首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
紫细菌是研究细菌光合作用的重要生物.介绍了紫细菌光合机构捕光色素蛋白复合体Ⅰ(light-harvestingⅠ)、捕光色素蛋白复合体Ⅱ(1ight-harvesting Ⅱ)和光化学反应中心(reaction center)的结构,并探讨了其光合作用基因的转录调控机制,重点阐述了PpsR/AppA系统对紫细菌光合作用基因的转录调控.  相似文献   

2.
摘要: 色素蛋白复合体是光合生物进行光合作用维持生命活动最重要结构基础。目前不产氧光合细菌色素蛋白复合体仍是最具前沿研究领域。本文概述了不产氧光合细菌各种属色素蛋白复合体研究现状,着重对光反应中心色素蛋白复合体(reaction center,RC)和捕光色素蛋白复合体(light-harvesting complex,LH),尤其是新型捕光色素蛋白复合体LH3和LH4的组成、精细结构、蛋白同源性和功能进行了述评,并就研究中存在的问题和发展趋势进行了讨论。  相似文献   

3.
紫细菌捕光色素蛋白复合体及光化学反应中心的研究进展   总被引:2,自引:0,他引:2  
概述了近年来有关紫细菌捕光色素蛋白复合体及光化学反应中心的研究进展,并重点介绍了两种捕光色素蛋白复合体的结构以及复合体中相关色素分子在激发能传递中的作用机理.还详细阐述了紫细菌光化学反应中心的结构及反应中心中各个辅助因子在光能转化为生物可利用的化学能中的作用机理.  相似文献   

4.
水分胁迫对小麦叶绿体色素蛋白复合体的影响   总被引:7,自引:0,他引:7  
水分胁迫可抑制激发能向PSⅡ传递,降低PSⅡ捕光色素蛋白复合体、PSⅡ内周天线色素蛋白复合体以及PSⅠ捕光色素蛋白复合体和PSⅠ反应中心叶绿素a 蛋白复合体的含量,其中以PSⅡ色素蛋白复合体含量下降幅度较大。类囊体膜多肽分析表明,水分胁迫使属于PSⅡ捕光色素蛋白复合体的25 kD蛋白、PSⅡ内周天线色素蛋白复合体的43 kD 和47 kD蛋白以及PSⅠ捕光色素蛋白复合体的21 kD蛋白含量降低,尤以25 kD蛋白含量降幅最大。  相似文献   

5.
紫细菌是一类可以进行不放氧光合作用的原核微生物,可以利用光能产生ATP并为其生长代谢提供能量。其光系统由一系列色素及蛋白组成的复合体组成,并由一系列光合基因如puc、puf、bch和crt等编码。紫细菌光合相关基因的表达主要受到外界氧化还原信号及光照的影响,然而不同紫细菌光合基因表达调控机制具有明显的多样性。以球形红细菌与沼泽红假单胞菌为重点,介绍了近年来几种光合基因表达调控系统如Pps R/Crt J型调控蛋白、双组分磷酸化调控系统、CRP-FNR型调控蛋白等在紫细菌中的研究进展。通过系统深入分析这些调控通路在不同紫细菌中的特征及功能,发现不同菌株中类似调控通路通常具有相似功能,但又各具特点。旨为对进一步了解紫细菌光合基因表达调控机制并为其应用研究提供参考。  相似文献   

6.
以耐光抑制的水稻(Oryza sativa L.)粳亚种品种"武育粳"和对光抑制敏感的籼亚种品种"汕优63"的剑叶为材料,比较研究了高光胁迫对水稻两个亚种光合系统的影响.结果表明,高光胁迫影响激发能在两个光系统之间的分配,抑制激发能向PSⅡ传递.在籼稻中激发峰和发射峰以及相关比值在受到高光胁迫后下降的幅度均比在粳稻中显著.与粳稻相比,高光胁迫几乎使籼稻的PSⅡ捕光色素蛋白复合体的三聚体解体,使其PSⅡ捕光色素蛋白复合体的二聚体、PSⅡ内周天线色素蛋白复合体、PSⅠ捕光色素蛋白复合体以及PSⅠ反应中心叶绿素a蛋白复合体的含量明显降低.高光胁迫导致水稻两亚种的PSⅡ捕光色素蛋白复合物单体含量的增加.类囊体膜多肽分析表明,高光胁迫使属于PSⅡ捕光色素蛋白复合体的27、25 kD蛋白和PSⅠ捕光色素蛋白复合体的21 kD蛋白含量在水稻两亚种中都降低,其中以25 kD蛋白含量降幅最大.在籼稻中高光胁迫使属于PSⅡ内周天线色素蛋白复合体的43 kD和47kD蛋白以及外周23kD蛋白含量明显降低而在粳稻中则影响较小.  相似文献   

7.
光合细菌叶绿素代谢研究进展   总被引:3,自引:0,他引:3  
细菌叶绿素和捕光蛋白及类胡萝卜素一起组成色素蛋白复合物,进而构成完整的捕光单位进行光合作用.简述了细菌叶绿素合成途径及其中关键的酶,并从分子水平上介绍了细菌叶绿素合成相关基因的表达调控的研究进展.  相似文献   

8.
【目的】为揭示不产氧光合细菌产氢菌株色素蛋白复合体(PPC)色素组成和含量与光合放氢的关系奠定基础。【方法】以PPC特征光谱为检测指标,采用硫酸铵分级分离、DEAE-纤维素层析、吸收光谱和SDS-PAGE等方法进行了固氮红细菌(Rhodobacter azotoformans,R.azotoformans)R7产氢菌株PPC的分离纯化、纯度分析和鉴定;采用表面增强激光解吸电离离子飞行时间质谱、HPLC-MS和荧光光谱法对其中一种PPC进行了组成分析和能量传递活性测定。【结果】从R7菌株获得了3种纯化的PPC,1种为反应中心与中心捕光色素蛋白复合体(RC-LH1),2种为外周捕光色素蛋白复合体(LH2),其中一种LH2的吸收光谱具有异常的423nm强吸收峰,其蛋白的两种亚基的分子量分别为5356.8Da和5697.8Da,类胡萝卜素属球形烯系,分子量为562Da,激发光能够从类胡萝卜素向细菌叶绿素以及细菌叶绿素向细菌叶绿素传递。【结论】固氮红细菌产氢菌株含有2种不同光谱特性的LH2,其中一种具有新光谱特性。  相似文献   

9.
在系统命名的基础上对高等植物光系统II捕光色素蛋白复合体 (LHCII)的结构和功能研究的新进展进行了介绍 ,并对研究中存在的问题进行了讨论。  相似文献   

10.
光合作用对光和CO2响应模型的研究进展   总被引:38,自引:0,他引:38       下载免费PDF全文
光合作用对光和CO2响应模型是研究植物生理和植物生态学的重要工具, 可为植物光合特性对主要环境因子的响应提供科学依据。该文综述了当前光合作用对光和CO2响应模型的研究进展和存在的问题, 并在此基础上探讨了这些模型的可能发展趋势。光合作用涉及光能的吸收、能量转换、电子传递、ATP合成、CO2固定等一系列复杂的物理和化学反应过程。光合作用由原初反应、同化力形成和碳同化3个基本过程构成, 任一个过程均可对光合作用速率产生直接的影响。光合作用对光响应模型只涉及光能的转换, 而光合作用的生化模型包含了同化力形成和碳同化这两个基本过程。把光合作用的原初反应, 即把参与光能吸收、传递和转换的捕光色素分子的物理参数(如捕光色素分子数、捕光色素分子光能吸收截面、捕光色素分子处于激发态的平均寿命等)结合到生化模型中, 可能是今后光合作用对光响应机理模型的发展方向。  相似文献   

11.
J F Allen  M A Harrison  N G Holmes 《Biochimie》1989,71(9-10):1021-1028
The function of phosphorylation of light-harvesting polypeptides is well characterised in chloroplasts of green plants, but the prokaryotic cyanobacteria and purple photosynthetic bacteria have quite different light-harvesting polypeptides whose structure and function cannot be controlled in precisely the same way. Nevertheless, cyanobacteria show light-dependent phosphorylation of membrane polypeptides associated with photosystem II and with the light-harvesting phycobilisome, and purple bacteria show light-dependent phosphorylation of low molecular-weight chromatophore membrane polypeptides. In both cases membrane protein phosphorylation is associated with functional changes observed by chlorophyll fluorescence spectroscopy or chlorophyll fluorescence induction kinetics. Here we report on our recent protein sequence and other data concerning the identities of these phosphoproteins. We also discuss the significance of these findings for regulation by protein phosphorylation of photosynthesis in prokaryotes.  相似文献   

12.
The photosynthetic light-harvesting systems of purple bacteria and plants both utilize specific carotenoids as quenchers of the harmful (bacterio)chlorophyll triplet states via triplet-triplet energy transfer. Here, we explore how the binding of carotenoids to the different types of light-harvesting proteins found in plants and purple bacteria provides adaptation in this vital photoprotective function. We show that the creation of the carotenoid triplet states in the light-harvesting complexes may occur without detectable conformational changes, in contrast to that found for carotenoids in solution. However, in plant light-harvesting complexes, the triplet wavefunction is shared between the carotenoids and their adjacent chlorophylls. This is not observed for the antenna proteins of purple bacteria, where the triplet is virtually fully located on the carotenoid molecule. These results explain the faster triplet-triplet transfer times in plant light-harvesting complexes. We show that this molecular mechanism, which spreads the location of the triplet wavefunction through the pigments of plant light-harvesting complexes, results in the absence of any detectable chlorophyll triplet in these complexes upon excitation, and we propose that it emerged as a photoprotective adaptation during the evolution of oxygenic photosynthesis.  相似文献   

13.
The endosymbiotic origin of chloroplasts from unicellular cyanobacteria is presently beyond doubt. Oxygenic photosynthesis is based on coordinated action of the two photosystems (PS), PS I and PS II, cooperating with several variants of the pigment antenna. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) act as antennae, while in terrestrial plants, as well as in most macro- and microalgae, antennae are formed by chlorophyll a/b- and chlorophyll a/c-containing proteins. Advantages and disadvantages of the PBS antenna compared to other light-harvesting complexes form the basis for adaptive variations of the antenna in the course of development of eukaryotic photosynthesis. During the evolution of the “green” and “chromophyte” lineages of the chloroplasts, PBS, in spite of their optimal features of light absorption, were replaced by chlorophyll a/b- and chlorophyll a/c-containing light-harvesting complexes. Development of the cell wall associated with the limitation of motility and tissue formation in photosynthetic eukaryotes were the factors responsible for the antenna shift. The subsequent redistribution of cell resources in favor of cellulose biosynthesis required for increased CO2 consumption, higher PS II levels, and greater number and density of the thylakoids in the chloroplasts, was incompatible with the energy-consuming and overly large PBS antenna.  相似文献   

14.
M W Sganga  C E Bauer 《Cell》1992,68(5):945-954
Most species of photosynthetic bacteria synthesize their photosynthetic apparatus only under conditions of reduced oxygen tension. To a large extent, this phenomenon is dependent upon anaerobic induction of photosynthesis gene expression. Here we report an example of a regulatory gene, regA, that is involved in transactivating anaerobic expression of the photosynthetic apparatus. We show that RegA is itself responsible for differential induction of light-harvesting and reaction center gene expression relative to operons for photopigment biosynthesis. Surprisingly, strains disrupted for regA were found to retain normal photosynthetic growth capabilities under high light intensities. We further show that photosynthetic growth in the absence of transactivating structural gene expression is a consequence of the superoperonal organization of the photosynthetic gene cluster.  相似文献   

15.
Carotenes and their oxygenated derivatives, the xanthophylls, are structural determinants in both photosystems (PS) I and II. They bind and stabilize photosynthetic complexes, increase the light-harvesting capacity of chlorophyll-binding proteins, and have a major role in chloroplast photoprotection. Localization of carotenoid species within each PS is highly conserved: Core complexes bind carotenes, whereas peripheral light-harvesting systems bind xanthophylls. The specific functional role of each xanthophyll species has been recently described by genetic dissection, however the in vivo role of carotenes has not been similarly defined. Here, we have analyzed the function of carotenes in photosynthesis and photoprotection, distinct from that of xanthophylls, by characterizing the suppressor of zeaxanthin-less (szl) mutant of Arabidopsis (Arabidopsis thaliana) which, due to the decreased activity of the lycopene-β-cyclase, shows a lower carotene content than wild-type plants. When grown at room temperature, mutant plants showed a lower content in PSI light-harvesting complex I complex than the wild type, and a reduced capacity for chlorophyll fluorescence quenching, the rapidly reversible component of nonphotochemical quenching. When exposed to high light at chilling temperature, szl1 plants showed stronger photoxidation than wild-type plants. Both PSI and PSII from szl1 were similarly depleted in carotenes and yet PSI activity was more sensitive to light stress than PSII as shown by the stronger photoinhibition of PSI and increased rate of singlet oxygen release from isolated PSI light-harvesting complex I complexes of szl1 compared with the wild type. We conclude that carotene depletion in the core complexes impairs photoprotection of both PS under high light at chilling temperature, with PSI being far more affected than PSII.  相似文献   

16.
Molecular recognition in thylakoid structure and function.   总被引:1,自引:0,他引:1  
  相似文献   

17.
Red algae are a group of eukaryotic photosynthetic organisms. Phycobilisomes (PBSs), which are composed of various types of phycobiliproteins and linker polypeptides, are the main light-harvesting antennae in red algae, as in cyanobacteria. Two morphological types of PBSs, hemispherical- and hemidiscoidal-shaped, are found in different red algae species. PBSs harvest solar energy and efficiently transfer it to photosystem II (PS II) and finally to photosystem I (PS I). The PS I of red algae uses light-harvesting complex of PS I (LHC I) as a light-harvesting antennae, which is phylogenetically related to the LHC I found in higher plants. PBSs, PS II, and PS I are all distributed throughout the entire thylakoid membrane, a pattern that is different from the one found in higher plants. Photosynthesis processes, especially those of the light reactions, are carried out by the supramolecular complexes located in/on the thylakoid membranes. Here, the supramolecular architecture, function and regulation of thylakoid membranes in red algal are reviewed.  相似文献   

18.
19.
Allosteric regulation of the light-harvesting system of photosystem II   总被引:9,自引:0,他引:9  
Non-photochemical quenching of chlorophyll fluorescence (NPQ) is symptomatic of the regulation of energy dissipation by the light-harvesting antenna of photosystem II (PS II). The kinetics of NPQ in both leaves and isolated chloroplasts are determined by the transthylakoid delta pH and the de-epoxidation state of the xanthophyll cycle. In order to understand the mechanism and regulation of NPQ we have adopted the approaches commonly used in the study of enzyme-catalysed reactions. Steady-state measurements suggest allosteric regulation of NPQ, involving control by the xanthophyll cycle carotenoids of a protonation-dependent conformational change that transforms the PS II antenna from an unquenched to a quenched state. The features of this model were confirmed using isolated light-harvesting proteins. Analysis of the rate of induction of quenching both in vitro and in vivo indicated a bimolecular second-order reaction; it is suggested that quenching arises from the reaction between two fluorescent domains, possibly within a single protein subunit. A universal model for this transition is presented based on simple thermodynamic principles governing reaction kinetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号