首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Denitrification kinetics and denitrifier abundances in sediments of lakes receiving atmospheric nitrogen deposition (Colorado, USA)
Authors:Michelle L McCrackin  James J Elser
Institution:1. School of Life Sciences, Arizona State University, Tempe, AZ, 85287, USA
Abstract:The transport and deposition of anthropogenic nitrogen (N) to downwind ecosystems is significant and can be a dominant source of new N to many watersheds. Bacterially mediated denitrification in lake sediments may ameliorate the effects of N loading by permanently removing such inputs. We measured denitrification in sediments collected from lakes in the Colorado Rocky Mountains (USA) receiving elevated (5–8?kg?N?ha?1?y?1) or low (<2?kg?N?ha?1?y?1) inputs of atmospheric N deposition. The nitrate (NO3 ?) concentration was significantly greater in high-deposition lakes (11.3?μmol?l?1) compared to low-deposition lakes (3.3?μmol?l?1). Background denitrification was positively related to NO3 ? concentrations and we estimate that the sampled lakes are capable of removing a significant portion of N inputs via sediment denitrification. We also conducted a dose–response experiment to determine whether chronic N loading has altered sediment denitrification capacity. Under Michaelis–Menten kinetics, the maximum denitrification rate and half-saturation NO3 ? concentration did not differ between deposition regions and were 765?μmol?N?m?2?h?1 and 293?μmol?l?1?NO3 ?, respectively, for all lakes. We enumerated the abundances of nitrate- and nitrite-reducing bacteria and found no difference between high- and low-deposition lakes. The abundance of these bacteria was related to available light and bulk sediment resources. Our findings support a growing body of evidence that lakes play an important role in N removal and, furthermore, suggest that current levels of N deposition have not altered the abundance of denitrifying bacteria or saturated the capacity for sediment denitrification.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号