首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用透射电镜对模式植物水蕨(Ceratopteris thalictroides)孢子囊的早期发育进行研究.结果表明:水蕨的孢子囊是由叶片表皮的原始细胞发育而来,经过横向和纵向分裂形成外套层原始细胞和内部细胞,此过程中各个细胞内线粒体和叶绿体逐渐变大,变发达;之后外套层原始细胞继续纵分裂形成孢子囊壁细胞,内部细胞分裂形成内外两层绒毡层和孢子母细胞,此过程中电子密集物在分裂最为旺盛的细胞内体积最大,数量最多;最后孢子母细胞减数分裂形成四分孢子,此时可见孢子之间以及孢子与原生质团之间均存在着表面膜.内层绒毡层为周原质团绒毡层,外层绒毡层为腺质型绒毡层.水蕨孢子囊的早期发育属于薄囊蕨型发育.  相似文献   

2.
鳞毛蕨型孢子类型众多,初步研究表明形态相似的孢子类型其孢壁发育特征存在差异,因此有必要对各代表类群的孢壁发育进行深入地研究。该文利用透射电镜对乌毛蕨科(Blechnaceae)狗脊(Woodwardia japonica)孢壁结构和发育的超微结构进行研究。结果表明:(1)狗脊孢子囊的结构由外向内分别为孢子囊壁细胞、两层绒毡层细胞和孢子母细胞;(2)狗脊孢子具乌毛蕨型(Blechnoid type)外壁,表面光滑,由两层构成,裂缝区域具辐射状的槽;(3)周壁属于空心型(cavity type),由四层构成,从内向外分别为P1、P2、P3和P4层,前三层叠合在一起,层间有不同程度的空隙,P4层与前三层之间具有明显而连续的空腔,并隆起形成片状褶皱纹饰;(4)有小球体和小杆共同参与孢子周壁的形成,周壁部分或全部来源于孢子囊壁细胞。综上所述,狗脊孢子与同属于鳞毛蕨型的贯众(Cyrtomium fortunei)和朝鲜介蕨(Dryoathyrium coreanum)孢壁的发育在周壁结构、周壁各层的发育顺序、周壁来源和参与成壁的特征物质等方面存在差异。该研究有利于进一步理解蕨类植物孢壁所蕴含的分类和演化上的科学意义和价值。  相似文献   

3.
杉木雄性不育株与可育株小孢子囊发育的电镜研究   总被引:2,自引:0,他引:2  
杉木雄性不育属“无花粉型”,败育从无也原细胞押分体时期、中层细胞增生,压迫小孢子母细胞,使之养分更加缺乏并引起减烽分裂异常。其表皮层和药室内壁细胞中具大量蛋白体,影响了绒毡层对小孢子发育的外源蛋白的供应;表皮层具膜状溶酶体,引起淀粉粒缺乏和酶系统代谢异常;绒毡层发育后期,缺少包被小泡,乌氏体及绒毡层膜,内质网少,短而光滑,严重影响了绒毡层对小孢子母细胞或小孢子养分和合成细胞壁物质的供给;  相似文献   

4.
采用常规胚胎学方法,对香港木兰(Magnolia championii Benth.)小孢子形成及雄配子体发育过程进行了研究。结果显示,香港木兰花药具4个小孢子囊,小孢子囊壁5—6层,其中腺质绒毡层1—2层;小孢子减数分裂时胞质分裂方式为修饰性同时型,四分体排列方式为四面体型或左右对称型,偶为交叉型,成熟花粉粒为二细胞型。在次生造孢细胞、小孢子母细胞、四分体时期都会出现败育,且在很多成熟花药中全部是败育的单核花粉。PAS染色后发现,相对正常发育的小孢子囊,在这种小孢子囊壁中仍有大量淀粉粒残留,可能是药隔中的营养物质不能及时从药隔组织转移到小孢子囊壁以供给小孢子发育所需的营养,使整个药室内的小孢子发育都停滞在单核期。通过不同生境植株花粉萌发率的对比,推断空气湿度是影响香港木兰小孢子正常发育的一个重要因素。  相似文献   

5.
对蓝猪耳花药发育中营养物质的分布和转化过程进行组织化学研究,结果表明:在造孢细胞时期,药壁细胞没有营养物质的积累,但在造孢细胞中有少量的脂滴;在小孢子母细胞时期,表皮细胞中出现淀粉粒,而在绒毡层细胞中出现脂滴,小孢子母细胞中也有脂滴的分布;在四分体时期,四分体小孢子中出现淀粉粒,绒毡层细胞脂滴增加;在小孢子早期,药室内壁细胞中出现淀粉粒,绒毡层继续积累脂滴,而小孢子中开始出现脂滴;到小孢子晚期,绒毡层细胞降解,细胞残留物中出现较多脂滴;在二胞花粉早期,花粉中的大液泡消失,花粉开始积累淀粉粒;在即将开花的成熟花粉中则积累了大量的脂滴和少量的淀粉粒.蓝猪耳花药发育中多糖和脂滴两种营养物质的积累和分布具有一定的时、空特点,反映出花药发育中营养物质积累的规律.  相似文献   

6.
采用石蜡切片法对观光木(Tsoongiodendron odorum Chun)的小孢子发生和雄配子体发育进行了解剖学研究.观光木的花药由花药原基发育而来,具4个小孢子囊,花药壁由表皮、药室内壁、2~3层中层和1~2层绒毡层组成.中层在小孢子四分体时期开始解体,最终消失;绒毡层为腺质绒毡层,细胞具1~2核,在花药发育过程中不断分泌各种物质,提供小孢子发育,直到花粉成熟绒毡层才自溶消失.初生造孢细胞分裂形成次生造孢细胞,次生造孢细胞再转化为小孢子母细胞,小孢子母细胞减数分裂的胞质分裂为修饰性同时型,四分体排列方式为交叉型、对称型或"T"型(极少),成熟花粉粒二细胞型,开花时散出.观光木的成熟花粉粒存在严重的败育现象.  相似文献   

7.
枸杞花药发育过程中脂滴和淀粉粒的分布特征   总被引:1,自引:0,他引:1  
宁夏枸杞(Lycium barbarurn L.)花药发育过程中,淀粉粒和脂滴两种营养物质的积累和分布具有一定的特点:在造孢细胞时期,药隔薄壁细胞,表皮和药室内壁细胞中开始积累淀粉粒,而造孢细胞、绒毡层细胞和中层细胞中则没有淀粉粒。在四分体时期,绒毡层细胞开始积累脂滴并且数量逐渐增加。到小孢子晚期,绒毡层细胞降解,内含脂滴流入药室中。在小孢子发育过程中既没有淀粉粒也没有脂滴积累,直到二胞花粉的大液泡消失后花粉粒中才开始积累脂滴,然后又开始出现淀粉粒。枸杞成熟花粉中的营养储存物是脂滴和淀粉粒。  相似文献   

8.
越南篦齿苏铁小孢子发生及其系统学意义   总被引:3,自引:0,他引:3  
运用常规石蜡切片方法,结合显微荧光技术对越南篦齿苏铁Cycas elongata 小孢子发生和花粉个体发育进行了研究。结果表明:其小孢子叶球5月中下旬开始萌动,小孢子囊着生在小孢子叶远轴面,且3-5小孢子囊以辐射状排列方式聚生成聚合囊。小孢子囊壁由6-7层细胞组成,包括表皮、中层及绒毡层。绒毡层来源于成熟造孢组织的外围细胞,其退化形式为分泌型。6月中旬,小孢子母细胞进入减数分裂I,至6月下旬形成四分体。母细胞减数分裂后胞质分裂的方式与其他苏铁类植物不同,具有连续型与同时型两种类型。7月中旬,小孢子经过2次有丝分裂后,形成3细胞的成熟花粉粒。7月下旬进入散粉状态。在花粉发育过程中,母细胞内淀粉粒的积累及其壁上胼胝质的沉积均呈现规律性变化。  相似文献   

9.
麻疯树小孢子发育的研究   总被引:9,自引:0,他引:9  
用透射电镜观察了麻疯树(Jatropha curcas L.)小孢子发育的超微结构。小孢子母细胞时期内质网和质体较多;减数分裂和四分体时期,细胞处于明显的代谢活跃状态,细胞器丰富,主要有内质网、线粒体、质体、高尔基体和球状体;在小孢子发育早期和晚期,线粒体和内质网仍较丰富;小孢子经过高度的不对称分裂后,形成较大的营养细胞和较小的生殖细胞,营养细胞中细胞器数量明显减少,含大量的淀粉和脂类物质,生殖细胞中脂类物质丰富;表皮、药室内壁和中层细胞在小孢子母细胞和四分体时期淀粉粒丰富,小孢子时期明显减少,绒毡层从小孢子母细胞至小孢子发育晚期的细胞器都很丰富,主要为内质网、质体和线粒体,为二胞花粉发育奠定基础。  相似文献   

10.
麦冬花药绒毡层和乌氏体的细微结构   总被引:2,自引:0,他引:2  
麦冬(Ophiopogon japonicus)的绒毡层发育为分泌型。在小孢子母细胞时期,绒毡层细胞达到了发育的高峰。此时,绒毡层细胞中细胞器非常丰富,具大量线粒体、高尔基体和质体,尤以肉质网含量最多;原乌氏体出现较早,在小孢子母细胞时期绒毡层细胞中就已出现;四分体时期,大量原乌氏体被排入内切向面的质膜和纤维素壁之间;到了小孢子早期,绒毡层细胞失去细胞壁,原乌氏体分布在质膜的凹陷处,孢粉素物质在其上沉积,发育为乌氏体,乌氏体有单个和复合两种类型;当花粉成熟时,绒毡层细胞完全解体。  相似文献   

11.
采用光镜、透射电镜和细胞化学技术,对紫萁孢子囊发育过程中孢壁的超微结构和孢子囊内多糖和脂滴的分布及其动态变化进行研究,以探讨紫萁孢子囊发育过程中多糖和脂滴的代谢特征,为蕨类孢子发生的研究提供基础资料。结果表明:(1)紫萁孢子囊由1层囊壁细胞、2层绒毡层和产孢组织构成。(2)紫萁孢子壁由发达而分2层的外壁(外壁内层和外壁外层)和薄的不连续的周壁构成,由外壁形成棒状纹饰的轮廓;孢子外壁内层由多糖类物质构成,外壁外层和周壁均含有脂类物质。(3)在紫萁孢原细胞中观察到少量脂滴;随着紫萁孢壁的形成,囊壁细胞中淀粉粒的大小逐渐变小、数目先增加后减少,它们转运到内层绒毡层原生质团并转化为孢粉素前体物质,再穿过原生质团内膜表面进入囊腔,成为孢粉素团块或以小球形式填加到孢子表面形成孢壁。(4)紫萁孢子囊将多糖类营养物质转化为脂类,以脂滴的形式储藏在孢子中。  相似文献   

12.
Direction and degree of plastid development in the tissue differentiation of sporangiogenesis inThelypteris palustris were studied, and are discussed through aspects of the plastome continuity and cell differentiation. Particular attention was paid to proplastid reproduction and segregative allocation of the plastids at the first division of the sporangial initial cell. Nascent proplastids were separately located in the outer cell for further generative differentiation. Preexisting chloroplasts were allocated to the inner cell as further vegetation cells of sporangium. Proplastids in the generative cells were followed by retarded processing of development, then transformed to amyloplasts in sponrocyte differentiation. The amyloplasts were noted due to their significance for direct transmittance of plastome to following generationsvia spores, while well developed functional chloroplasts were characterized as ending up in the ephemeral terminal of sporangial vegetative tissues.  相似文献   

13.
利用ATPase定位技术,对水稻品种(Oryza sativa L.cv.Minghui 63)胚乳细胞发育中后期淀粉体和蛋白体的ATPase活性进行了超微细胞化学定位。结果表明,在淀粉体内外膜上、淀粉粒间的通道上和淀粉体四周的无定形物上呈现显著的ATPase活性。蛋白体Ⅰ和蛋白体Ⅱ的膜上和四周的囊泡、小泡上均出现ATPase活性产物。另外,胚乳细胞的胞壁和质膜,糊粉层和亚糊粉层细胞的胞壁、质膜、细胞核和胞间连丝上也有定位的ATPase活性产物分布。根据ATPase活性产物分布特点,推测淀粉体内的网状通道是便于养分进入淀粉体内部的转运通道。淀粉体膜和蛋白体膜上的ATPase主要是为养分进入内部提供跨膜动力。  相似文献   

14.
Pre-meiotic cellular organisation of rice anthers has a great significance in pollen formation. We have used a combination of confocal laser and transmission electron microscopy (TEM) to characterise and differentiate organelles in pre-meiotic rice anthers. Along with the characteristic organelles in the cytoplasm the epidermal cells of the pre-meiotic rice anther are coated on their outer surface by a conspicuous bi-lamellate cuticle. Chloroplasts of the endothecium contain immature grana, thylakoids and also starch granules. These plastids clearly contain photosynthetic pigments as shown by autofluorescence in confocal microscope studies. Both confocal and TEM studies reveal clusters of mitochondria in the middle layer. The tapetum contains electron opaque ribosomes, bundles of mitochondria and plastids. The nuclei of the tapetum occupy a large volume of the cytoplasm indicating the onset of mitotic prophase. Intense Rhodamine 123 staining reveals that a major portion of the structurally indistinguishable organelles that were seen throughout the densely ribosomic cytoplasm of sporogenous cells are mitochondria.  相似文献   

15.
Ultrastructural studies (both SEM and TEM) on Psilotum nudumreveal that a tapetal membrane develops on the loculus sideof the inner tangential wall of a cellular, parietal tapetumwhich invests each sporangium within a synangium. The membraneconsists of orbicular projections of a homogeneous nature, supportedon a lamellated base; the whole structure is resistant to acetolysisand persists even at the dehiscence of the synangium. Pro-orbiculeswere not identified and the orbicles were not released intothe sporangial loculus. Spheroids, approx. 3 µm in diameter,are found in membrane-enclosed chambers within the plasmodialtapetum. Their formation is described as well as their finalstructure which reflects the structure of the mature sporodermfrom the outer exosporal layer outwards. Differentially stainingbodies occurring in the parietal tapetum and in the adjacentcells of the sporangium wall are implicated in the formationof the tapetal membrane. The bodies occur at the time when thesporangium wall is yellow and when plastids within the cellsof the sporangium wall develop large numbers of osmiophilicplastoglobuli. parietal tapetum, plasmodial tapetum, Psilotum nudum, spheroids, sporopollenin, tapetal membrane  相似文献   

16.
In this study anther ontogeny of Campsis radicans (L.) Seem. was investigated by transmission electron microscopy and light microscopy with special reference to the development of the anther wall. The anther wall formation follows the dicotyledonous type. The differentiation in anther starts with the appearance of archesporial cells which undergo periclinal divisions to give primary parietal layer to the epidermal site and the primary sporogenous cells to the inside. The primary parietal layer also divides to form two secondary parietal layers. Later, the outer secondary parietal layer (spl1) forms the endothecium and the middle layer by periclinal division whereas the inner one (spl2) directly develops into the outer tapetum forming the inner most layer of the anther wall. The sporogenous tissue is generally organized in two rows of cells with a horseshoe-shaped outline. The remainder of the tapetum lining the sporogenous mass is derived from the connective tissue. The tapetum thus has dual origin and dimorphic. Anthers are tetrasporangiate. The wall of the anther consists of an epidermis, endothecium, middle layer, and the secretory type tapetum. Tapetal cells are usually binucleated. Epidermis and Endothecium layers of anther wall remain intact until the end of anther and pollen development; however, middle layer and tapetum disappear during development.  相似文献   

17.
A developmental study of anther tapetum in Tecoma stans has shown that the hypodermal archesporial layer differentiates in each microsporangium by cutting off a primary parietal layer to the outside (epidermal) and a primary sporogenous layer to the inside (connective). The primary parietal layer divides periclinally, producing the outer secondary parietal layer, which by further divisions, forms the future endothecium and the middle layer. On epidermal side, the inner secondary parietal layer gives rise to tapetum. The remainder of the tapetum on the inside (connective) is contributed by the parenchymatous connective cells lying just outside the sporogenous cells. The tapetum thus follows the dicotyledonous type of ontogeny. It also shows a distinct dual origin and is structurally dimorphic.  相似文献   

18.
Root primordia are formed in the stems of Salix viminalis L. during normal growth. Some of these primordia are produced at definite sites in the nodes. The initiation and early structural and ultrastructural development of the nodal primordia were studied in young shoots. In the fourth node below the terminal leaf cluster some parenchyma cells situated at the lateral leaf gaps formed a small group of initial cells. Derivatives of the newly formed interfascicular cambium added cells to that group, in which later on cell divisions in various directions occurred resulting in the formation of a root primordium. Root morphogenesis was studied in cuttings from one-season-old stems. The cells in the dormant primordia contained many lipid bodies but only a small amount of starch. After the cuttings had been 24 hours in water starch was accumulating in the plastids and lipid bodies were seen in the vacuoles. 48 hours after activation cell divisions occurred throughout the primordia and a layered apical mer-istem was organized. After 96 hours a root cap with amyloplasts was formed and the procambium was well developed. The amyloplasts were sedimented in response to gravity. After six days the first roots were ready to emerge from the stems. Their root caps had a well developed columella and endodermal and pericyclic cells were recognizable.  相似文献   

19.
玉竹(Polygonatum simizui Kitag)小孢子在分裂前,质体极性分布导致分裂后形成的生殖细胞不含质体,而营养细胞包含了小孢子中全部的质体。生殖细胞发育至成熟花粉时期,及在花粉管中分裂形成的两个精细胞中始终不含质体。虽然生殖细胞和精细胞中都存在线粒体,但细胞质中无DNA类核。玉竹雄性质体的遗传为单亲母本型。在雄配子体发育过程中,营养细胞中的质体发生明显的变化。在早期的营养细胞质中,造粉质体增殖和活跃地合成淀粉。后期,脂体增加而造粉质体消失。接近成熟时花粉富含油滴。对百合科的不同属植物质体被排除的机理及花粉中贮藏的淀粉与脂体的转变进行了讨论。  相似文献   

20.
In this study, distribution of polysaccharides, lipids, and proteins in the developing anthers of Campsis radicans (L.) Seem. was examined from sporogenous cell stage to mature pollen, using cytochemical methods. To detect the distribution and dynamic changes of insoluble polysaccharides, lipid bodies, and proteins in the anthers through progressive developmental stages, semi-thin sections of anthers at different developmental stages were stained with periodic-acid-Schiff (PAS) reagent, Sudan black B, and Coomassie brilliant blue, respectively, and examined under light microscope. Ultrastructural observations with TEM were also carried out to determine the storage form of starch in the connective tissue, and storage form of lipids in the tapetal cells. In sporogenous cell stage, anther wall contains numerous insoluble polysaccharides. However, from the sporogenous cell stage to the vacuolated microspore stage, the amount of insoluble polysaccharides in the anther wall decreases gradually. At bicellular pollen stage, tapetum degenerates completely and polysaccharides are not seen in the anther wall. Lipid bodies are observed in the cytoplasm of both middle layer and tapetal cells at tetrad stage, whereas they disappear in the vacuolated microspore stage. Compared with polysaccharides, proteins are limited in the anther wall at early stages of development. During pollen development, polysaccharides, proteins, and lipid bodies are scarce in the cytoplasm of sporogenous cells, but their amount increases at premeiotic stage. From tetrad stage to bicellular pollen stage, microspore cytoplasm contains variable amount of insoluble polysaccharide grains, lipid and protein bodies. At bicellular pollen stage, plentiful amount of starch granules are stored in the cytoplasm of the pollen grains. Proteins and lipid bodies are also present in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号