首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 607 毫秒
1.
Primary roots of intact maize plants (Zea mays L.) grown for several days in nutrient solutions containing 100 mol m−3 NaCl and additional calcium, had relatively inhibited rates of elongation. Possible physical restraints underlying this salt induced inhibition were investigated. The inhibition did not involve reductions in osmotic potential gradients and turgor in the tip tissues responsible for root elongation growth. The apparent yield threshold pressure, which is related to capacity of cell walls to undergo loosening by stress relaxation, was estimated psychrometrically in excised root tips. Salinity increased yield threshold values. Comparative root extensibility values were obtained for intact plants by determining the initial (1 min) increase in root elongation rate induced by an 0.1 MPa osmotic jump. Comparative extensibility was significantly reduced in the salinized root tips. Salinity did not reduce capacities for water efflux and associated elastic contraction in root tip tissues of intact plants exposed to hypertonic mannitol. We conclude that cell wall hardening in the elongating root tips is an important component of root growth inhibition induced by long-term salinization.  相似文献   

2.
Water-relation parameters of root hair cells, hairless epidermal cells, and cortical cells in the primary root of wheat have been measured using the pressure-probe technique. Under well-watered conditions the mean cell turgor of cortical cells was 6.8±1.9 (30) bar (mean±SD; the number of observations in brackets). In hairless epidermal and root hair cells the mean cell turgor was 5.5±1.9 (22) and 4.4±1.5 (15) bar, respectively. Despite the large variability, turgor pressure was significantly lower (confidence interval=0.95) in epidermal cells relative to cortical cells. This may be a consequence of the ultrafiltration of ions by the external cell wall and-or plasmalemma of epidermal cells. The volumetric elastic modulus of the cells ranged from 10 to 150 bar. This parameter was dependent on cell volume, but within experimental accuracy, was independent of cell type. No pressure dependence of the volumetric elastic modulus was observed in these cells. The half-times for water exchange ranged from 1.8 to 48.8 s. The mean value increased in the order root hair < hairless epidermal < cortical cells and was directly related to volume to surface area ratio. Thus the hydraulic conductivities of the three cell types were similar and averaged 1.2±0.9·10-6 (170) cm s-1 bar-1. No polarity was observed between inwardly and outwardly directed water flow. The similarity of the hydraulic conductivities of root hairs to those of other cells indicates that the membranes of root hairs are not particularly specialized for water transport. The overall hydraulic conductivity for radial water flow across the root was estimated from the pressure-probe data using a simple model and was compared with that measured directly on whole roots using an osmotic backflow technique. It was tentatively concluded that upon sudden osmotic perturbation, the major pathway for water transfer across the root may be through the symplasm and involve net flow from vacuole to vacuole.  相似文献   

3.
Seasonal and diurnal variation and rehydration effects of pressure-volume parameters in Pseudotsuga menziesii (Mirb.) Franco from a plantation in central Pennsylvania, USA, were evaluated during May-September, 1989. Predawn elastic modulus was lowest in overwintering and newly expanded shoots in May and June, respectively, whereas predawn osmotic potentials at full and zero turgor were lowest in May and in early September, following an August drought. Seasonal variation in predawn relative water content at zero turgor was highly correlated with increases and decreases in elastic modulus and osmotic potential. Diurnal osmotic adjustment resulted in nearly constant turgor pressure, despite decreases in bulk shoot water potential. Elastic modulus decreased diurnally on 1 August and increased on 3 September. Decreases in osmotic potential and/or elastic modulus on 24 June and 1 August lowered the relative water content at zero turgor. Plateaus in pressure-volume data caused by excess apoplastic water, were present in 67% of naturally rehydrated shoots and in all of the shoots artificially rehydrated for 3, 6, 12 and 24 h, and they increased in volume with rehydration time. Plateaus represented 80–95% of the excess apoplastic water lost during pressure-volume analysis. Correcting for plateaus via linear regression had no significant effect on osmotic potential at full turgor; however, uncorrected elastic modulus and relative water content at zero turgor were often significantly lower than the plateau-corrected values, particularly in artificially rehydrated shoots. Plateau-corrected osmotic potential at full turgor and osmotic potential at zero turgor were significantly higher in most artificially rehydrated shoots than in those naturally rehydrated as the result of loss of symplastic solutes. Corrected elastic modulus decreased following 12 and 24 h of rehydration and corrected relative water content at zero turgor increased in as little as 3 h of rehydration. These results indicate that seasonal and diurnal patterns of tissue-water parameters in Pseudotsuga menziesii vary with plant phenology and drought conditions, and that the length of rehydration period is an important consideration for pressure-volume studies.  相似文献   

4.
A biophysical analysis of root growth under mechanical stress   总被引:13,自引:0,他引:13  
Bengough  A.G.  Croser  C.  Pritchard  J. 《Plant and Soil》1997,189(1):155-164
The factors controlling root growth in hard soils are reviewed alongside summarised results from our recent studies. The turgor in cells in the elongation zone of roots pushes the apex forward, resisted by the external pressure of the soil and the tension in the cell walls. The external pressure of the soil consists of the pressure required to deform the soil, plus a component of frictional resistance between the root and soil. This frictional component is probably small due to the continuous sloughing of root cap cells forming a low-friction lining surrounding the root. Mechanically impeded roots are not only thicker, but are differently shaped, continuing to increase in diameter for a greater distance behind the root tip than in unimpeded roots. The osmotic potential decreases in mechanically impeded roots, possibly due to accumulation of solutes as a result of the slower root extension rate. This more negative osmotic potential is not always translated into increased turgor pressure, and the reasons for this require further investigation. The persistent effect of mechanical impedance on root growth is associated with both a stiffening of cell walls in the axial direction, and with a slowing of the rate of cell production.  相似文献   

5.

Background and aims

Biomechanical properties of cereal root systems largely control both resistance to root lodging and their ability to stabilise soil. Abiotic stresses can greatly modify root system growth and form. In this paper the effect of waterlogging and moderate mechanical impedance on root biomechanics is studied for both lateral roots and the main axes of barley.

Methods

Barley (Hordeum vulgare) plants were subjected to transient water-logging and moderate mechanical impedance in repacked soil columns. Roots were excavated, separated into types (nodal, seminal or lateral) and tested in tension to measure strength and elastic modulus.

Results

Water-logging and mechanical impedance substantially changed root system growth whilst root biomechanical properties were affected by waterlogging. Root strength was generally greater in thin roots and depended on root type. For example, seminal roots 0.4–0.6 mm in diameter were approximately seven times stronger and five times stiffer than lateral roots of the same diameter when mechanically impeded. Root sample populations typically exhibited negative power-law relationships between root strength and diameter for all root types. Mechanical impedance slowed seminal root elongation by approximately 50 % and resulted in a 15 % and 11 % increase in the diameter of in nodal and seminal roots respectively. Power-law relationships between root diameter and root biomechanical properties corresponded to the different root types. Coefficients for between root diameter, strength and elastic modulus improved when separated by root type, with R2 values increasing in some roots from 0.05 to 0.71 for root strength and 0.08 to 0.74 for elastic modulus.

Conclusions

Moderate mechanical impedance did not influence the tensile strength of roots, but, waterlogging diminished the relationship between root strength and diameter. Separation of root type improved predictions of root strength and elastic modulus using power-law regressions.  相似文献   

6.
Summary Excised tomato roots (Lycopersicon esculentum Mill. cv Bonny Best) were cultured in the presence of mannitol to determine the effects of varying degrees of mild water deficit on their developmental growth. It was found that over the 7-d culture period, the cultured roots could regulate their own developmental responses to the water deficit such that elongation of the primary root axis was favored over that of the lateral roots. Higher degrees of water deficit proportionately decreased lateral root number and density, but lateral root primordia (visualized by clearing roots in chromium trioxide) continued to be formed in water-stressed roots. Measurements of water and osmotic (solute) potentials of the root tips showed that the cultured roots osmoregulated and did not suffer a loss in turgor pressure as a result of the mannitol treatments. However, reciprocal transfer experiments showed that root cultures were unable to resume growth after removal from water deficit conditions, thus indicating a probable requirement for the shoot for complete recovery.  相似文献   

7.
Effect of Osmotic Stress on Turgor Pressure in Mung Bean Root Cells   总被引:3,自引:0,他引:3  
Turgor pressure in cells of the elongating region of intactmung bean roots was directly measured by using the pressure-probetechnique. After the external osmotic pressure had been increasedfrom 0 MPa to 0.5 MPa, turgor pressure rapidly decreased byabout 0.5 MPa from 0.65 MPa to 0.14 MPa and root elongationstopped. Subsequent turgor regulation was clearly confirmed,which followed the osmotic adjustment to maintain a constantdifference in the osmotic pressure between root-cell sap andthe external medium ( II). It took at least 6 h for turgor pressureto recover to an adjusted constant level of about 0.5 MPa dueto turgor regulation, but rootelongation resumed within onlyan hour after the osmotic treatment. Therefore, the resumptionof root elongation under osmotic stress could not have beendirectly connected with turgor regulation. Furthermore, sincethe amounts of decrease in turgor pressure just after applicationsof various degrees of osmotic stress could be interpreted inrelation to those in II, hydraulic conductivity between theinside and the outside of root cells must be large enough toattain water potential equilibrium rapidly in response to osmoticstress. We conclude that turgor pressure in the cells of theelongating region of mung bean roots is determined mainly by II because of water potential equilibrium. (Received January 27, 1987; Accepted May 21, 1987)  相似文献   

8.
A series of physical and chemical analyses were made on theexpanding zone of maize seedling roots grown in hydroponics.Comparison of longitudinal profiles of local relative elementalgrowth rate and turgor pressure indicated that cell walls becomelooser in the apical 5 mm and then tighten 5–10 mm fromthe root tip. Immersion of roots in 200 mol m–3 mannitol(an osmotic stress of 0·48 MPa) rapidly and evenly reducedturgor pressure along the whole growing region. Growth was reducedto a greater extent in the region 5–10 mm from the roottip than in the apical region. This indicated rapid wall-looseningin the root tip, but not in the more basal regions. Following 24 h immersion in 400 mol m–3 mannitol (an osmoticstress of 0·96 MPa) turgor had recovered to pre-stressedvalues. Under this stress treatment, growth was reduced in theregion 4–10 mm from the root tip, despite the recoveryof turgor, indicating a tightening of the wall. In the rootapex, local relative elemental growth rate was unchanged incomparison to control tissue, showing that wall properties herewere similar to the control values. Cellulose microfibrils on the inner face of cortical cell wallsbecame increasingly more parallel to the root axis along thegrowth profile of both unstressed and stressed roots. Orientationdid not correlate with the wall loosening in the apical regionof unstressed roots, or with the tightening in the region 5–10mm from the root tip following 24 h of osmotic stress. Longitudinal profiles of the possible wall-loosening enzymexyloglucan endotransglycosylase (XET) had good correspondencewith an increase in wall loosening during development. In thezone of wall tightening following osmotic stress, XET activitywas decreased per unit dry weight (compared with the unstressedcontrol), but not per unit fresh weight. Key words: Osmotic stress, turgor, growth, cell wall properties, microfibrils, XET  相似文献   

9.
Frensch J  Hsiao TC 《Plant physiology》1994,104(1):247-254
Transient responses of cell turgor (P) and root elongation to changes in water potential were measured in maize (Zea mays L.) to evaluate mechanisms of adaptation to water stress. Changes of water potential were induced by exposing roots to solutions of KCl and mannitol (osmotic pressure about 0.3 MPa). Prior to a treatment, root elongation was about 1.2 mm h-1 and P was about 0.67 MPa across the cortex of the expansion zone (3-10 mm behind the root tip). Upon addition of an osmoticum, P decreased rapidly and growth stopped completely at pressure below approximately 0.6 MPa, which indicated that the yield threshold (Ytrans,1) was just below the initial turgor. Turgor recovered partly within the next 30 min and reached a new steady value at about 0.53 MPa. The root continued to elongate as soon as P rose above a new threshold (Ytrans,2) of about 0.45 MPa. The time between Ytrans,1 and Ytrans,2 was about 10 min. During this transition turgor gradients of as much as 0.15 MPa were measured across the cortex. They resulted from a faster rate of turgor recovery of cells deeper inside the tissue compared with cells near the root periphery. Presumably, the phloem was the source of the compounds for the osmotic adjustment. Turgor recovery was restricted to the expansion zone, as was confirmed by measurements of pressure kinetics in mature root tissue. Withdrawal of the osmoticum caused an enormous transient increase of elongation, which was related to only a small initial increase of P. Throughout the experiment, the relationship between root elongation rate and turgor was nonlinear. Consequently, when Y were calculated from steady-state conditions of P and root elongation before and after the osmotic treatment, Yss was only 0.21 MPa and significantly smaller compared with the values obtained from direct measurements (0.42-0.64 MPa). Thus, we strongly emphasize the need for measurements of short-term responses of elongation and turgor to determine cell wall mechanics appropriately. Our results indicate that the rate of solute flow into the growth zone could become rate-limiting for cell expansion under conditions of mild water stress.  相似文献   

10.
Seedling establishment in heavily compact soils is hampered by poor root growth caused by soil chemical or physical factors. This study aims to determine the role of ethylene in regulating root elongation through mechanically impeded sandy soils using Eucalyptus todtiana F. Muell seedlings. Concentrations of ethephon (1, 10, and 100???M) were added to non-compact soils, and endogenous ethylene production from seedling roots was compared to ethylene production of roots grown in physically compacted field soils (98.6?% sand). The ethylene-inhibitor 3,5-diiodo-4-hydroxybenzoic acid (DIHB) (0.1???M) was included for each treatment to counteract the negative effects of excess ethylene or compact soils on root elongation. Root elongation was reduced in high ethylene soils by 49?% and high bulk density soils by 44?%. Root ethylene production increased ninefold in roots grown in the high ethylene environment (100???M), but decreased 80?% in compact soils. The use of DIHB did not alter root length and produced varying results with respect to ethylene production, suggesting an interaction effect involving high amounts of soil ethylene. While ethylene regulates root growth, the physical strength of sandy soils is the major factor limiting root elongation in mechanically impeded soils.  相似文献   

11.
Abstract. Radial and axial turgor pressure profiles were measured with the pressure probe in untreated and salt-treated intact roots of Mesembryanthemum crystallinum. The microcapillary of the pressure probe was inserted step-wise into the root tissue 5, 25 and 50 mm away from the root cap. For evaluation of the data, only those recordings on a given root were used in which four discontinuous increases in turgor pressure occurred. These four turgor pressure increases could be related to the rhizodermal cells and to the cells in the three cortical layers. The measurements showed that a radial turgor pressure gradient of the same magnitude (directed from the third cortical layer to the external medium) existed along the root axis. The magnitude of this turgor pressure gradient decreased with increasing salinity (up to 400 mol m-3 NaCl) in the growth medium. Addition of 10 mol m-3 CaCl2 to the 400 mol m-3 NaCl medium partly reduced the salt-induced decrease in turgor pressure, but only in cells 25–50 mm away from the root tip. Combined with this effect, a small axial turgor pressure gradient was generated, therefore, in the cortex layers which was directed to the root tip. Measurements of the volumetric elastic modulus, ?, of the wall of the individual cells showed that the presence of salt considerably reduced the magnitude of this parameter and that addition of Ca2+ to the strongly saline medium partially diminished this decrease. This effect was strongest in cells 50 mm away from the root tip. The magnitude of ? of rhizodermal and cortical cells increased along the root axis both in untreated and in salt-treated roots. The ? value was significantly smaller for rhizodermal cells compared to the cortical cells, with the exception of cells 50 mm from the tip. In this tissue, rhizodermal and cortical cells exhibited nearly the same values. The decrease of the ?-values with salt and the increase along the root axis under the various growth conditions could be correlated with corresponding changes in cell volume. Diurnal changes in turgor pressure could not be detected in the individual root cells, with the notable exception of the rhizodermal and cortical cells located in the region 50 mm away from the root tip of the control plants. In these cells, an increase in turgor pressure was observed during the morning hours. Determination of the average osmotic pressure in tissue sections along the roots of control and salt-treated plants revealed that at 400 mol m-3 NaCl the osmotic pressure gradient between the tissue and the medium is exo-directed, provided that the water is not (partly) immobilized.  相似文献   

12.
Goicoechea  N.  Antolín  M.C.  Sánchez-Díaz  M. 《Plant and Soil》1997,192(2):261-268
The objective of this research was to study the effect of drought on nutrient content and leaf water status in alfalfa (Medicago sativa L. cv Aragón) plants inoculated with a mycorrhizal fungus and/or Rhizobium compared with noninoculated ones. The four treatments were: a) plants inoculated with Glomus fasciculatum and Rhizobium meliloti 102 F51 strain, (MR); b) plants inoculated with R. meliloti only (R); c) plants with G. fasciculatum only (M); and d) noninoculated plants (N). Nonmycorrhizal plants were supplemented with phosphorus and nonnodulated ones with nitrogen to achieve similar size and nutrient content in all treatments. Plants were drought stressed using two cycles of moisture stress and recovery. The components of total leaf water potential (osmotic and pressure potentials at full turgor), percentage of apoplastic water volume and the bulk modulus of elasticity of leaf tissue were determined. Macronutrient (N, P, K, Ca, S and Mg) and micronutrient (Co, Mo, Zn, Mn, Cu, Na, Fe and B) content per plant were also measured. Leaves of N and R plants had decreased osmotic potentials and increased pressure potentials at full turgor, with no changes either in the bulk modulus of elasticity or the percentage of apoplastic water upon drought conditions. By contrast, M and MR leaves did not vary in osmotic and turgor potentials under drought stress but had increased apoplastic water volume and cell elasticity (lowering bulk modulus). Drought stress decreased nutrient content of leaves and roots of noninoculated plants. R plants showed a decrease in nutrient content of leaves but maintained some micronutrients in roots. Leaves of M plants were similar in content of nutrients to N plants. However, roots of M and MR plants had significantly lower nutrient content. Results indicate an enhancement of nutrient content in mycorrhizal alfalfa plants during drought that affected leaf water relations during drought stress.  相似文献   

13.
西鄂尔多斯地区强旱生小灌木的水分参数   总被引:2,自引:0,他引:2  
应用PV技术研究了西鄂尔多斯地区绵刺、红沙、四合木和霸王柴4种超旱生灌木的水分关系参数膨压(ψP)、细胞弹性模量(ε)、细胞体积比(RCV)及其相互关系.结果表明:在4种荒漠旱生灌木中,红沙保持最大膨压的能力最强(a=2.4593).不同荒漠旱生灌木保持膨压的方式不同:绵刺通过弹性调节保持膨压(εmax=8.4005 MPa);红沙通过渗透调节来保持膨压(ψπ100=-3.1302 MPa;ψ0=-3.5074 MPa);四合木通过渗透调节和弹性调节的协同作用来维持膨压;霸王柴通过渗透调节来保持膨压,而弹性调节能力较弱.绵刺具有柔软而高弹性的细胞壁,是构成其根茎系统快速吸收和传导水分能力的因素之一.四合木具有较柔软而高弹性的细胞壁且ψP的变化随RCV减小而趋于缓慢,说明四合木具有较强的持水能力和抗脱水能力.  相似文献   

14.
A comprehensive model of stem and root diameter variation was developed. The stem (or root) was represented using two coaxial cylinders corresponding with the mature xylem and the extensible tissues. The extensible tissues were assumed to behave as a single cell separated from the mature xylem by a virtual membrane. The mature xylem and the extensible tissues are able to dilate with temperature and grow. Moreover, the extensible tissues are able to shrink and swell according to water flow intensity. The model is mainly based on the calculation of water volume flows in the "single cell" that are described using the principles of irreversible thermodynamics. The elastic response to storage volume and plastic extension accompanying growth are described. The model simulates diameter variation due to temperature, solute accumulation, and xylem, water potential. The model was applied to the peach (Prunus persica) stem and to the plum (Prunus domestica x Prunus spinosa) root. The simulation outputs corresponded well with the diameter variation observed. The model predicts that variations of turgor pressure and osmotic potential are smaller than the variations of xylem water potential. It also demonstrates correlations between the xylem water potential, the turgor pressure, the elastic modulus, and the osmotic potential. The relationship between the diameter and the xylem water potential exhibits a substantial hysteresis, as observed in field data. A sensitivity analysis using the model parameters showed that growth and shrinkage were highly sensitive to the initial values of the turgor pressure and to the reflection coefficient of solutes. Shrinkage and growth were sensitive to elastic modulus and wall-yielding threshold pressure, respectively. The model was not sensitive to changes in temperature.  相似文献   

15.
E. Steudle  W. D. Jeschke 《Planta》1983,158(3):237-248
Radial transport of water in excised barley (Hordeum distichon, cv. Villa) roots was measured using a new method based on the pressure-probe technique. After attaching excised roots to the probe, root pressures of 0.9 to 2.9 bar were developed. They could be altered either by changing the root pressure artificially (with the aid of the probe) or by changing the osmotic pressure of the medium in order to induce water flows across the root. The hydraulic conductivity of the barley roots (per cm2 of outer root surface) was obtained in different types of experiments (initial water flow, pressure relaxations, constant water flow) and was (0.3–4.3)·10-7 cm s-1 bar-1. The hydraulic conductivity of the root was by an order of magnitude smaller than the hydraulic conductivity of the cell membranes of cortical and epidermal cells (0.8–2.2)·10-6 cm s-1 bar-1. The half-times of water exchange of these cells was 1–21 s and two orders of magnitude smaller than that of entire excised roots (100–770 s). Their volumetric elastic modulus was 15–305 bar and increased with increasing turgor. Within the root cortex, turgor was independent of the position of the cell within a certain layer and turgor ranged between 3 and 5 bar. The large difference between the hydraulic conductivity of the root and that of the cell membranes indicates that there is substantial cell-to-cell (transcellular plus symplasmic) transport of water in the root. When it is assumed that 10–12 membrane layers (plasmalemma plus tonoplast) in the epidermis, cortex and endodermis form the hydraulic resistance to water flow, a value for the hydraulic conductivity of the root can be calculated which is similar to the measured value. This picture for water transport in the root contradicts current models which favour apoplasmic water transport in the cortex.  相似文献   

16.
High-resolution nuclear magnetic resonance images (using very short spin-echo times of 3.8 milliseconds) of cross-sections of excised roots of the halophyte Aster tripolium showed radial cell strands separated by air-filled spaces. Radial insertion of the pressure probe (along the cell strands) into roots of intact plants revealed a marked increase of the turgor pressure from the outermost to the sixth cortical layer (from about 0.1-0.6 megapascals). Corresponding measurements of intracellular osmotic pressure in individual cortical cells (by means of a nanoliter osmometer) showed an osmotic pressure gradient of equal magnitude to the turgor pressure. Neither gradient changed significantly when the plants were grown in, or exposed for 1 hour to, media of high salinity. Differences were recorded in the ability of salts and nonelectrolytes to penetrate the apoplast in the root. The reflection coefficients of the cortical cells were approximately 1 for all the solutes tested. Excision of the root from the stem resulted in a collapse of the turgor and osmotic pressure gradients. After about 15 to 30 minutes, the turgor pressure throughout the cortex attained an intermediate (quasistationary) level of about 0.3 megapascals. This value agreed well with the osmotic value deduced from plasmolysis experiments on excised root segments. These and other data provided conclusions about the driving forces for water and solute transport in the roots and about the function of the air-filled radial spaces in water transport. They also showed that excised roots may be artifactual systems.  相似文献   

17.
Three-week-old sunflower plants ( Helianthus annuus L. cv. Halcón) grown in nutrient solution at two K+ levels (0.3 and 2.5 m M ) were used to study the effect of 4 μ M abscisic acid (ABA) on the transport of K+ (Rb+) and water to the exuding stream of decapitated plants. Other conditions of the bathing medium of the roots were also assayed, such as presence of 10 m M glucose, aeration and time of ABA application. In the first 2 or 3 h after ABA application, ABA always promoted water and ion fluxes, even under the most unfavorable conditions such as low K+ roots without glucose or under anaerobiosis. The ABA-promoting effect on ion and water flow was higher with glucose in the medium. Under anaerobiosis the ABA effect disappeared after 3 h. With glucose and aeration the ABA-promoting effect appeared early and continued for several hours, although the effect decreased with time. If ABA was applied 24 h before excision, the effect was small or even negative. We suggest that ABA acts directly on membranes of certain root cells (endodermal or both endodermal and cortical cells) by increasing their permeability and thus releasing ions. This will decrease cell turgor pressure and, indirectly, the hydraulic conductivity of the whole root. Under conditions of higher hydraulic conductivity, the presence of ions and glucose in the root stimulates the transport of ions into the xylem. and thus increases the osmotic water flow.  相似文献   

18.
Changes in turgor and osmotic potentials of soya bean leaves(Glycine max.) with changes in water content were measured throughouta season using the pressure-volume technique. Two distinct reponsesto water loss were found. When water was expressed from leavesin the pressure chamber their osmotic behavior was describedby a concentration effect based on the osmotic volume. The osmoticfraction of the total water content averaged 0·72 and0·84 for mature and immature leaves, respectively. Thechanges in turgor pressure in the chamber were described bya volumetric modulus of elasticity which increased linearlywith turgor pressure. The changes in total potential at highturgor pressures were almost exclusively due to changes in turgordue to the high modulus (high tissue rigidity) in that range.Responses were different, however, for leaves drying in thefield. For these, the osmotic changes were always large anddominated by solute adjustment. Diurnal changes in osmotic potentialwere as much as 5 bars (500 kPa), or around 50 per cent, andwere about the same magnitude as the changes in turgor pressurefor both mature and immature leaves. The elastic modulus atthe time of sampling showed the normal turgor dependence forimmature leaves but for mature leaves the initial modulus wasapparently constant at about 180 bars. The different behaviourin the pressure bomb and the field is interpreted in terms ofa rate dependence for turgor and osmotic response to water loss.  相似文献   

19.
Root distribution determines largely the zone of soil that roots have access to for water and nutrient uptake, and is of great importance especially if water and fertilizer input is restricted. Mechanical impedance is the major limitation to root elongation in many field soils. Until now, experiments have focused largely on the axial resistance to root growth. In a fascinating study of the radial forces exerted by the roots of chickpea, root extension, diameter change, and the radial forces that axially unimpeded roots exert are reported: Kolb et al. (this volume) record radial stresses of about 0.3?MPa that are broadly consistent with cell turgor pressures, but, interestingly, find no restriction to axial elongation. This result is in marked contrast to large decreases in elongation of pea radicles resulting from much smaller axial pressures reported elsewhere in the literature (e.g., an 85?% decrease in root elongation in response to axial pressures of?<?0.1?MPa). The situation is different also from that in homogeneous soil, where root penetration resistance pressures of 0.4-1.0?MPa are typically required to halt root elongation. Soil structure and strength properties will determine the balance of axial and radial pressures on an individual root tip, and hence the root elongation response. It appears that a degree of radial confinement may help roots to extend axially into hard soil. This result also complements recent findings that in strong field soils the availability of soil macropores has a large influence on regulating the root-elongation rates of seedlings.  相似文献   

20.
Roots of 3-d-old pea seedlings (Pisum sativum L.) were mechanically impeded using a sand core apparatus, which allowed mechanical impedance to be varied independently of aeration and water status. Turgor of root cortical cells was then measured using a pressure probe. In seedlings grown in sand cores for 1 d, impedance had little effect on turgor, but in seedlings grown in the sand cores for 2 d, impedance increased turgor by 0.18 MPa in the apical 6 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号