer donors for high‐efficiency BHJ solar cells with nonfullerene acceptors remain a matter of some debate and, while polymer main‐chain substitutions may have a direct influence on the donor–acceptor interplay, those effects should be examined and correlated with BHJ device performance patterns. This report examines a set of wide‐bandgap polymer donor analogues composed of benzo[1,2‐b:4,5‐b′]dithiophene (BDT), and thienyl ([2H]T) or 3,4‐difluorothiophene ([2F]T) motifs, and their BHJ device performance pattern with the nonfullerene acceptor “ITIC”. Studies show that the fluorine‐ and ring‐substituted derivative PBDT(T)[2F]T largely outperforms its other two polymer donor counterparts, reaching power conversion efficiencies as high as 9.8%. Combining several characterization techniques, the gradual device performance improvements observed on swapping PBDT[2H]T for PBDT[2F]T, and then for PBDT(T)[2F]T, are found to result from (i) notably improved charge generation and collection efficiencies (estimated as ≈60%, 80%, and 90%, respectively), and (ii) reduced geminate recombination (being suppressed from ≈30%, 25% to 10%) and bimolecular recombination (inferred from recombination rate constant comparisons). These examinations will have broader implications for further studies on the optimization of BHJ solar cell efficiencies with polymer donors and a wider range of nonfullerene acceptors.  相似文献   

9.
It is a great challenge to simultaneously improve the two tangled parameters, open circuit voltage (Voc) and short circuit current density (Jsc) for organic solar cells (OSCs). Herein, such a challenge is addressed by a synergistic approach using fine‐tuning molecular backbone and morphology control simultaneously by a simple yet effective side chain modulation on the backbone of an acceptor–donor–acceptor (A–D–A)‐type acceptor. With this, two terthieno[3,2‐b]thiophene (3TT) based A–D–A‐type acceptors, 3TT‐OCIC with backbone modulation and 3TT‐CIC without such modification, are designed and synthesized. Compared with the controlled molecule 3TT‐CIC, 3TT‐OCIC shows power conversion efficiency (PCE) of 13.13% with improved Voc of 0.69 V and Jsc of 27.58 mA cm?2, corresponding to PCE of 12.15% with Voc of 0.65 V and Jsc of 27.04 mA cm?2 for 3TT‐CIC–based device. Furthermore, with effective near infrared absorption, 3TT‐OCIC is used as the rear subcell acceptor in a tandem device and gave an excellent PCE of 15.72%.  相似文献   

10.
Two narrow bandgap non‐fullerene acceptors (NBG‐NFAs), namely, COTIC‐4F and SiOTIC‐4F, are designed and synthesized for the fabrication of efficient near‐infrared organic solar cells (OSCs). The chemical structures of the NBG‐NFAs contain a D′‐D‐D′ electron‐rich internal core based on a cyclopentadithiophene (or dithienosilole) (D) and alkoxythienyl (D′) core, end‐capped with the highly electron‐deficient unit 2‐(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐inden‐1‐ylidene)malononitrile (A), ultimately providing a A‐D′‐D‐D′‐A molecular configuration that enhances the intramolecular charge transfer characteristics of the excited states. One can thereby reduce the optical bandgap (Egopt) to as low as ≈1.10 eV, one of the smallest values for NFAs reported to date. In bulk‐heterojunction (BHJ) OSCs, NBG‐NFA blends with the polymer donor PTB7‐Th yield power conversion efficiencies (PCE) of up to 9.0%, which is particularly high when compared against a range of NBG BHJ blends. Most significantly, it is found that, despite the small energy loss (Egopt ? eVOC) of 0.52 eV, the PTB7‐Th/NBG‐NFA bulk heterojunction blends can yield short‐circuit current densities of up to 22.8 mA cm?2, suggesting that the design and application of NBG‐NFA materials have substantial potential to further improve the PCE of OSCs.  相似文献   

11.
Development of high‐performance donor–acceptor (D–A) copolymers is vital in the research of polymer solar cells (PSCs). In this work, a low‐bandgap D–A copolymer based on dithieno[3,2‐b:2′,3′‐d]pyridin‐5(4H)‐one unit (DTP), PDTP4TFBT, is developed and used as the donor material for PSCs with PC71BM or ITIC as the acceptor. PDTP4TFBT:PC71BM and PDTP4TFBT:ITIC solar cells give power conversion efficiencies (PCEs) up to 8.75% and 7.58%, respectively. 1,8‐Diiodooctane affects film morphology and device performance for fullerene and nonfullerene solar cells. It inhibits the active materials from forming large domains and improves PCE for PDTP4TFBT:PC71BM cells, while it promotes the aggregation and deteriorates performance for PDTP4TFBT:ITIC cells. The ternary‐blend cells based on PDTP4TFBT:PC71BM:ITIC (1:1.2:0.3) give a decent PCE of 9.20%.  相似文献   

12.
Highly crystalline conjugated polymers represent a key material for producing high‐performance thick‐active‐layer polymer solar cells (PSCs). However, despite their potential, a limited number of crystalline polymers are used in PSCs because of the lack of highly coplanar acceptor building blocks and insufficient light absorptivity (α < 105) of most donor (D)–acceptor (A)‐type polymers. This study reports a series of novel 3,7‐di(thiophen‐2‐yl)‐1,5‐naphthyridine‐2,6‐dione (NTDT) acceptor‐based conjugated polymers, PNTDT‐2T, PNTDT‐TT, and PNTDT‐2F2T, synthesized with 2,2′‐bithiophene (2T), thieno[3,2‐b]thiophene (TT), and 3,3′‐difluoro‐2,2′‐bithiophene (2F2T) donor units, respectively. PNTDT‐2F2T exhibits superior polymer crystallinity and a much higher absorption coefficient than those of PNTDT‐2T or PNTDT‐TT because of adequate matching between highly coplanar A (NTDT) and D (2F2T) building blocks. A bulk heterojunction solar cell based on PNTDT‐2F2T exhibits a power conversion efficiency of up to 9.63%, with a high short circuit current of 18.80 mA cm?2 and fill factor of 0.70, when a thick active layer (>200 nm) is used, without postfabrication hot processing. The findings demonstrate that the polymer crystallinity and absorption coefficient can be effectively controlled by selecting appropriate D and A building blocks, and that NTDT is a novel and versatile A building block for highly efficient thick‐active‐layer PSCs.  相似文献   

13.
Three acceptor–donor–acceptor type nonfullerene acceptors (NFAs), namely, F–F, F–Cl, and F–Br, are designed and synthesized through a halogenation strategy on one successful nonfullerene acceptor FDICTF (F–H). The three molecules show red‐shifted absorptions, increased crystallinities, and higher charge mobilities compared with the F–H. After blending with donor polymer PBDB‐T, the F–F‐, F–Cl‐, and F–Br‐based devices exhibit power conversion efficiencies (PCEs) of 10.85%, 11.47%, and 12.05%, respectively, which are higher than that of F–H with PCE of 9.59%. These results indicate that manipulating the absorption range, crystallinity and mobilities of NFAs by introducing different halogen atoms is an effective way to achieve high photovoltaic performance, which will offer valuable insight for the designing of high‐efficiency organic solar cells.  相似文献   

14.
Polymer solar cells (PSCs) are fabricated without solvent additives using a low‐bandgap polymer, PBDTTT‐C‐T, as the donor and [6,6]‐phenyl‐C61‐butyric‐acid‐methyl‐ester (PC61BM) as the acceptor. Donor‐acceptor blend and layer‐by‐layer (LL) solution process are used to form active layers. Relative to the blend devices, the LL devices exhibit stronger absorption, better vertical phase separation, higher hole and electron mobilities, and better charge extraction at correct electrodes. As a result, after thermal annealing the LL devices exhibit an average power conversion efficiency (PCE) of 6.86%, which is much higher than that of the blend devices (4.31%). The best PCE of the LL devices is 7.13%, which is the highest reported for LL processed PSCs and among the highest reported for PC61BM‐based single‐junction PSCs.  相似文献   

15.
Solution‐processable small molecule (SM) donors are promising alternatives to their polymer counterparts in bulk‐heterojunction (BHJ) solar cells. While SM donors with favorable spectral absorption, self‐assembly patterns, optimum thin‐film morphologies, and high carrier mobilities in optimized donor–acceptor blends are required to further BHJ device efficiencies, material structure governs each one of those attributes. As a result, the rational design of SM donors with gradually improved BHJ solar cell efficiencies must concurrently address: (i) bandgap tuning and optimization of spectral absorption (inherent to the SM main chain) and (ii) pendant‐group substitution promoting structural order and mediating morphological effects. In this paper, the rational pendant‐group substitution in benzo[1,2‐b:4,5‐b′]dithiophene–6,7‐difluoroquinoxaline SMs is shown to be an effective approach to narrowing the optical gap (Eopt) of the SM donors ( SM1 and SM2 ), without altering their propensity to order and form favorable thin‐film BHJ morphologies with PC71BM. Systematic device examinations show that power conversion efficiencies >8% and open‐circuit voltages (VOC) nearing 1 V can be achieved with the narrow‐gap SM donor analog ( SM2 , Eopt = 1.6 eV) and that charge transport in optimized BHJ solar cells proceeds with minimal, nearly trap‐free recombination. Detailed device simulations, light intensity dependence, and transient photocurrent analyses emphasize how carrier recombination impacts BHJ device performance upon optimization of active layer thickness and morphology.  相似文献   

16.
Three low‐bandgap nonfullerene acceptors (NFAs) IDTO‐T‐4F, IDTO‐Se‐4F, and IDTO‐TT‐4F with extended conjugation length are designed and synthesized. Various π‐spacers, thiophene, selenophene, and thieno[3,2‐b]thiophene are incorporated to extend the conjugated length and enhance the backbone planarity via noncovalent O···S or O···Se interactions. These NFAs exhibit strong light absorption in the range of 600–900 nm with narrow bandgaps between 1.38 and 1.45 eV. By blending with a wide‐bandgap donor material PBDB‐T, organic solar cells (OSCs) based on these NFAs all yield high efficiency over 10% with low energy losses ranging from 0.52 to 0.59 eV. Importantly, as a result of relatively high lowest unoccupied molecular orbital level, large hole and electron mobility in blend film, and low charge carrier recombination loss, optimized devices based on IDTO‐T‐4F exhibit a large open‐circuit voltage of 0.864 V, a high short‐circuit current density of 20.12 mA cm?2, and a notable fill factor of 72.7%, leading to an impressive efficiency of 12.62%, which represents the best performance for NFA OSCs using noncovalent interactions in acceptor molecule design. The results indicate that optimizing the conjugation length and backbone planarity via intramolecular noncovalent O···S or O···Se interactions is a useful strategy for NFA materials invention toward high‐performance solar cells.  相似文献   

17.
A new weak electron‐deficient building block, bis(2‐ethylhexyl) 2,5‐bis(5‐bromothiophen‐2‐yl) thieno[3,2‐b]thiophene‐3,6‐dicarboxylate ( TT‐Th ), is incorporated to construct a wide‐bandgap (1.88 eV) polymer PBDT‐TT for nonfullerene polymer solar cells (NF‐PSCs). PBDT‐TT possesses suitable energy levels and complementary absorption when blended with both ITIC analogues ( ITIC and IT‐M ) and a near‐infrared (NIR) acceptor ( 6TIC ). Moreover, PBDT‐TT exhibits good conjugated planarity and preferable face‐on orientation in the blended thin film, which are beneficial for charge transfer and carrier transport. The PSCs based on PBDT‐TT : IT‐M and PBDT‐TT : 6TIC blend films yield high power conversion efficiencies of 11.38% and 11.03%, respectively. To the best of the authors' knowledge, the PCE of 11.03% for PBDT‐TT : 6TIC‐ based device is one of the highest values reported for NIR NF‐PSCs. This work demonstrates that TT‐Th is a useful new electron‐accepting building block for making p‐type wide bandgap polymers for efficient NIR NF‐PSCs.  相似文献   

18.
Three new thieno[3,2‐b][1]benzothiophene ( TBT )‐based donor–π–acceptor (D–π–A) sensitizers, coded as SGT ‐ 121 , SGT ‐ 129 , and SGT ‐ 130 , have been designed and synthesized for dye‐sensitized solar cells (DSSCs), for the first time. The TBT , prepared by fusing thiophene unit with the phenyl unit of triphenylamine donor, is utilized as the π‐bridge for all sensitizers with good planarity. They have been molecularly engineered to regulate the highest occupied molecular orbital (HOMO)‐lowest unoccupied molecular orbital (LUMO) energy levels and extend absorption range as well as to control the electron‐transfer process that can ensure efficient dye regeneration and prevent undesired electron recombination. The photovoltaic performance of SGT‐sensitizer‐based DSSCs employing Co(bpy)32+/3+ (bpy = 2,2′‐bipyridine) redox couple is systematically evaluated in a thorough comparison with Y123 as a reference sensitizer. Among them, SGT ‐ 130 with benzothiadiazole‐phenyl ( BTD ‐ P ) unit as an auxiliary acceptor exhibits the highest power‐conversion efficiency (PCE) of 10.47% with Jsc = 16.77 mA cm?2, Voc = 851 mV, and FF = 73.34%, whose PCE is much higher than that of Y123 (9.5%). It is demonstrated that the molecular combination of each fragment in D–π–A organic sensitizers can be a pivotal factor for achieving the higher PCEs and an innovative strategy for strengthening the drawbacks of the π‐bridge.  相似文献   

19.
A new n‐type organic semiconductor (n‐OS) acceptor IDTPC with n‐hexyl side chains is developed. Compared to side chains with 4‐hexylphenyl counterparts (IDTCN), such a design endows the acceptor of IDTPC with higher electron mobility, more ordered face‐on molecular packing, and lower band gap. Therefore, the IDTPC‐based polymer solar cells (PSCs) with a newly developed wide bandgap polymer PTQ10 as donor exhibit the maximum power conversion efficiency (PCE) of 12.2%, a near 65% improvement in PCE relative to the IDTCN‐based control device. Most importantly, the IDTPC‐based device is insensitive to the thickness of the active layer from 70 to 505 nm, which still gives a PCE of 10.0% with the active‐layer thickness of 400 nm. To the best of the authors' knowledge, a PCE of 10.0% is the highest value for the nonfullerene PSCs with an active layer thicker than 400 nm. These results reveal that the blend of PTQ10 and IDTPC exhibits great potential for highly efficient nonfullerene PSCs and large‐area device fabrication.  相似文献   

20.
A terthieno[3,2‐b]thiophene ( 6T ) based fused‐ring low bandgap electron acceptor, 6TIC , is designed and synthesized for highly efficient nonfullerene solar cells. The chemical, optical, and physical properties, device characteristics, and film morphology of 6TIC are intensively studied. 6TIC shows a narrow bandgap with band edge reaching 905 nm due to the electron‐rich π‐conjugated 6T core and reduced resonance stabilization energy. The rigid, π‐conjugated 6T also offers lower reorganization energy to facilitate very low VOC loss in the 6TIC system. The analysis of film morphology shows that PTB7‐Th and 6TIC can form crystalline domains and a bicontinuous network. These domains are enlarged when thermal annealing is applied. Consequently, the device based on PTB7‐Th : 6TIC exhibits a high power conversion efficiency (PCE) of 11.07% with a high JSC > 20 mA cm?2 and a high VOC of 0.83 V with a relatively low VOC loss (≈0.55 V). Moreover, a semitransparent solar cell based on PTB7‐Th : 6TIC exhibits a relatively high PCE (7.62%). The device can have combined high PCE and high JSC is quite rare for organic solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号