首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
We examined changes in zeta potential (the surface charge density, zeta) of the complexes of liposome (nmol)/DNA (microg) (L/D) formed in water at three different ratios (L/D=1, 10 and 20) by changing the ionic strength or pH to find an optimum formulation for in vivo gene delivery. At high DNA concentrations, zeta of the complexes formed in water at L/D=10 was significantly lowered by adding NaCl (zeta=+8.44+/-3.1 to -27.6+/-3.5 mV) or increasing pH from 5 (zeta=+15.3+/-1.0) to 9 (zeta=-22.5+/-2.5 mV). However, the positively charged complexes formed at L/D=20 (zeta=+6.2+/-3.5 mV) became negative as NaCl was added at alkaline pH as observed in medium (zeta=-19.7+/-9.9 mV). Thus, the complexes formed in water under the optimum condition were stable and largely negatively charged at L/D=1 (zeta=-58.1+/-3.9 mV), unstable and slightly positively charged at L/D=10 (zeta=+8.44+/-3.7 mV), and unstable and largely positively charged at L/D=20 (zeta=+24.3+/-3.6 mV). The negatively charged complexes efficiently delivered DNA into both solid and ascitic tumor cells. However, the positively charged complexes were very poor in delivering DNA into solid tumors, yet were efficient in delivering DNA into ascitic tumors grown in the peritoneum regardless of complex size. This slightly lower gene transfer efficiency of the negatively charged complexes can be as efficient as the positively charged ones when an injection is repeated (at least two injections), which is the most common case for therapy regimes. The results indicate that optimum in vivo lipofection may depend on the site of tumor growth.  相似文献   

2.
All the standard in vitro lipofection has been routinely performed in serum-free medium as the transfection activity of liposome/DNA complexes is sensitive to the presence of serum. In this study, we have demonstrated that lipid-rich serum lipoprotein included in the transfection medium strongly inhibited the transfection activity of DC-chol liposome/DNA complexes in five different cell types (CHO, 293, A2780CP, A431 and SKBR3). The levels of inhibition by serum lipoprotein were rather greater than those by serum and varied with cell types. However, this inhibition was completely abolished by delipidation of serum. Thus, delipidated serum can be included in the transfection medium. The complexes formed in the presence of serum (zeta=-18.2+/-1.07 mV), delipidated serum (zeta=-19.6+/-0.54 mV), IgG (zeta=-21.6+/-1.92 mV) or serum lipoprotein (zeta=-10.5+/-2.33 mV) were as much negatively charged as those in serum-free medium (zeta=-21.3+/-1.60 mV). The results suggest that the inhibition of liposome-mediated transfection by serum was not associated with charges of serum proteins but with lipids or lipid-associated proteins present in serum.  相似文献   

3.
In medium where in vitro transfection is routinely performed, DC-chol liposomes alone were nearly neutral, whereas the DC-chol liposome/DNA complexes were largely negatively charged which changed only slightly at all [liposome]/[DNA] ratios (zeta=-27.1 to -21.8 mV). Three other commercial transfection reagents, Lipofectin(R), LipofectAMINE 2000, and SuperFect, were also largely negatively charged when complexed with DNA. The aggregation of liposomes in medium was prevented by the addition of DNA. Incubation of the complexes in medium did not change their size, charge or lipofection activity for 30 min. These results suggest that, in medium, the liposome/DNA complexes were formed at the time of mixing with negative charges.  相似文献   

4.
This study presents a new formulation method for improving DNA transfection efficiency using a fusogenic peptide and polyethylene glycol grafted polyethylenimine. Succinimidyl succinate polyethylene glycol (PEG-SSA) was conjugated with polyethylenimine (PEI). PEI is well known for a good endosomal escaping and DNA condensing agent. The positively charged synthetic fusogenic peptide, KALA, was coated on the negatively charged PEG-g-PEI/DNA and PEI/DNA complexes. The KALA/PEI/DNA complexes exhibited aggregation behavior at higher KALA coating amounts with an effective diameter of around 1,000 nm. However, the KALA/PEG-g-PEI/DNA complexes were 100–300 nm in size with a surface zeta-potential (ζ) value of about +20 mV. The conjugated PEG molecules suppressed any KALA-mediated inter-particle aggregation, and thereby improved the transfection efficiency. Consequently, the transfection efficiency of the KALA/PEG-g-PEI/DNA complexes was obtained by utilizing both the fusogenic activity of KALA and the steric repulsion effect of PEC.  相似文献   

5.
Cationic liposome-DNA complexes ('lipoplexes') are used as gene delivery vehicles and may overcome some of the limitations of viral vectors for gene therapy applications. The interaction of highly positively charged lipoplexes with biological macromolecules in blood and tissues is one of the drawbacks of this system. We examined whether coating cationic liposomes with human serum albumin (HSA) could generate complexes that maintained transfection activity. The association of HSA with liposomes composed of 1, 2-dioleoyl-3-(trimethylammonium) propane and dioleoylphosphatidylethanolamine, and subsequent complexation with the plasmid pCMVluc greatly increased luciferase expression in epithelial and lymphocytic cell lines above that obtained with plain lipoplexes. The percentage of cells transfected also increased by an order of magnitude. The zeta potential of the ternary complexes was lower than that of the lipoplexes. Transfection activity by HSA-lipoplexes was not inhibited by up to 30% serum. The combined use of HSA and a pH-sensitive peptide resulted in significant gene expression in human primary macrophages. HSA-lipoplexes mediated significantly higher gene expression than plain lipoplexes or naked DNA in the lungs and spleen of mice. Our results indicate that negatively charged HSA-lipoplexes can facilitate efficient transfection of cultured cells, and that they may overcome some of the problems associated with the use of highly positively charged complexes for gene delivery in vivo.  相似文献   

6.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes (`lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin Nterminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/ DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

7.
Cationic liposomes complexed with DNA have been used extensively as non-viral vectors for the intracellular delivery of reporter or therapeutic genes in culture and in vivo. However, the relationship between the features of the lipid-DNA complexes ('lipoplexes') and their mode of interaction with cells, the efficiency of gene transfer and gene expression remain to be clarified. To gain insights into these aspects, the size and zeta potential of cationic liposomes (composed of 1,2-dioleoyl-3- (trimethylammonium) propane (DOTAP) and its mixture with phosphatidylethanolamine (PE)), and their complexes with DNA at different (+/-) charge ratios were determined. A lipid mixing assay was used to assess the interaction of liposomes and lipoplexes with monocytic leukaemia cells. The use of inhibitors of endocytosis indicated that fusion of the cationic liposomes with cells occurred mainly at the plasma membrane level. However, very limited transfection of these cells was achieved using the above complexes. It is possible that the topology of the cationic liposome-DNA complexes does not allow the entry of DNA into cells through a fusion process at the plasma membrane. In an attempt to enhance transfection mediated by lipoplexes composed of DOTAP and its equimolar mixture with dioleoylphosphatidylethanolamine (DOPE) two different strategies were explored: (i) association of a targeting ligand (transferrin) to the complexes to promote their internalization, presumably by receptor-mediated endocytosis; and (ii) association of synthetic fusogenic peptides (GALA or the influenza haemagglutinin N-terminal peptide HA-2) to the complexes to promote endosomal destabilization and release of the genetic material into the cytoplasm. These strategies were effective in enhancing transfection in a large variety of cells, including epithelial and lymphoid cell lines, as well as human macrophages, especially with the use of optimized lipid/DNA (+/-) charge ratios. Besides leading to high levels of transfection, the ternary complexes of cationic liposomes, DNA, and protein or peptide, have the advantages of being active in the presence of serum and being non-toxic. Moreover, such ternary complexes present a net negative charge and, thus, are likely to alleviate the problems associated with the use of highly positively charged complexes in vivo, such as avid complexation with serum proteins. Overall, the results indicate that these complexes, and their future derivatives, may constitute viable alternatives to viral vectors for gene delivery in vivo.  相似文献   

8.
The application of conventional cationic liposomes/DNA complexes in gene transfer was hampered due to their large size, instability, and limited transfection site in vivo. In this report, we described a dialysis-based method and produced small, stable, and negatively charged DNA-containing liposomes composed of low content of cationic lipid and high content of fusogenic lipid. The liposomes were relatively spherical with a condensed core inside, and exhibited small size with narrow particle size distribution. The encapsulation efficiency of the liposomes was 42.53 +/- 2.29%. They were stable and showed enough protective ability to plasmid DNA from degradation after incubation with different amounts of DNase. Twenty-fold higher transfection efficiency for the liposomes was achieved when compared with that of naked plasmid DNA and no toxicities to hepatocellular carcinoma cells were observed. Our results indicate that the negatively charged DNA-containing liposomes can facilitate gene transfer in cultured cells, and may alleviate the drawbacks of the conventional cationic liposomes/DNA complexes for gene delivery in vivo.  相似文献   

9.
The purpose of this research was to develop and characterize a gene delivery vehicle with a poly(ethylene glycol) (PEG) backbone with the aim of overcoming limitations, such as cytotoxicity and rapid clearance, associated with current commonly used non-viral carriers. PEG was functionalized with DNA-binding peptides (DBPs) to make a vehicle (DBP-PEG) capable of condensing DNA. Complexes of plasmid DNA and DBP-PEG were formed and characterized by measuring particle size, zeta potential, and transfection efficiency as a function of N:P charge ratios (DBP-PEG amino groups:DNA phosphate). Dynamic light scattering showed that DBP-PEG was able to condense DNA efficiently resulting in a population of particles in the range of 250-300 nm. Neutral or slightly positive zeta potentials were measured for charge ratios of 3.5:1 and greater. DBP-PEG/DNA complexes, made with plasmids encoding the green fluorescent protein (GFP) and beta-Galactosidase (beta-Gal) genes, were used to transfect Chinese hamster ovary (CHO) cells. DBP-PEG/DNA was capable of transfecting cells and maximum transfection efficiency was observed for N:P ratios from 4:1 to 5:1, corresponding to zeta potentials from -4 to +1.6 mV. The effect of the DBP-PEG vehicle on cell viability was assayed. DBP-PEG was associated with a higher percentage of viable cells ( approximately 95%) than either polyethylenimine (PEI) or poly-L-lysine (PLL), and with transfection efficiency greater than PLL, but with somewhat lower than PEI. The results of this work demonstrate that PEG can be used as the backbone for gene delivery vehicles.  相似文献   

10.
Sonicated liposomes composed of dioleoylphosphatidylethanolamine (DOPE) and a quaternary ammonium detergent (dodecyl-, tetradecyl-, or cetyl-trimethylammonium bromide) mediates functional transfer of pSV2 CAT plasmid DNA to mouse L929 fibroblasts. Successful transfection was determined by assaying for chloramphenicol acetyltransferase activity in cell lysates collected 40 h after exposure to the lipid-DNA complexes. Liposomes prepared with the quaternary ammonium detergents were less toxic than the free detergents at the same concentrations and were more efficient in their delivery of the plasmid DNA to the cells. Analysis of the three detergents in combination with the lipid showed that cetyltrimethylammonium bromide was least toxic to the cells. This detergent, at a minimal concentration of 20 mol% in DOPE, allowed for stable liposome preparations and efficient transfection. Optimal efficiency of transfection occurred with 30 micrograms of DNA. Further increases in the DNA concentration caused a decrease in the transfection efficiency, perhaps due to charge repulsions between the liposomes now saturated with negatively charged DNA and the negatively charged cell surface. The transfection activity of the liposome was limited by its cytotoxicity at high liposome concentrations. These results are compared with that of the Lipofectin, another positively charged liposome preparation which is commercially available. Although the overall transfection activity of the liposome containing the quaternary ammonium detergent is somewhat lower than that of the Lipofectin, it may serve as an inexpensive and convenient alternative.  相似文献   

11.
Inefficient release of polymer/DNA complexes from endocytic vesicles into the cytoplasm and the cytotoxic nature of cationic polymers are two of the primary causes of poor gene delivery. EG-polyurethane [poly(ethylene glycol)-PU, Poly 1], EGDM-polyurethane [poly(ethylene glycol), 2-(dimethylamino)ethylamine-PU, Poly 2], and MDEADM-polyurethane [N-methyldiethanolamine, 2-(dimethylamino)ethylamine-PU, Poly 3] were designed in this study to overcome these obstacles. The structural characteristics of polyurethanes and physicochemical properties of their formed complexes with DNA were determined to correlate their transfection efficiency. The results revealed that Poly 2 and Poly 3 could bind with plasmid DNA and yield positively charged complexes with a size required for transfection. Poly 3 showed the best in buffering capacity and its formed complexes with DNA could transfect COS-7 cells better than those of Poly 2 and Poly 1. This study reveals that the amine groups in the polymeric structure and the buffer capacity of a polymeric transfectant would affect its potential in DNA delivery. Also the size and binding properties of DNA and polymeric transfectants can be in correlation to the transfection efficiency of resulting DNA/polymer complexes.  相似文献   

12.
Gene therapy by delivery of nonviral expression vectors is highly desirable, due to their safety, stability, and suitability for production as bulk pharmaceuticals. However, low transfection efficiency remains a limiting factor in application on nonviral gene delivery. Despite recent advances in the field, there are still major obstacles to overcome. In an attempt to construct more efficient nonviral gene delivery vectors, we have designed a series of novel lipopeptide transfection agents, consisting of an alkyl chain, one cysteine, 1 to 4 histidine and 1 to 3 lysine residues. The lipopeptides were designed to facilitate dimerization (by way of the cysteine residues), DNA binding at neutral pH (making use of charged lysine residues), and endosomal escape (by way of weakly basic histidine residues). DNA/lipopeptide complexes were evaluated for their biophysical properties and transfection efficiencies. The number and identity of amino acids incorporated in the lipopeptide construct affected their DNA/lipopeptide complex forming capacity. As the number of lysine residues in the lipopeptide increased, the DNA complexes formed became more stable, had higher zeta potential (particle surface charge), and produced smaller mean particle sizes (typically 110 nm at a charge ratio of 5.0 and 240 nm at a charge ratio of 1.0). The effect of inclusion of histidines in the lipopeptide moiety had the opposite effect on complex formation to lysine, but was necessary for high transfection efficiency. In vitro transfection studies in COS-7 cells revealed that the efficiency of gene delivery of the luciferase encoding plasmid, pCMV-Luc, mediated by all the lipopeptides, was much higher than poly(L-lysine) (PLL), which has no endosomal escape system, and in two cases was slightly higher than that of branched polyethylenimine (PEI). Lipopeptides with at least two lysine residues and at least one histidine residue produced spontaneous transfection complexes with plasmid DNA, indicating that endosomal escape was achieved by incorporation of histidine residues. These low molecular weight peptides can be readily synthesized and purified and offer new insights into the mechanism of action of transfection complexes.  相似文献   

13.
DNA of the bacteriophage phi C31 was rendered DNase resistant by entrapment in liposomes. Liposome-entrapped phi C31 DNA transfected Streptomyces protoplasts in the presence of 50% polyethylene glycol (PEG), providing a potential alternative route to conventional PEG-mediated transfection of protoplasts. However, probably partially because of low entrapment of DNA, this system did not result in an effective increase in transfection efficiency over the conventional transfection procedure. A more effective use of liposomes for stimulating transfection was provided by the discovery that supernatants obtained during the washing of DNA-free liposome preparations stimulated PEG-mediated transfection of protoplasts. This effect appeared to involve small (0.1- to 0.3-micrometer diameter) poorly sedimented liposomes. It was most effective (more than 100-fold stimulation) with positively charged liposome supernatants and high (about 50% [wt/vol]) PEG concentrations. Stimulation of transfection was also observed with cloning ligation mixtures containing phi C31 DNA as the vector. Transformation by plasmids (but not by chromosomal DNA fragments) was also significantly more efficient in these conditions than in conventional protoplast transformation.  相似文献   

14.

Background

Cationic lipid DNA complexes based on DOTAP (1,2-dioleoyl-3-(trimethyammonium) propane) and mixtures of DOTAP and cholesterol (DC) have been previously optimized for transfection efficiency in the absence of serum and used as a non-viral gene delivery system. To determine whether DOTAP and DC lipid DNA complexes could be obtained with increased transfection effciency in the presence of high serum concentrations, the composition of the complexes was varied systematically and a total of 162 different complexes were analyzed for transfection efficiency in the presence and absence of high serum concentrations.

Results

Increasing the ratio of DOTAP or DC to DNA led to a dose dependent enhancement of transfection efficiency in the presence of high serum concentrations up to a ratio of approximately 128 nmol lipid/μg DNA. Transfection efficiency could be further increased for all ratios of DOTAP and DC to DNA by addition of the DNA condensing agent protamine sulfate (PS). For DOTAP DNA complexes with ratios of ≤ 32 nmol/μg DNA, peak transfection efficiencies were obtained with 4 μg PS/μg DNA. In contrast, increasing the amount of PS of DC complexes above 0.5 μg PS /μg DNA did not lead to significant further increases in transfection efficiency in the presence of high serum concentrations. Four complexes, which had a similar high transfection efficiency in cell culture in the presence of low serum concentrations but which differed largely in the lipid to DNA ratio and the amount of PS were selected for further analysis. Intravenous injection of the selected complexes led to 22-fold differences in transduction efficiency, which correlated with transfection efficiency in the presence of high serum concentrations. The complex with the highest transfection efficiency in vivo consisted of 64 nmol DC/ 16 μg PS/ μg DNA. Physical analysis revealed a predicted size of 440 nm and the highest zeta potential of the complexes analyzed.

Conclusions

Optimization of cationic lipid DNA complexes for transfection efficiency in the presence of high concentrations of serum led to the identification of a DC complex with high transduction efficiency in mice. This complex differs from previously described ones by higher lipid to DNA and PS to DNA ratios. The stability of this complex in the presence of high concentrations of serum and its high transduction efficiency in mice suggests that it is a promising candidate vehicle for in vivo gene delivery.  相似文献   

15.
Synthetic vectors were evaluated for their ability to mediate efficient mRNA transfection. Initial results indicated that lipoplexes, but not polyplexes based on polyethylenimine (PEI, 25 and 22 kDa), poly(L-lysine) (PLL, 54 kDa) or dendrimers, mediated efficient translation of mRNA in B16-F10 cells. Significant mRNA transfection was achieved by lipoplex delivery in quiescent (passage 0) human umbilical vein endothelial cells (HUVEC), and by passage 4, 10.7% of HUVEC were transfected compared to 0.84% with DNA. Lack of expression with PEI 25 kDa/mRNA or PLL 54 kDa/mRNA in a cell-free translation assay and following cytoplasmic injection into Rat1 cells indicated that these polyplexes were too stable to release mRNA. In contrast, polyplexes formed using smaller PEI 2 kDa and PLL 3.4 kDa gave 5-fold greater expression in B16-F10 cells compared to DOTAP, but were dependent on chloroquine for transfection activity. Endosomolytic activity was incorporated by conjugating PEI 2 kDa to melittin and resulting PEI 2 kDa-melittin/mRNA polyplexes mediated high transfection levels in HeLa cells (31.1 +/- 4.1%) and HUVEC (58.5 +/- 2.9%) in the absence of chloroquine, that was potentiated to 52.2 +/- 2.7 and 71.6 +/- 1.7%, respectively, in the presence of chloroquine. These results demonstrate that mRNA polyplexes based on peptide-modified low molecular weight polycations can possess versatile properties including endosomolysis that should enable efficient non-viral mRNA transfection of quiescent and post-mitotic cells.  相似文献   

16.
Over the last years significant progress has been made in non-viral gene delivery mediated by cationic liposomes. However, the results obtained are still far from being satisfactory regarding transfection efficiency, particularly when compared to that achieved using viral vectors. We have previously demonstrated that association of transferrin with cationic liposomes significantly improves transfection in a large variety of cells, both in vitro and in vivo. In this work, several strategies have been explored in order to further improve transfection mediated by transferrin-associated lipoplexes. To this regard, the effect on transfection of pre-condensation of DNA with polyethylenimine of low MWs (2.7, 2.0 and 0.8 KDa) at various N/P ratios, lipid composition, cationic lipid/DNA (+/-) charge ratio and the presence of a surfactant in the lipoplexes was investigated. Two different modes for preparing the liposomes were tested and the extent of cell association of their complexes with DNA as well as their capacity to protect the carried DNA were evaluated. Our results show that complexes generated from cationic liposomes prepared by the ethanol injection method in which the carried DNA was pre-condensed with low MW polyethylenimine are highly efficient in mediating transfection. The differential modulating effect observed upon association of transferrin to various liposome formulations on transfection mediated by the polyethylenimine-complexes suggests that these complexes enter into the cells through different pathways (involving clathrin versus caveolin), most likely by taking advantage of their intrinsic biophysical properties to escape from the endosome to the cytosol.  相似文献   

17.
Y Xu  S W Hui  P Frederik    F C Szoka  Jr 《Biophysical journal》1999,77(1):341-353
Cationic lipid-nucleic acid complexes (lipoplexes) consisting of dioleoyltrimethylammoniumpropane (DOTAP) liposomes and plasmid DNA were prepared at various charge ratios (cationic group to nucleotide phosphate), and the excess component was separated from the lipoplex. We measured the stoichiometry of the lipoplex, noted its colloidal properties, and observed its morphology and structure by electron microscopy. The colloidal properties of the lipoplexes were principally determined by the cationic lipid/DNA charge ratio and were independent of the lipid composition. In lipoplexes, the lipid membranes as observed in freeze-fracture electron microscopy were deformed into high-radius-of-curvature features whose characteristics depended on the lipid composition. Lipoplexes prepared at a threefold or greater excess of either DOTAP or DNA could be resolved into complexes with a defined stoichiometry and the excess component by sedimentation to equilibrium on sucrose gradients. The separated, positively charged complex retained high transfection activity and had reduced toxicity. The negatively charged lipoplex showed increased transfection activity compared to the starting mixture. In cryoelectron micrographs the positively charged complex was spherical and contained a condensed but indistinct interior structure. In contrast, the separated negatively charged lipoplexes had a prominent internal 5.9 +/- 0.1-nm periodic feature with material projecting as spikes from the spherical structure into the solution. It is likely that these two lipoplexes represent structures with different lipid and DNA packing.  相似文献   

18.
Chen J  Tian B  Yin X  Zhang Y  Hu D  Hu Z  Liu M  Pan Y  Zhao J  Li H  Hou C  Wang J  Zhang Y 《Journal of biotechnology》2007,130(2):107-113
The cationic polylactic acid (PLA) nanoparticle has emerged as a promising non-viral vector for gene delivery because of its biocompatibility and biodegradability. However, they are not capable of prolonging gene transfer and high transfection efficiency. In order to achieve prolonged delivery of cationic PLA/DNA complexes and higher transfection efficiency, in this study, we used copolymer methoxypolyethyleneglycol-PLA (MePEG-PLA), PLA and chitosan (CS) to prepare MePEG-PLA-CS NPs and PLA-CS NPs by a diafiltration method and prepared NPs/DNA complexes through the complex coacervation of nanoparticles with the pDNA. The object of our work is to evaluate the characterization and transfection efficiency of MePEG-PLA-CS versus PLA-CS NPs. The MePEG-PLA-CS NPs have a zeta potential of 15.7 mV at pH 7.4 and size under 100 nm, while the zeta potential of PLA-CS NPs was only 4.5 mV at pH 7.4. Electrophoretic analysis suggested that both MePEG-PLA-CS NPs and PLA-CS NPs with positive charges could protect the DNA from nuclease degradation and cell viability assay showed MePEG-PLA-CS NPs exhibit a low cytotoxicity to normal human liver cells. The potential of PLA-CS NPs and MePEG-PLA-CS NPs as a non-viral gene delivery vector to transfer exogenous gene in vitro and in vivo were examined. The pDNA being carried by MePEG-PLA-CS NPs, PLA-CS NPs and lipofectamine could enter and express in COS7 cells. However, the transfection efficiency of MePEG-PLA-CS/DNA complexes was better than PLA-CS/DNA and lipofectamine/DNA complexes by inversion fluorescence microscope and flow cytometry. It was distinctively to find that the transfection activity of PEGylation of complexes was improved. The nanoparticles were also tested for their ability to transport across the gastrointestinal mucosa in vivo in mice. In vivo experiments showed obviously that MePEG-PLA-CS/DNA complexes mediated higher gene expression in stomach and intestine of BALB/C mice compared to PLA-CS/DNA and lipofectamine/DNA complexes. These results suggested that MePEG-PLA-CS NPs have favorable properties for non-viral gene delivery.  相似文献   

19.
Efficient and safe nonviral gene delivery systems are a prerequisite for the clinical application of therapeutic genes. In this study, we report an enhancement of the transfection efficiency of plasmid DNA, via the use of positively charged colloidal gold nanoparticles (PGN). Plasmid DNA encoding for murine interleukin-2 (pVAXmIL-2) was complexed with PGN at a variety of ratios. The delivery of pVAXmIL-2 into C2C12 cells was dependent on the complexation ratios between PGN and the plasmid DNA, presented the highest delivery at a ratio of 2400:1. After complexation with DNA, PGN showed significantly higher cellular delivery and transfection efficiency than did the polyethylenimines (PEI) of different molecular weights, such as PEI25K (m.w. 25 kd) and PEI2K (m.w. 2 kd). PGN resulted in a cellular delivery of pVAXmIL-2 6.3-fold higher than was seen with PEI25K. The PGN/DNA complex resulted in 3.2- and 2.1-fold higher murine IL-2 protein expression than was seen in association with the PEI25K/DNA and PEI2K/DNA complexes, respectively. Following intramuscular administration, PGN/DNA complexes showed more than 4 orders of magnitude higher expression levels as compared to naked DNA. Moreover, the PGN/DNA complexes showed higher cell viability than other cationic nonviral vectors. Collectively, the results of this study suggest that the PGN/DNA complexes may harbor the potential for development into efficient and safe gene delivery vehicles.  相似文献   

20.
DNA and polyamidamine (PAMAM) dendrimers form complexes on the basis of the electrostatic interactions between negatively charged phosphate groups of the nucleic acid and protonated (positively charged) amino groups of the polymers. Charge neutralization of both components and subsequent increases of the net positive charge of the complex result in changes in the physicochemistry and biological properties of the complexes. The formation of soluble, low-density and insoluble, high-density complexes was analyzed using UV light absorption and measurements of radioactive labeled DNA. Formation of high molecular weight and high-density complexes depended mainly on the DNA concentration and was enhanced by increasing the dendrimer-DNA charge ratio. Electrostatic charge related effects (attraction or repulsion of charged particles) appeared to be modulated by the generation of dendrimer (size of the polymer). With the progressive increases in the dendrimer-DNA charge ratio (above 20), an increase in the amount of low-density, soluble complexes was observed. Functional analysis revealed that the great majority (>90%) of transfection is carried by low-density, soluble, complexes which only represent approximately 10-20% of total complexed DNA. The ability of the dendrimer to complex and form aggregates with DNA is crucial for efficient transfection and the function of the complexed DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号