首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atmospheric nitrogen (N) deposition increasingly impacts remote ecosystems. At high altitudes, snow is a key carrier of water and nutrients from the atmosphere to the soil. Medium-sized subalpine grassland terraces are characteristic of agricultural landscapes in the French Alps and influence spatial and temporal snow pack variables. At the Lautaret Pass, we investigated snow and soil characteristics along mesotopographic gradients across the terraces before and during snowmelt. Total N concentrations in the snowpack did not vary spatially and were dominated by organic N forms either brought by dry deposition trapped by the snow, or due to snow-microbial immobilization and turnover. As expected, snowpack depth, total N deposited with snow and snowmelt followed the terrace toposequence; more snow-N accumulated towards the bank over longer periods. However, direct effects of snow-N on soil-N cycling seem unlikely since the amount of nitrogen released into the soil from the snowpack was very small relative to soil-N pools and N mineralization rates. Nevertheless, some snow-N reached the soil at thaw where it underwent biotic and abiotic processes. In situ soil-N mineralization rates did not vary along the terrace toposequence but soil-N cycling was indirectly affected by the snowpack. Indeed, N mineralization responded to the snowmelt dynamic via induced temporal changes in soil characteristics (i.e. moisture and T°) which cascaded down to affect N-related microbial activities and soil pH. Soil-NH4 and DON accumulated towards the bank during snowmelt while soil-NO3 followed a pulse-release pattern. At the end of the snowmelt season, organic substrate limitation might be accountable for the decrease in N mineralization in general, and in NH4 + production in particular. Possibly, during snowmelt, other biotic or abiotic processes (nitrification, denitrification, plant uptake, leaching) were involved in the transformation and transfer of snow and soil-N pools. Finally, subalpine soils at the Lautaret Pass during snowmelt experienced strong biotic and abiotic changes and switched between a source and a sink of N.  相似文献   

2.
The transport and deposition of anthropogenic nitrogen (N) to downwind ecosystems is significant and can be a dominant source of new N to many watersheds. Bacterially mediated denitrification in lake sediments may ameliorate the effects of N loading by permanently removing such inputs. We measured denitrification in sediments collected from lakes in the Colorado Rocky Mountains (USA) receiving elevated (5–8?kg?N?ha?1?y?1) or low (<2?kg?N?ha?1?y?1) inputs of atmospheric N deposition. The nitrate (NO3 ?) concentration was significantly greater in high-deposition lakes (11.3?μmol?l?1) compared to low-deposition lakes (3.3?μmol?l?1). Background denitrification was positively related to NO3 ? concentrations and we estimate that the sampled lakes are capable of removing a significant portion of N inputs via sediment denitrification. We also conducted a dose–response experiment to determine whether chronic N loading has altered sediment denitrification capacity. Under Michaelis–Menten kinetics, the maximum denitrification rate and half-saturation NO3 ? concentration did not differ between deposition regions and were 765?μmol?N?m?2?h?1 and 293?μmol?l?1?NO3 ?, respectively, for all lakes. We enumerated the abundances of nitrate- and nitrite-reducing bacteria and found no difference between high- and low-deposition lakes. The abundance of these bacteria was related to available light and bulk sediment resources. Our findings support a growing body of evidence that lakes play an important role in N removal and, furthermore, suggest that current levels of N deposition have not altered the abundance of denitrifying bacteria or saturated the capacity for sediment denitrification.  相似文献   

3.
Increasing nitrogen (N) deposition in subtropical forests in south China causes N saturation, associated with significant nitrate (NO3?) leaching. Strong N attenuation may occur in groundwater discharge zones hydrologically connected to well‐drained hillslopes, as has been shown for the subtropical headwater catchment “TieShanPing”, where dual NO3? isotopes indicated that groundwater discharge zones act as an important N sink and hotspot for denitrification. Here, we present a regional study reporting inorganic N fluxes over two years together with dual NO3? isotope signatures obtained in two summer campaigns from seven forested catchments in China, representing a gradient in climate and atmospheric N input. In all catchments, fluxes of dissolved inorganic N indicated efficient conversion of NH4+ to NO3? on well‐drained hillslopes, and subsequent interflow of NO3? over the argic B‐horizons to groundwater discharge zones. Depletion of 15N‐ and 18O–NO3? on hillslopes suggested nitrification as the main source of NO3?. In all catchments, except one of the northern sites, which had low N deposition rates, NO3? attenuation by denitrification occurred in groundwater discharge zones, as indicated by simultaneous 15N and 18O enrichment in residual NO3?. By contrast to the southern sites, the northern catchments lack continuous and well‐developed groundwater discharge zones, explaining less efficient N removal. Using a model based on 15NO3? signatures, we estimated denitrification fluxes from 2.4 to 21.7 kg N ha?1 year?1 for the southern sites, accounting for more than half of the observed N removal. Across the southern catchments, estimated denitrification scaled proportionally with N deposition. Together, this indicates that N removal by denitrification is an important component of the N budget of southern Chinese forests and that natural NO3? attenuation may increase with increasing N input, thus partly counteracting further aggravation of N contamination of surface waters in the region.  相似文献   

4.
Nitrate (NO3) export coupled with high inorganic nitrogen (N) concentrations in Alaskan streams suggests that N cycles of permafrost‐influenced ecosystems are more open than expected for N‐limited ecosystems. We tested the hypothesis that soil thaw depth governs inorganic N retention and removal in soils due to vertical patterns in the dominant N transformation pathways. Using an in situ, push–pull method, we estimated rates of inorganic N uptake and denitrification during snow melt, summer, and autumn, as depth of soil–stream flowpaths increased in the valley bottom of an arctic and a boreal catchment. Net NO3 uptake declined sharply from snow melt to summer and decreased as a nonlinear function of thaw depth. Peak denitrification rate occurred during snow melt at the arctic site, in summer at the boreal site, and declined as a nonlinear function of thaw depth across both sites. Seasonal patterns in ammonium (NH4+) uptake were not significant, but low rates during the peak growing season suggest uptake that is balanced by mineralization. Despite rapid rates of hydrologic transport during snow melt runoff, rates of uptake and removal of inorganic N tended to exceed water residence time during snow melt, indicating potential for retention of N in valley bottom soils when flowpaths are shallow. Decreased reaction rates relative to water residence time in subsequent seasons suggest greater export of inorganic N as the soil–stream flowpath deepens due to thawing soils. Using seasonal thaw as a proxy for longer term deepening of the thaw layer caused by climate warming and permafrost degradation, these results suggest increasing potential for export of inorganic N from permafrost‐influenced soils to streams.  相似文献   

5.
In forests of the humid subtropics of China, chronically elevated nitrogen (N) deposition, predominantly as ammonium (NH4+), causes significant nitrate (NO3?) leaching from well‐drained acid forest soils on hill slopes (HS), whereas significant retention of NO3? occurs in near‐stream environments (groundwater discharge zones, GDZ). To aid our understanding of N transformations on the catchment level, we studied spatial and temporal variabilities of concentration and natural abundance (δ15N and δ18O) of nitrate (NO3?) in soil pore water along a hydrological continuum in the N‐saturated Tieshanping (TSP) catchment, southwest China. Our data show that effective removal of atmogenic NH4+ and production of NO3? in soils on HS were associated with a significant decrease in δ15N‐NO3?, suggesting efficient nitrification despite low soil pH. The concentration of NO3? declined sharply along the hydrological flow path in the GDZ. This decline was associated with a significant increase in both δ15N and δ18O of residual NO3?, providing evidence that the GDZ acts as an N sink due to denitrification. The observed apparent 15N enrichment factor (ε) of NO3? of about ?5‰ in the GDZ is similar to values previously reported for efficient denitrification in riparian and groundwater systems. Episode studies in the summers of 2009, 2010 and 2013 revealed that the spatial pattern of δ15N and δ18O‐NO3? in soil water was remarkably similar from year to year. The importance of denitrification as a major N sink was also seen at the catchment scale, as largest δ15N‐NO3? values in stream water were observed at lowest discharge, confirming the importance of the relatively small GDZ for N removal under base flow conditions. This study, explicitly recognizing hydrologically connected landscape elements, reveals an overlooked but robust N sink in N‐saturated, subtropical forests with important implications for regional N budgets.  相似文献   

6.
Knowledge of the fate of deposited N in the possibly N-limited, highly biodiverse north Andean forests is important because of the possible effects of N inputs on plant performance and species composition. We analyzed concentrations and fluxes of NO3 ??CN, NH4 +?CN and dissolved organic N (DON) in rainfall, throughfall, litter leachate, mineral soil solutions (0.15?C0.30 m depths) and stream water in a montane forest in Ecuador during four consecutive quarters and used the natural 15N abundance in NO3 ? during the passage of rain water through the ecosystem and bulk ??15N values in soil to detect N transformations. Depletion of 15N in NO3 ? and increased NO3 ??CN fluxes during the passage through the canopy and the organic layer indicated nitrification in these compartments. During leaching from the organic layer to mineral soil and stream, NO3 ? concentrations progressively decreased and were enriched in 15N but did not reach the ??15N values of solid phase organic matter (??15N = 5.6?C6.7??). This suggested a combination of nitrification and denitrification in mineral soil. In the wettest quarter, the ??15N value of NO3 ? in litter leachate was smaller (??15N = ?1.58??) than in the other quarters (??15N = ?9.38 ± SE 0.46??) probably because of reduced mineralization and associated fractionation against 15N. Nitrogen isotope fractionation of NO3 ? between litter leachate and stream water was smaller in the wettest period than in the other periods probably because of a higher rate of denitrification and continuous dilution by isotopically lighter NO3 ??CN from throughfall and nitrification in the organic layer during the wettest period. The stable N isotope composition of NO3 ? gave valuable indications of N transformations during the passage of water through the forest ecosystem from rainfall to the stream.  相似文献   

7.
Highly resolved time series data are useful to accurately identify the timing, rate, and magnitude of solute transport in streams during hydrologically dynamic periods such as snowmelt. We used in situ optical sensors for nitrate (NO3 ?) and chromophoric dissolved organic matter fluorescence (FDOM) to measure surface water concentrations at 30?min intervals over the snowmelt period (March 21–May 13, 2009) at a 40.5 hectare forested watershed at Sleepers River, Vermont. We also collected discrete samples for laboratory absorbance and fluorescence as well as δ18O–NO3 ? isotopes to help interpret the drivers of variable NO3 ? and FDOM concentrations measured in situ. In situ data revealed seasonal, event and diurnal patterns associated with hydrological and biogeochemical processes regulating stream NO3 ? and FDOM concentrations. An observed decrease in NO3 ? concentrations after peak snowmelt runoff and muted response to spring rainfall was consistent with the flushing of a limited supply of NO3 ? (mainly from nitrification) from source areas in surficial soils. Stream FDOM concentrations were coupled with flow throughout the study period, suggesting a strong hydrologic control on DOM concentrations in the stream. However, higher FDOM concentrations per unit streamflow after snowmelt likely reflected a greater hydraulic connectivity of the stream to leachable DOM sources in upland soils. We also observed diurnal NO3 ? variability of 1–2?μmol?l?1 after snowpack ablation, presumably due to in-stream uptake prior to leafout. A comparison of NO3 ? and dissolved organic carbon yields (DOC, measured by FDOM proxy) calculated from weekly discrete samples and in situ data sub-sampled daily resulted in small to moderate differences over the entire study period (?4 to 1% for NO3 ? and ?3 to ?14% for DOC), but resulted in much larger differences for daily yields (?66 to +27% for NO3 ? and ?88 to +47% for DOC, respectively). Despite challenges inherent in in situ sensor deployments in harsh seasonal conditions, these data provide important insights into processes controlling NO3 ? and FDOM in streams, and will be critical for evaluating the effects of climate change on snowmelt delivery to downstream ecosystems.  相似文献   

8.

Wet deposition of dissolved inorganic nitrogen (N) is declining nationally, accompanied by a shift in stoichiometry from predominantly oxidized to reduced forms of N. Stoichiometric trends that include the organic fraction of N wet deposition have yet to be assessed in light of anthropogenic pressures and global change, including shifting seasonality. Here we use 17 years of weekly, year-round wet deposition data from a temperate watershed in New Hampshire (USA) to assess long-term and seasonal trends in NO3?, NH4+, and dissolved organic nitrogen (DON), and quantify the dependence of N stoichiometry on precipitation type (rain or snow). Concentration, load, and relative abundance of DON are increasing, a pattern previously unreported in the U.S. Deposition of total dissolved nitrogen at this site is declining, but is increasingly depleted in NH4+, contrary to national trends. The stoichiometry of inorganic N is highly sensitive to precipitation type with snow containing significantly more NO3? than rain, which was relatively enriched in NH4+. The effects of climate change on seasonality such as warmer winters could result in a greater proportion of precipitation entering the biosphere as rain that is relatively enriched in reduced N, with significant implications for watershed biogeochemical cycles at the regional scale. This study demonstrates variability in contemporary N deposition inputs including trends in stoichiometry and explores the role of organic N and seasonality in regulating inter- and intra- variability in N deposition stoichiometry.

  相似文献   

9.
The influx of atmospheric nitrogen to soils and surfaces in arid environments is of growing concern due to increased N emissions and N usage associated with urbanization. Atmospheric nitrogen inputs to the critical zone can occur as wet (rain or snow) or dry (dust or aerosols) deposition, and can lead to eutrophication, soil acidification, and groundwater contamination through leaching of excess nitrate. The objective of this research was to use the δ15N, δ18O, and Δ17O values of atmospheric nitrate (NO3 ?) (precipitation and aerosols) and NO3 ? in runoff to assess the importance of N deposition and turnover in semi-arid urban watersheds. Data show that the fractions of atmospheric NO3 ? exported from all the urban catchments, throughout the study period, were substantially higher than in nearly all other ecosystems studied with mean atmospheric contributions of 38% (min 0% and max 82%). These results suggest that catchment and stream channel imperviousness enhance atmospheric NO3 ? export due to inefficient N cycling and retention. In contrast, catchment and stream channel perviousness allow for enhanced N processing and therefore reduced atmospheric NO3 ? export. Overall high fractions of atmospheric NO3 ? were primarily attributed to slow N turn over in arid/semi-arid ecosystems. A relatively high fraction of nitrification NO3 ? (~30%) was found in runoff from a nearly completely impervious watershed (91%). This was attributed to nitrification of atmospheric NH4 + in dry-deposited dust, suggesting that N nitrifiers have adapted to urban micro niches. Gross nitrification rates based on NO3 ? Δ17O values ranged from a low 3.04 ± 2 kg NO3-N km?2 day?1 in highly impervious catchments to a high of 10.15 ± 1 kg NO3-N km?2 day?1 in the low density urban catchment. These low gross nitrification rates were attributed to low soil C:N ratios that control gross autotrophic nitrification by regulating gross NH4 + production rates.  相似文献   

10.
In late-successional steady state ecosystems, plants and microbes compete for nutrients and nutrient retention efficiency is expected to decline when inputs exceed biotic demand. In carbon (C)-poor environments typical of early primary succession, nitrogen (N) uptake by C-limited microbes may be limited by inputs of detritus and exudates derived from contemporaneous plant production. If plants are N-limited in these environments, then this differential limitation may lead to positive relationships between N inputs and N retention efficiency. Further, the mechanisms of N removal may vary as a function of inputs if plant-derived C promotes denitrification. These hypotheses were tested using field surveys and greenhouse microcosms simulating the colonization of desert stream channel sediments by herbaceous vegetation. In field surveys of wetland (ciénega) and gravelbed habitat, plant biomass was positively correlated with nitrate (NO3 ?) concentration. Manipulation of NO3 ? in flow-through microcosms produced positive relationships among NO3 ? supply, plant production, and tissue N content, and a negative relationship with root:shoot ratio. These results are consistent with N limitation of herbaceous vegetation in Sycamore Creek and suggest that N availability may influence transitions between and resilience of wetland and gravelbed stable states in desert streams. Increased biomass in high N treatments resulted in elevated rates of denitrification and shifts from co-limitation by C and NO3 ? to limitation by NO3 ? alone. Overall NO3 ? retention efficiency and the relative importance of denitrification increased with increasing N inputs. Thus the coupling of plant growth and microbial processes in low C environments alters the relationship between N inputs and exports due to increased N removal under high input regimes that exceed assimilative demand.  相似文献   

11.
There is increasing concern over the impact of atmospheric nitrogen (N) deposition on forest ecosystems in the tropical and subtropical areas. In this study, we quantified atmospheric N deposition and revealed current plant and soil N status in 14 forests along a 150 km urban to rural transect in southern China, with an emphasis on examining whether foliar δ15N can be used as an indicator of N saturation. Bulk deposition ranged from 16.2 to 38.2 kg N ha?1 yr?1, while the throughfall covered a larger range of 11.7–65.1 kg N ha?1 yr?1. Foliar N concentration, NO3? leaching to stream, and soil NO3? concentration were low and NO3? production was negligible in some rural forests, indicating that primary production in these forests may be limited by N supply. But all these N variables were enhanced in suburban and urban forests. Across the study transect, throughfall N input was correlated positively with soil nitrification and NO3? leaching to stream, and negatively with pH values in soil and stream water. Foliar δ15N was between ?6.6‰ and 0.7‰, and was negatively correlated with soil NO3? concentration and NO3? leaching to stream across the entire transect, demonstrating that an increased N supply does not necessarily increase forest δ15N values. We proposed several potential mechanism that could contribute to the δ15N pattern, including (1) increased plant uptake of 15N‐depleted soil NO3?, (2) foliage uptake of 15N‐depleted NH4+, (3) increased utilization of soil inorganic N relative to dissolved organic N, and (4) increased fractionation during plant N uptake under higher soil N availability.  相似文献   

12.
Atmospheric deposition of nitrogen (N) compounds is the major source of anthropogenic N to most upland ecosystems, where leaching of nitrate (NO 3 ? ) into surface waters contributes to eutrophication and acidification as well as indicating an excess of N in the terrestrial catchment ecosystems. Natural abundance stable isotopes ratios, 15N/14N and 18O/16O (the “dual isotope” technique) have previously been used in biogeochemical studies of alpine and forested ecosystems to demonstrate that most of the NO 3 ? in upland surface waters has been microbially produced. Here we present an application of the technique to four moorland catchments in the British uplands including a comparison of lakes and their stream inflows at two sites. The NO 3 ? concentrations of bulk deposition and surface waters at three sites are very similar. While noting the constraints imposed by uncertainty in the precise δ18O value for microbial NO 3 ? , however, we estimate that 79–98% of the annual mean NO 3 ? has been microbially produced. Direct leaching of atmospheric NO 3 ? is a minor component of catchment NO 3 ? export, although greater than in many similar studies in forested watersheds. A greater proportion of atmospheric NO 3 ? is seen in the two lake sites relative to their inflow streams, demonstrating the importance of direct NO 3 ? deposition to lake surfaces in catchments where terrestrial ecosystems intercept a large proportion of deposited N. The dominance of microbial sources of NO 3 ? in upland waters suggests that reduced and oxidised N deposition may have similar implications in terms of contributing to NO 3 ? leaching.  相似文献   

13.
Temperate forests receive some of the highest rates of nitrogen (N) deposition in the world. While numerous studies have investigated the effects of N enrichment on forests, there is little consensus on why some forests become N saturated while others do not. To investigate this, we used a multi-factor meta-analysis to simultaneously estimate the relative importance of several environmental, experimental, and anthropogenic variables on nitrate (NO3 ?) leaching in response to experimental N addition. Given that overstory tree species composition and soil C:N ratio influence forest responses to N, we hypothesized that forests dominated by arbuscular mycorrhizal (AM) trees would respond differently than forests dominated by ectomycorrhizal (ECM) trees in the context of forest susceptibility to NO3 ? leaching. We found that mycorrhizal association is an important predictor of NO3 ? leaching, and AM-dominated forests leach more NO3 ? in response to N deposition than ECM forests. Additionally, we found that the amount of total N added, ambient N deposition rates, and the form of N added influenced the magnitude of the NO3 ? leaching response. Given that the mycorrhizal associations of most temperate trees are known, our results suggest that this functional grouping may be useful in identifying forests that are most susceptible to NO3 ? leaching.  相似文献   

14.
Rain-on-snow (ROS) events are major drivers of nitrate (NO3-N) export from seasonally snow-covered forested catchments and may cause episodic declines in stream pH. High intensity monitoring of throughfall, snow pack and stream water draining two proximal catchments (Harp 3A and Harp 6A) with very different NO3-N export revealed that a very small percentage of ROS-induced stream discharge originates from throughfall and melting snow (new water; average = 6.4 %). However, this new water has a very high concentration of NO3-N (throughfall/snowmelt average = 498 μg/L) compared with baseflow (average = 7.3 μg/L in Harp 6A; average = 41 μg/L in Harp 3A) and as a result, throughfall and snowmelt contribute the majority of NO3-N export (average = 62 %) during ROS events. In contrast, concentrations of sulphate, dissolved organic carbon and calcium in rain and snowpack are similar to baseflow and therefore ROS-induced declines in pH (often to below pH 6.0) are attributed entirely to increases in NO3-N concentration. Differences in absolute magnitude of ROS NO3-N export between catchments are explained through differences in baseflow NO3-N concentrations. The frequency and magnitude of ROS events in this region are affected by both NO3-N deposition and winter temperature, and thus the impact of these events in the future depends on changes in both atmospheric deposition and winter climate.  相似文献   

15.
The influence of hydrology and soil properties on disproportionately high (“hot”) rates of nitrate (NO3 ?) removal via denitrification has been relatively well established. It is poorly understood, however, how the unique soil characteristics of brownfield wetlands contribute to or hinder denitrification. In this study, we examined drivers of “hot” denitrification rates over time (“hot moments”) and space (“hotspots”) in a watershed located on an unrestored brownfield in New Jersey, USA. We carried out measurements of denitrification over 9-day sequences during three seasons in sites with the same vegetation (Phragmites australis) but different soils (fill material, remnant marsh soils, flooded organic-rich soils). Denitrification rates above the 3rd quartile value of the data distribution were defined as “hot” and the most important drivers of these rates were determined using mixed models. Porosity and NO3 ? availability were the strongest spatial and temporal predictors, respectively, of high denitrification rates, with coarse-textured, unflooded fill materials unexpectedly supporting the highest rates. These results suggest that pore-scale hydrology is a more complex controller of wetland denitrification than previously thought. Course-textured, unflooded soils have high fractions of air-filled pores relative to flooded soils, leading to more endogenous NO3 ? production, and less diffusion constraints than fine-textured soils, leading to higher NO3 ? availability to denitrifiers in suboxic pores. Laboratory studies confirmed denitrifiers were limited by NO3 ? availability. However, denitrification rates in all soils matched or exceeded atmospheric NO3 ? deposition and stormwater NO3 ? loading at the site, suggesting that brownfields may play an important role in NO3 ? removal from urban stormwater.  相似文献   

16.
Increases in soil freezing associated with decreases in snow cover have been identified as a significant disturbance to nitrogen (N) cycling in northern hardwood forests. We created a range of soil freezing intensity through snow manipulation experiments along an elevation gradient at the Hubbard Brook Experimental Forest (HBEF) in the White Mountains, NH USA in order to improve understanding of the factors regulating freeze effects on nitrate (NO3 ?) leaching, nitrous oxide (N2O) flux, potential and in situ net N mineralization and nitrification, microbial biomass carbon (C) and N content and respiration, and denitrification. While the snow manipulation treatment produced deep and persistent soil freezing at all sites, effects on hydrologic and gaseous losses of N were less than expected and less than values observed in previous studies at the HBEF. There was no relationship between frost depth, frost heaving and NO3 ? leaching, and a weak relationship between frost depth and winter N2O flux. There was a significant positive relationship between dissolved organic carbon (DOC) and NO3 ? concentrations in treatment plots but not in reference plots, suggesting that the snow manipulation treatment mobilized available C, which may have stimulated retention of N and prevented treatment effects on N losses. While the results support the hypothesis that climate change resulting in less snow and more soil freezing will increase N losses from northern hardwood forests, they also suggest that ecosystem response to soil freezing disturbance is affected by multiple factors that must be reconciled in future research.  相似文献   

17.
Denitrification is an important net sink for NO3 ? in streams, but direct measurements are limited and in situ controlling factors are not well known. We measured denitrification at multiple scales over a range of flow conditions and NO3 ? concentrations in streams draining agricultural land in the upper Mississippi River basin. Comparisons of reach-scale measurements (in-stream mass transport and tracer tests) with local-scale in situ measurements (pore-water profiles, benthic chambers) and laboratory data (sediment core microcosms) gave evidence for heterogeneity in factors affecting benthic denitrification both temporally (e.g., seasonal variation in NO3 ? concentrations and loads, flood-related disruption and re-growth of benthic communities and organic deposits) and spatially (e.g., local stream morphology and sediment characteristics). When expressed as vertical denitrification flux per unit area of streambed (U denit, in μmol N m?2 h?1), results of different methods for a given set of conditions commonly were in agreement within a factor of 2–3. At approximately constant temperature (~20 ± 4°C) and with minimal benthic disturbance, our aggregated data indicated an overall positive relation between U denit (~0–4,000 μmol N m?2 h?1) and stream NO3 ? concentration (~20–1,100 μmol L?1) representing seasonal variation from spring high flow (high NO3 ?) to late summer low flow (low NO3 ?). The temporal dependence of U denit on NO3 ? was less than first-order and could be described about equally well with power-law or saturation equations (e.g., for the unweighted dataset, U denit ≈26 * [NO3 ?]0.44 or U denit ≈640 * [NO3 ?]/[180 + NO3 ?]; for a partially weighted dataset, U denit ≈14 * [NO3 ?]0.54 or U denit ≈700 * [NO3 ?]/[320 + NO3 ?]). Similar parameters were derived from a recent spatial comparison of stream denitrification extending to lower NO3 ? concentrations (LINX2), and from the combined dataset from both studies over 3 orders of magnitude in NO3 ? concentration. Hypothetical models based on our results illustrate: (1) U denit was inversely related to denitrification rate constant (k1denit, in day?1) and vertical transfer velocity (v f,denit, in m day?1) at seasonal and possibly event time scales; (2) although k1denit was relatively large at low flow (low NO3 ?), its impact on annual loads was relatively small because higher concentrations and loads at high flow were not fully compensated by increases in U denit; and (3) although NO3 ? assimilation and denitrification were linked through production of organic reactants, rates of NO3 ? loss by these processes may have been partially decoupled by changes in flow and sediment transport. Whereas k1denit and v f,denit are linked implicitly with stream depth, NO3 ? concentration, and(or) NO3 ? load, estimates of U denit may be related more directly to field factors (including NO3 ? concentration) affecting denitrification rates in benthic sediments. Regional regressions and simulations of benthic denitrification in stream networks might be improved by including a non-linear relation between U denit and stream NO3 ? concentration and accounting for temporal variation.  相似文献   

18.
The aims of this study were to simulate wet deposition of atmospheric nitrate (NO3?) onto forest soils and trace its fate via conversion spatially and temporally into gaseous products nitrous oxide (N2O) and dinitrogen (N2). The most likely mechanism is microbial denitrification, but an intermediate product nitrite (NO2?) can fuel N2O production via a chemical pathway involving reactions with iron and/or organic matter referred to as chemodenitrification. During summer months, we applied tracer amounts of 15N-labeled NO3? onto forest soils (pH ~ 4) at three sites in the White Mountain Region of New Hampshire, USA. We recovered 15N as N2O in 210 of 504 measurements (42%) versus 15N as N2 in 51 of 504 measurements (10%), suggesting partial microbial denitrification and/or chemodenitrification. When recovery occurred, the mean percent recovery of added 15N was just 1.1% as N2O, although N2 recovery was 33%. A site with old-growth trees had a larger percentage recovery as N2 (48%), whereas a site that had burned 100 years ago had a small percentage recovery as N2O (0.24%). The 15N composition of N2O in ambient air, collected before addition of the label, was markedly enriched in 15N. Since flux measurements were made 2 h after the addition, the results suggest that denitrification enzymes and conditions for chemodenitrification are present throughout the summer months but account for small amounts of NO3? conversion into N2O and N2.  相似文献   

19.
Urban streams often contain elevated concentrations of nitrogen (N) which can be amplified in systems receiving effluent from wastewater treatment plants (WWTP). In this study, we evaluated the importance of denitrification in a stream draining urban Greensboro, NC, USA, using two approaches: (1) natural abundance of 15N–NO3 in conjunction with background NO3–N concentrations along a 7 km transect downstream of a WWTP; and (2) C2H2 block experiments at three sites and at three habitat types within each site. Overall lack of a longitudinal pattern of δ15N–NO3 and NO3–N, combined with high concentrations of NO3–N suggested that other factors were controlling NO3–N flux in the study transect. However, denitrification did appear to be significant along one portion of the transect. C2H2 block experiments showed that denitrification rates were much higher downstream of the WWTP compared to upstream, and showed that denitrification rates were highest in erosional and depositional areas downstream of the WWTP and in erosional areas upstream of the plant. Thus, the combination of the two methods for evaluating denitrification provided more insight into the spatial dynamics of denitrification activity than either approach alone. Denitrification appeared to be a significant sink for NO3–N upstream of the WWTP, but not downstream. Approximately 46% of the total NO3–N load was removed via denitrification in the upstream, urban section of the stream, while only 2.3% of NO3–N was lost downstream of the plant. This result suggests that controlling NO3–N loading from the plant could result in considerable improvement of downstream water quality.  相似文献   

20.
Static experiments were conducted to investigate the effects of environmental factors on nitrate (NO3?-N)-removal efficiency, such as NO3?-N loading, pH value, C/N ratio and temperature in activated sludge using Fe (II) as electron donor. The results demonstrated that the average denitrification rate increased from 1.25 to 2.23 mg NO3?-N/(L·h) with NO3?-N loading increased from 30 to 60 mg/L. When pH increased from 7 to 8, the concentration of NO3?-N and nitrite (NO2?-N) in effluent were all maintained at quite low levels. C/N ratio had little impact on denitrification process, i.e., inorganic carbon (C) source could still be enough for denitrification process with C/N ratio as low as 5. Temperature had a significant effect on the denitrification efficiency, and NO3?-N removal efficiency of 92.03%, 96.77%, 97.67% and 98.23% could be obtained with temperature of 25°C, 30°C, 35°C and 40°C, respectively. SEM, XRD and XRF analysis was used to investigate microscopic surface morphology and chemical composition of the denitrifying activated sludge, and mechanism of the nitrate-dependent anaerobic ferrous oxidation (NAFO) bacterias could be explored with this research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号