首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ObjectiveMounting evidence demonstrates that long non-coding RNA (lncRNA) is dysregulated in breast cancers. This study was designed to detect the influences and regulatory mechanism of lncRNA PDCD4-AS1 in triple-negative breast cancer (TNBC).MethodsqRT-PCR and Western blot were utilized to investigate the expression levels of PDCD4-AS1, miR-10b-5p and IQGAP2 in TNBC tissues and cells. Online software and luciferase reporter gene system were employed to testify the interactions among these molecules. Loss and gain of function of PDCD4-AS1, miR-10b-5p or IQGAP2 were performed before MTT and colony formation assay, TUNEL staining in addition to Transwell and scratch assays were applied to measure the cell biological functions.ResultsIn this work, PDCD4-AS1 and IQGAP2 were lowly expressed while miR-10b-5p was strongly expressed in TNBC tissues and cells. PDCD4-AS1 or IQGAP2 overexpression effectively attenuated TNBC cell proliferation, migration and invasion, and increased the apoptosis rate, while this effect was abandoned in response to miR-10b-5p mimics transfection. miR-10b-5p bound to IQGAP2 and acted as a downstream target of PDCD4-AS1.ConclusionOur findings identified lncRNA PDCD4-AS1 as a tumor suppressor in TNBC by regulating IQGAP2 expression via miR-10b-5p, giving a novel insight into the regulatory mechanism of PDCD4-AS1 in the pathogenesis of TNBC.  相似文献   

2.
The aim of this study was to explore the molecular mechanism of lncRNA POU6F2-AS2 in proliferation and drug resistance of colon cancer. Total paired 70 colon cancer and adjacent normal tissues were collected from colon cancer patients. Colon cancer and normal colonic epithelial cells were purchased. POU6F2-AS2 was up- or down-expressed by vectors. LC50 of all cell lines before and after transfection with these plasmids was detected. qRT-PCR was used to detect the expression of POU6F2-AS2, miR-377 and BRD4 before or after transfection. In situ hybridization was also undertaken to detect the level of POU6F2-AS2. Different concentrations of 5-Fu (0, 1, 2.5, 5, 10, 20, 40 and 80 μg/mL) were used for 5-FU insensitivity assay. CCK-8 and crystal violet staining assay were used for detecting cell proliferation, and flow cytometry was used for identifying cell cycle distribution and apoptosis. In order to detect the fragmented DNA in apoptotic cells, TUNEL assay was used. RNA pull-down assay and luciferase reporter assay were used to verify the binding site. Rescue assay confirmed the subtractive effect of miR-377 inhibitors. POU6F2-AS2 was highly expressed in colon cancer, which was associated with clinical pathology. Up-regulated POU6F2-AS2 promoted cell proliferation and cell cycle of colon cancer cells. Overexpression of POU6F2-AS2 inhibited the expression of miR-377 and then up-regulated the expression of BRD4. Up-regulated BRD4 ultimately promoted cell proliferation and cell survival Down-regulated POU6F2-AS2 showed enhanced sensitivity of 5-FU. POU6F2-AS2 promoted cell proliferation and drug resistance in colon cancer by regulating miR-377/BRD4 gene.  相似文献   

3.
In the early stage of ovarian cancer (OC), molecular biomarkers are critical for its diagnosis and treatment. Nevertheless, there is little research on the mechanism underlying tumorigenesis in OC. Herein, we aimed to explore whether long noncoding RNA (lncRNA) HAND2-AS1 participated in the regulation of the cell proliferation, migration, and apoptosis of OC by regulating B-cell lymphoma 2 like 11 (BCL2L11) and microRNA-340-5p (miR-340-5p). Differentially expressed lncRNAs in OC were screened by microarray-based analysis. HAND2-AS1, BCL2L11, and miR-340-5p expression was assessed in normal ovarian and OC tissues and human OC cell lines. Then, the relationships among HAND2-AS1, BCL2L11, and miR-340-5p were explored. Ectopic expression and depletion experiments were applied to analyze the effects of HAND2-AS1, miR-340-5p and BCL2L11 on migration, invasion, and proliferation of OC cells, as well as apoptosis. Lastly, the tumor xenograft in nude mice was conducted to test the tumorigenesis in vivo. In silico analysis displayed poor expression of HAND2-AS1 in OC. HAND2-AS1 specifically sponged with miR-340-5p which was found to directly target BCL2L11. Importantly, HAND2-AS1 or BCL2L11 overexpression or miR-340-5p downregulation resulted in reduction of cell invasion and migration, together with decrease of cell proliferation and increase of cell apoptosis in OC. Besides, high-expressed HAND2-AS1 inhibited the tumorigenesis in nude mice. To sum up, these data suggests HAND2-AS1 as an anti-oncogene in OC through upregulation of BCL2L11 by competitively binding to miR-340-5p, which demonstrates that there are potential diagnosis and therapy values of HAND2-AS1 in OC.  相似文献   

4.

Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1), a long non-coding RNA (lncRNA), has been reported to link with the progression of some cancers. However, its biological functions and underlying molecular mechanisms in pancreatic cancer are largely unknown. The aim of this study was to investigate the role of lncRNA OIP5-AS1 in pancreatic cancer. Quantitative real-time PCR analysis revealed that OIP5-AS1 is highly expressed in pancreatic cancer tissues versus adjacent non-tumor tissues. In vitro functional assays showed that downregulation of OIP5-AS1 or overexpression of miR-342-3p inhibited the proliferation, decreased Ki67 expression, and induced cell cycle arrest in pancreatic cancer cells. The expression of cyclinD1, CDK4, and CDK6 was decreased by knockdown of OIP5-AS1. Moreover, we found that OIP5-AS1 acted as a miR-342-3p sponge to suppress its expression and function. Dual-luciferase assay confirmed the interaction of OIP5-AS1 and miR-342-3p and verified anterior gradient 2 (AGR2) as a direct target of miR-342-3p. Results showed that depletion of miR-342-3p abolished the inhibitory effects of OIP5-AS1 knockdown on pancreatic cancer cell growth. The expression of Ki67, AGR2, cyclinD1, CDK4, CDK6, p-AKT, and p-ERK1/2 was reversed by silencing of miR-342-3p in pancreatic cancer cells with OIP5-AS1 knockdown. Further, knockdown of OIP5-AS1 suppressed tumor growth in a xenograft mouse model of pancreatic cancer. OIP5-AS1 induced pancreatic cancer progression via activation of AKT and ERK signaling pathways. Therefore, we demonstrate that OIP5-AS1 functions as oncogene in pancreatic cancer and its downregulation inhibits pancreatic cancer growth by sponging miR-342-3p via targeting AGR2 through inhibiting AKT/ERK signaling pathway.

  相似文献   

5.
K-homology (KH)-type splicing regulatory protein (KHSRP) is an RNA binding protein that participates in RNA variable splicing and stability, and facilitates the biogenesis of miRNAs that target mRNA. However, to date, the role of KHSRP in colorectal cancer (CRC) progression has not been reported. In this study, the function of KHSRP in CRC proliferation and 5-fluoruracil (5-FU) resistance was investigated. The upregulation of KHSRP expression was confirmed in CRC patient tissues and two CRC cell lines. Manipulating KHSRP expression altered cell proliferation and 5-FU resistance in CRC cells. ERRFI1, a downstream effector of KHSRP in CRC cells, reduced CRC cell proliferation. Sensitivity to 5-FU mediated by KHSRP knockdown was reversed by ERRFI1 knockdown. We found that KHSRP decreased ERRFI1 mRNA expression indirectly. By screening KHSRP-regulated miRNAs, we further found that miR-501-5p directly combines with KHSRP in CRC cells. Mechanistically, the results of a luciferase assay suggested that miR-501-5p directly binds to the ERRFI1 3′-untranslated region. Taken together, our data indicated that modification of ERRFI1 by KHSRP occurs through miR-501-5p, an essential mechanism driving CRC proliferation and 5-FU resistance. Insight into this mechanism may provide novel targets for overcoming drug resistance in CRC.  相似文献   

6.
Colorectal cancer (CRC), is mostly derived from normal colon epithelial cells, and has been reported to be one of most common gastrointestinal malignancies globally. An increasing number of researchers have claimed that long noncoding RNAs (lncRNAs) exert significant functions in tumor progression. Nevertheless, the function of MAGI2-AS3 remains uncertain in CRC. The expression of MAGI2-AS3, miR-3163, and transmembrane protein 106B (TMEM106B) messenger RNA was examined by quantitative real-time polymerase chain reaction. Cell apoptosis was measured by caspase-3 activity test. Cell proliferation was tested by cell-counting kit 8 and 5-ethynyl-2′-deoxyuridine assays. Cell migration was detected by transwell assay. Western blot analysis examined the protein expression of TMEM106B. The expression of Ki-67 was evaluated by immunohistochemistry assay. The binding capacity between miR-3163 and MAGI2-AS3 (or TMEM106B) was studied by radioimmunoprecipitation and luciferase reporter assays. The expression of MAGI2-AS3 and TMEM106B was conspicuously upregulated whereas miR-3163 presented lower expression in CRC cells. MAGI2-AS3 deficiency facilitated cell apoptosis but hampered cell proliferation and migration. MAGI2-AS3 combined with miR-3163 and negatively regulated miR-3163 expression. In addition, the administration of sh-MAGI2-AS3 or miR-3163 mimics suppressed CRC cell growth in vivo. Subsequently, miR-3163 targeted TMEM106B and the transfection of sh-MAGI2-AS3 or miR-3163 mimics downregulated TMEM106B expression. Rescue assays verified that TMEM106B overexpression recovered the effects of MAGI2-AS3 inhibition on cell apoptosis, proliferation, and migration in CRC. MAGI2-AS3 drives CRC progression through regulating miR-3163/TMEM106B axis. This supplies innovative insights on the investigation of molecular mechanism in CRC progression.  相似文献   

7.
摘要 目的:本文旨在研究长链非编码RNA XIST-miR137-ATG5的相互作用,同时探讨其调节细胞自噬功能与肠癌细胞5-氟胞嘧啶敏感性的关系。方法:实时聚合酶链反应(real time PCR)检测XIST与miR-137在肠癌细胞中的表达;采用脂质体转染法将si-XIST,miR-137转染入肠癌SW480及HCT116细胞中。采用CCK-8检测瞬时转染si-XIST对肠癌细胞增殖及5-FU敏感性的影响;并利用双荧光素酶报告实验检测miR-137与XIST, miR-137与ATG5相互关系。Western blot方法检测XIST- miR137- ATG5对细胞自噬的影响。结果:与正常结肠细胞FHC比较, XIST在结肠癌细胞系明显高表达,miR-137在结肠癌细胞系明显低表达。与阴性对照组比较,转染si-XIST后,SW480及HCT116细胞增殖能力明显受到抑制,对F-5U的敏感性增强,且抑制自噬蛋白Beclin-1及LC3II/LC3 I的表达。miR-137可与XIST,ATG5 3''UTR结合,抑制XIST和ATG5的表达及功能。在结肠癌SW480细胞中共转染miR-137 inhibitor或过表达ATG5可逆转XIST沉默引起的5-FU耐药,同时可逆转因XIST沉默引起的自噬蛋白表达的抑制。结论:LncRNA XIST或可通过调控mir137-ATG促进结直肠癌细胞SW480自噬从而提高其对5-FU的耐药,针对其这一机制,可为将来针对结肠癌的靶向治疗提供一定的实验基础。  相似文献   

8.
We aimed to determine the functional role of the miRNA, which affects drug sensitivity to 5-FU in oral squamous cell carcinoma (OSCC), using two types of 5-FU-resistant and parental OSCC cell lines. MiRNA microarray data showed that miR-30a was significantly upregulated in two resistant cell lines. Therefore, we investigated the effects and molecular mechanism of miR-30a on 5-FU sensitivity. Stable overexpression of miR-30a in parental OSCC cells decreased cell proliferation and attenuated drug sensitivity to 5-FU. Cell cycle analysis indicated that miR-30a overexpression increased the proportion of G1 phase cells and decreased the proportion of S phase cells. MiR-30a knockdown using siRNA reversed the effects of miR-30a overexpression. DNA microarray analysis using miR-30a-overexpressing cell lines and a TargetScan database search showed that cyclin E2 (CCNE2) is a target of miR-30a. A luciferase reporter assay confirmed that a miR-30a mimic interacted with the specific binding site in the 3' UTR of CCNE2. CCNE2 knockdown with siRNA in OSCC cells yielded decreased drug sensitivity to 5-FU, similar to miR-30a overexpressing cells. These findings suggest that miR-30a in OSCC may be a novel biomarker of 5-FU-resistant tumors, as well as a therapeutic target for combating resistance.  相似文献   

9.
10.
PurposeOur study explored the effect of long noncoding RNA BBOX1-AS1 on colorectal cancer (CRC) radiosensitivity in vivo and in vitro.MethodsDifferentially expressed lncRNAs in CRC were screened using a bioinformatics database and an online prediction website. The expression of BBOX1-AS1 in tissue samples was analyzed via real-time quantitative PCR (RT-qPCR). Subcellular localization of BBOX1-AS1 in CRC cells was analyzed using fluorescence in situ hybridization (FISH). The correlation between BBOX1-AS1 and PFK1 expression levels in CRC tissues was analyzed via Pearson's correlation coefficient. The effect of BBOX1-AS1 on PFK1 stability was investigated using RNA and protein stability testing. RNA Binding Protein Immunoprecipitation (RIP) and RNA pull-down assays were used to confirm the binding of BBOX1-AS1 to PFK1.ResultsBBOX1-AS1 was highly expressed in CRC and associated with poor prognosis. Similarly, it was highly expressed in CRC tissues and CRC cell lines. In addition, BBOX1-AS1 promoted the proliferation, invasion, migration, and glycolysis of CRC cells and inhibited apoptosis. RIP and RNA pull-down experiments confirmed that BBOX1-AS1 bound to PFK1. RNA stability and protein stability experiments showed that BBOX1-AS1 affected the stability of PFK1 mRNA and protein. Furthermore, we confirmed that BBOX1-AS1 increased radiation resistance through the regulation of PFK1 expression.ConclusionsBBOX1-AS1 promoted the proliferation, invasion, migration, and glycolysis of CRC cells through stabilization of the expression of PFK1. BBOX1-AS1 also inhibited CRC cell apoptosis and increased radiotherapy resistance in CRC cells.  相似文献   

11.
Long noncoding RNAs (lncRNAs) are vital mediators involved in cancer progression. Previous studies confirmed that FOXD2 adjacent opposite strand RNA 1 (FOXD2-AS1) is upregulated in tumor diseases. The potential influence of FOXD2-AS1 in glioma progression, however, remains unknown. In this paper, FOXD2-AS1 was found to be upregulated in glioma tissues. Its level was linked with glioma stage. Moreover, glioma patients expressing high level of FOXD2-AS1 suffered worse prognosis. Biological functions of FOXD2-AS1 in glioma cells were analyzed through integrative bioinformatics and TCGA RNA sequencing data analysis. Pathway enrichment analysis uncovered that FOXD2-AS1 was mainly linked with cell cycle regulation in both low-grade glioma and glioblastoma. Further experiments demonstrated that silence of FOXD2-AS1 inhibited proliferation, arrested cell cycle and downregulated cyclin-dependent kinase 1 (CDK1) in human glioma cells. Dual-luciferase reporter assay confirmed that FOXD2-AS1 upregulated CDK1 by sponging miR-31. Rescue assays were performed and confirmed the regulatory loop FOXD2-AS1/miR-31/CDK1 in glioma. Collectively, our results indicated that the FOXD2-AS1/miR-31/CDK1 axis influenced glioma progression, providing a potential new target for glioma patients.  相似文献   

12.
ObjectivesDeregulation of long non-coding RNAs (lncRNAs) has been frequently reported in breast cancer (BC). This goes to show the importance of understanding its significant contribution towards breast carcinogenesis. In the present study, we clarified a carcinogenic mechanism based on the ARRDC1-AS1 delivered by breast cancer stem cells-derived extracellular vesicles (BCSCs-EVs) in BC.MethodsThe isolated and well characterized BCSCs-EVs were co-cultured with BC cells. The expression of ARRDC1-AS1, miR-4731-5p, and AKT1 was determined in BC cell lines. BC cells were assayed for their viability, invasion, migration and apoptosis in vitro by CCK-8, Transwell and flow cytometry, as well as tumor growth in vivo after loss- and gain-of function assays. Dual-luciferase reporter gene, RIP and RNA pull-down assays were performed to determine the interactions among ARRDC1-AS1, miR-4731-5p, and AKT1.ResultsElevation of ARRDC1-AS1 and AKT1 as well as miR-4731-5p downregulation were observed in BC cells. ARRDC1-AS1 was enriched in BCSCs-EVs. Furthermore, EVs containing ARRDC1-AS1 enhanced the BC cell viability, invasion and migration and glutamate concentration. Mechanistically, ARRDC1-AS1 elevated the expression of AKT1 by competitively binding to miR-4731-5p. ARRDC1-AS1-containing EVs were also found to enhance tumor growth in vivo.ConclusionCollectively, BCSCs-EVs-mediated delivery of ARRDC1-AS1 may promote the malignant phenotypes of BC cells via the miR-4731-5p/AKT1 axis.  相似文献   

13.
To identify the proteins involved in 5-fluorouracil (5-FU) resistance, a comparison of the total and phosphorylated proteins between the human colorectal cancer (CRC) cell line DLD-1 and its 5-FU-resistant subclone DLD-1/5-FU was performed. Using 2-DE and MALDI-TOF/TOF-based proteomics, 17 up-regulated and 19 down-regulated protein spots were identified in the 5-FU-resistant DLD-1/5-FU cells compared with the parent cell lines. In DLD-1/5-FU cells, 7 anti-apoptotic proteins (HSPB1, proteasome subunit α-5, transitional endoplasmic reticulum ATPase, 14-3-3 β, 14-3-3 γ, 14-3-3 σ, and phosphoglycerate kinase 1) were up-regulated and 4 proapoptotic proteins (cofilin-1, pyruvate kinase M2, glyceraldehyde-3-phosphate dehydrogenase, and nucleophosmin) were down-regulated. The results show that the acquired drug resistance of DLD-1/5-FU cells is caused by the prevention of drug-induced apoptosis, in particular through the enhanced constitutive expression of HSPB1 and its phosphorylated form. Short interfering RNA knockdown of endogenous HSPB1 in DLD-1/5-FU cells restored the sensitivity to 5-FU. Furthermore, MALDI-TOF/TOF and 2-DE Western blot analysis identified the phosphorylated residues of HSPB1 as Ser-15 and Ser-82 in the main (diphosphorylated) form and Ser-15, Ser-78, and Ser-82 in the minor (triphosphorylated) form. The current findings indicate that phosphorylated HSPB1 may play an important role in 5-FU resistance.  相似文献   

14.

Object

This study aimed to investigate the role of lncRNA OIP5-AS1 in regulating radioresistance of colorectal cancer (CRC) cells.

Methods

Microarray analysis was used to screen out lncRNAs differentially expressed in radio-resistant CRC cell lines. Expression levels of OIP5-AS1, miR-369-3p and DYRK1A in CRC cell lines were measured by qRT-PCR. Protein expression of DYRK1A was determined by western blot. The target relationships among OIP5-AS1, miR-369-3p and DYRK1A were validated by dual luciferase reporter assay. Impacts of OIP5-AS1 or DYRK1A on CRC cellular activity and apoptosis were investigated by MTT assay, clonogenic survival assay and flow cytometry to analyze OIP5-AS1 or DYRK1A’s effect on radioresistance of CRC cells.

Results

LncRNA OIP5-AS1 and DYRK1A were down-regulated in radio-resistant CRC cell lines. OIP5-AS1 suppressed the expression of miR-369-3p, thus up-regulating DYRK1A, the downstream gene of miR-369-3p. OIP5-AS1 and DYRK1A impaired cell clonogenic survival and promoted cell apoptosis after irradiation, improving radiosensitivity of CRC cells.

Conclusion

LncRNA OIP5-AS1 suppressed cell viability, promoted radio-induced apoptosis, and enhanced the radiosensitivity of CRC cells by regulating DYRK1A expression through miR-369-3p.  相似文献   

15.

Cerebrovascular diseases have a high mortality and disability rate in developed countries. Endothelial cell injury is the main cause of atherosclerosis and cerebrovascular disease. Long non-coding RNA (lncRNA) has been proved to participate in the progression of endothelial cell. Our study aimed to develop the function of lncRNA opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) in oxidative low-density lipoprotein (ox-LDL)-induced endothelial cell injury. The expression of OIP5-AS1, miR-98-5p and High-mobility group protein box-1 (HMGB1) was detected by quantitative real-time polymerase chain reaction (qRT-PCR). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay and flow cytometry were used to detect the cell proliferation and apoptosis. The levels of cyclinD1, Bcl-2 Associated X Protein (Bax), Cleaved-caspase-3, Toll like receptors 4 (TLR4), phosphorylation of p65 (p-P65), phosphorylation of nuclear factor-kappa B inhibitor α (p-IκB-α) and HMGB1 were measured by Western blot. The concentrations of Interleukin-6 (IL-6), Interleukin-1β (IL-1β) and Tumor necrosis factor-α (TNF-α) were detected by Enzyme-linked immunosorbent assay (ELISA). The production of Reactive oxygen species (ROS), Superoxide Dismutase (SOD) and malondialdehyde (MDA) was detected by the corresponding kit. The targets of OIP5-AS and miR-98-5p were predicted by starBase 3.0 and TargetScan and confirmed by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. The expression of OIP5-AS1 was upregulated, while miR-98-5p was downregulated in ox-LDL-induced human umbilical vein endothelial cells (HUVECs). Functionally, knockdown of OIP5-AS1 induced proliferation and inhibited apoptosis, inflammatory injury and oxidative stress injury in ox-LDL-induced HUVEC cells. Interestingly, miR-98-5p was a target of OIP5-AS1 and miR-98-5p inhibition abolished the effects of OIP5-AS1 downregulation on ox-LDL-induced HUVECs injury. More importantly, miR-98-5p directly targeted HMGB1, and OIP5-AS1 regulated the expression of HMGB1 by sponging miR-98-5p. Finally, OIP5-AS1 regulated the TLR4/nuclear factor-kappa B (NF-κB) signaling pathway through miR-98-5p/HMGB1 axis. LncRNA OIP5-AS1 accelerates ox-LDL-induced endothelial cell injury through regulating HMGB1 mediated by miR-98-5p via the TLR4/NF-κB signaling pathway.

  相似文献   

16.
目的:研究Snail的抑制是否能增加耐药结肠癌细胞对5-FU的敏感性,评估其可能的信号转导通路。方法:使用5-氟尿嘧啶耐药HCT116细胞(HCT116/5-FU),评估细胞形态及分子的变化。通过靶向人Snail基因小干扰RNA(si RNA)抑制Snail的表达。Annexin V/PI染色用于评估5-FU诱导的细胞凋亡。Western blot检测caspase以及可能的丝裂原活化蛋白激酶(MAPK)和线粒体途径。结果:HCT116细胞对5-Fu耐药性的获得诱导了与EMT一致的形态学变化。RNA干扰沉默Snail逆转HCT116/5-FU细胞EMT并增加了5-FU耐药HCT116细胞对5-FU的敏感性。可能的机制涉及JNK与线粒体途径的激活。结论:EMT样表型的改变与HCT116细胞对5-FU耐药相关;si RNA介导的Snail下调可能是一个潜在的克服5-FU化疗耐药的治疗方法。  相似文献   

17.
Colorectal cancer (CRC) is the fourth most deadly cancer worldwide, drug resistance impedes treatment of CRC. It is still urgent to find new molecular targets to improve the sensitivity of chemotherapeutic drugs. In this study, circ-ERBB2 was upregulated in CRC cells. Upregulation of circ-ERBB2 promoted CRC cells proliferation and clone formation, but inhibited apoptosis. We identified miR-181a-5p as circ-ERBB2's target. The effect of miR-181a-5p on CRC cells was contrary to circ-ERBB2, miR-181a-5p downregulation abolished the function of circ-ERBB2 silencing in CRC cells. In addition, phosphatase and tensin homolog (PTEN) was verified as miR-181a-5p's downstream target, circ-ERBB2 activates the Akt pathway and inhibits cell apoptosis through modulating miR-181a-5p/PTEN. Circ-ERBB2 silencing significantly reduced CRC cell resistance to 5-FU. miR-181a-5p downregulation abolished the role of circ-ERBB2 knockdown in CRC cell resistance to 5-FU. In conclusion, upregulation of circ-ERBB2 promoted the malignancy of CRC and reduced CRC cell resistance to 5-FU. Besides, additional mechanism study provided a novel regulatory pathways that circ-ERBB2 knockdown promoted CRC cell sensitivity to 5-FU by regulating miR-181a-5p/PTEN/Akt pathway. This research indicated that circ-ERBB2 may be a valuable biomarker for the diagnosis and treatment of CRC.  相似文献   

18.
Pre-eclampsia (PE) is a pregnancy disease that causes maternal death and threatens the health of newborns. Accumulating evidence has revealed the essential roles of long noncoding RNAs (lncRNAs) in the progression of PE. The present investigation determined lncRNA ZEB2 antisense RNA 1 (ZEB2-AS1) expression in PE and looked into the potential role of ZEB2-AS1 in modulating trophoblastic cell functions. Quantitative real-time polymerase chain reaction evaluated gene expression. Western blot analyzed the placental growth factor (PGF) protein level. Cell counting kit-8 and Transwell invasion assays assessed the proliferative and invasive abilities of placental trophoblast cells, respectively. Wound healing assay determined cell migratory potentials. Dual-luciferase reporter assay assessed the targeting relationship among ZEB2-AS1, miR-149, and PGF. Downregulation of lncRNA ZEB2-AS1 was detected in placentas from patients with PE when compared with those from normal pregnancies. Moreover, ZEB2-AS1 upregulation markedly promoted proliferative, migratory, and invasive potentials in HTR-8/SVneo cells, while knockdown of ZEB2-AS1 had the opposite effects. The effects on HTR-8/SVneo cells mediated by ZEB2-AS1 was correlated with the miR-149/PGF axis. These findings indicate that ZEB2-AS1 contributes to PE progression by affecting cell proliferative and invasive capacities via the miR-149/PGF axis in HTR-8/SVneo cells. In sum, we identified that ZEB2-AS1 was a novel aberrantly expressed lncRNA in the placentas of PE patients and lncRNA ZEB2-AS1 modulated trophoblastic cell line HTR-8/SVneo's proliferative and invasive potentials via targeting the miR-149/PGF axis.  相似文献   

19.
The purpose of our study was to investigate the effects of the long noncoding RNA (lncRNA) ABHD11-AS1 on colorectal cancer (CRC) progression and further explore its possible underlying mechanisms. In the study, we found that ABHD11-AS1 was highly expressed in CRC tissues and cell lines. High ABHD11-AS1 expression was correlated with poor overall survival of patients with CRC. ABHD11-AS1 knockdown reduced CRC cell proliferation, in vitro invasion, and in vivo tumor growth. Investigation of the underlying mechanism showed that ABHD11-AS1 could act as a molecular sponge of miR-1254, and WNT11 was a downstream target of miR-1254 in CRC. Moreover, there was a negative association between ABHD11-AS1 expression (or WNT11) and miR-1254 in CRC tissues. The rescue assays showed that WNT11 overexpression partially rescued the effects of ABHD11-AS1 inhibition on CRC progression. Thus, we demonstrated that ABHD11-AS1 promotes CRC progression through the miR-1254-WNT11 pathway, which provides a new insight into the therapeutic strategies for CRC.  相似文献   

20.
More and more documents have proved that the abnormal expression of long noncoding RNAs (lncRNAs) are correlated with the initiation and progression of colorectal cancer (CRC). lncRNA FOXD3-AS1 has been reported in glioma for its oncogenic property. According to the survival analysis of The Cancer Genome Atlas database, FOXD3-AS1 upregulation implied lower survival rate of patients with CRC. Quantitative real-time polymerase chain reaction showed the overexpression of FOXD3-AS1 in both CRC tissues and cells. The Kaplan–Meier method demonstrated the prognostic value of FOXD3-AS1 for patients with CRC. To explore the effect of FOXD3-AS1 on CRC progression, loss-of-function experiments were carried out, whose results indicated that knockdown of FOXD3-AS1 suppressed cell proliferation, migration, and invasion, inhibited cell cycle and promoted cell apoptosis in vitro. In vivo experiments affirmed that FOXD3-AS1 affected tumor growth. FOXD3-AS1 expression was enriched in the cytoplasm of CRC cells. Mechanism experiments revealed that FOXD3-AS1 served as a competing endogenous RNA to upregulate SIRT1 by sponging miR-135a-5p. In addition, SIRT1 silencing also restrained cell proliferation and motility. Rescue assays revealed the biological function of FOXD3-AS1/miR-135a-5p/SIRT1 axis in CRC progression. In conclusion, FOXD3-AS1 promotes CRC progression by regulating miR-135a-5p/SIRT1 axis, shedding lights on the way to CRC treatments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号