首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
To examine the ability of dendritic cells (DC) to discriminate between helminth and microbial Ag and induce appropriately polarized Th responses, mouse DC were copulsed with the helminth Ag, schistosome egg Ag (SEA), along with the bacterium Proprionebacterium acnes, Pa, and transferred into wild-type mice. Strikingly, SEA/Pa-copulsed DC induced concurrent Pa-specific Th1 (but not Th2) responses and SEA-specific Th2 (but not Th1) responses. Although DC exposed to both Ag undergo many of the maturation-associated changes that accompany exposure to Pa alone, Pa-induced IL-12 production was inhibited by SEA. Examination of Ag uptake revealed that SEA and Pa are acquired via discrete pathways and enter nonoverlapping intracellular compartments. Data suggest that segregation of SEA and Pa into distinct compartments, coupled with SEA-induced modifications of the DC maturation pathway, are significant components of the ability of DC to interpret signals inherent to SEA and Pa and induce appropriately polarized Th responses.  相似文献   

2.
Gao Y  Zhang M  Chen L  Hou M  Ji M  Wu G 《Cellular immunology》2012,272(2):242-250
The purpose of this study was to observe the diverse functions of Toll-like receptors (TLRs) in responses to specific schistosome antigens. Bone marrow-derived dendritic cells (BMDCs) from TLR2-deficient (TLR2(-/-)) or TLR4-deficient (TLR4(-/-)) mice were activated with soluble schistosomule antigen (SSA) or soluble egg antigen (SEA). TLR2 mRNA expression was significantly increased in B6 BMDCs following SEA stimulation. TLR2-deficient BMDCs showed enhanced MHCII expression following SSA and SEA stimulation. TLR2-deficient but not TLR4-deficient BMDC failed to produce IL-12p70 and IL-10 in response to schistosome antigens. TLR2-deficient BMDCs induced a stronger CD4(+) T cell proliferative response. IL-4 and IL-10 expression was inhibited in CD4(+) T cells primed with TLR2-deficient BMDCs, while enhanced in TLR4-deficient BMDCs-primed CD4(+) T cells. These results suggest that TLR2 is essential for the establishment of the DC production of IL-12p70 and IL-10.  相似文献   

3.
Palmitic acid (C16:0) and TLR2 ligand induce, but docosahexaenoic acid (DHA) inhibits monocyte activation. C16:0 and TLR2 or TLR4 ligand induce certain ER stress markers; thus, we determined whether ER stress induced by these agonists is sufficient to induce monocyte activation, and whether the ER stress is inhibited by DHA which is known to inhibit C16:0- or ligand-induced TLR activation. Monocyte activation and ER stress were assessed by TLR/inflammasome-induced IL-1β production, and phosphorylation of IRE-1 and eIF2 and expression of CHOP, respectively in THP-1 cells. TLR2 ligand Pam3CSK4 induced phosphorylation of eIF2, but not phosphorylation of IRE-1 and CHOP expression. LPS also induced phosphorylation of both IRE-1 and eIF2 but not CHOP expression suggesting that TLR2 or TLR4 ligand, or C16:0 induces different ER stress responses. C16:0-, Pam3CSK4-, or LPS-induced IL-1β production was inhibited by 4-phenylbutyric acid, an inhibitor of ER stress suggesting that IL-1β production induced by these agonists is partly mediated through ER stress. Among two ER stress-inducing molecules, thapsigargin but not tunicamycin led to the expression of pro-IL-1β and secretion of IL-1β. Thus, not all types of ER stress are sufficient to induce inflammasome-mediated IL-1β secretion in monocytes. Although both C16:0 and thapsigargin-induced IL-1β secretion was inhibited by DHA, only C16:0-mediated ER stress was responsive to DHA. These findings suggest that the anti-inflammatory effects of DHA are at least in part mediated through modulating ER homeostasis and that the propensity of ER stress can be differentially modulated by the types of dietary fat we consume.  相似文献   

4.
Dendritic cells (DCs) induce innate immune responses by recognizing bacterial LPS through TLR4 receptor complexes. In this study, we compared gene expression profiles of TLR4 knockout (TLR4neg) DCs and wild type (TLR4pos) DCs after stimulating with LPS. We found that the expression of various inflammatory genes by LPS were TLR4-independent. Among them, interleukin 1 receptor antagonist (IL-1rn) was of particular interest since IL-1rn is a potent natural inhibitor of proinflammatory IL-1. Using RT-PCR, real-time PCR, immunoblotting and ELISA, we demonstrated that IL-1rn was induced by DCs stimulated with LPS in the absence of TLR4. 2-Aminopurine, a pharmacological PKR inhibitor, completely abrogated LPS-induced expression of IL-1rn in TLR4neg DCs, suggesting that LPS-induced TLR4-independent expression of IL-1rn might be mediated by PKR pathways. Considering that IL-1rn is a physiological inhibitor of IL-1, TLR4-independent and PKR-dependent pathways might be crucial in counter-balancing proinflammatory effector functions of DCs resulted from TLR4-dependent activation by LPS.  相似文献   

5.
Mycobacteria develop strategies to evade the host immune system. Among them, mycobacterial LAM or PIMs inhibit the expression of pro-inflammatory cytokines by activated macrophages. Here, using synthetic PIM analogues, we analyzed the mode of action of PIM anti-inflammatory effects. Synthetic PIM(1) isomer and PIM(2) mimetic potently inhibit TNF and IL-12 p40 expression induced by TLR2 or TLR4 pathways, but not by TLR9, in murine macrophages. We show inhibition of LPS binding to TLR4/MD2/CD14 expressing HEK cells by PIM(1) and PIM(2) analogues. More specifically, the binding of LPS to CD14 was inhibited by PIM(1) and PIM(2) analogues. CD14 was dispensable for PIM(1) and PIM(2) analogues functional inhibition of TLR2 agonists induced TNF, as shown in CD14-deficient macrophages. The use of rough-LPS, that stimulates TLR4 pathway independently of CD14, allowed to discriminate between CD14-dependent and CD14-independent anti-inflammatory effects of PIMs on LPS-induced macrophage responses. PIM(1) and PIM(2) analogues inhibited LPS-induced TNF release by a CD14-dependent pathway, while IL-12 p40 inhibition was CD14-independent, suggesting that PIMs have multifold inhibitory effects on the TLR4 signalling pathway.  相似文献   

6.
Yan X  Xiu F  An H  Wang X  Wang J  Cao X 《Life sciences》2007,80(4):307-313
Fever improves survival and shortens disease duration in microbial infections. However, the mechanisms of these beneficial responses still remain elusive. Toll-like receptors (TLRs) play important roles in sensing microbes invading and therefore we hypothesized that fever range temperature may enhance responsiveness of dendritic cells (DCs) to lipopolysaccharide (LPS) by promoting TLR4 expression and signaling. In this study, we found that pretreatment of DCs with 39.5 degrees C temperature can up-regulate TLR4 expression in DCs and enhances LPS-induced DC production of interleukins (IL) IL-6, IL-10 and IL-12 but not tumor necrosis factor alpha (TNF-alpha). Blockade of the autocrine action of IL-10 could increase LPS-induced TNF-alpha and IL-12 production in DCs. Further experiments confirmed that TLR4 ligation activates extracellular signal-regulated kinase (ERK), p38, and nuclear factor-kappaB pathways more potently in DCs pretreated with 39.5 degrees C. We conclude that fever range temperature can promote TLR4 expression and signaling in DCs, leading to enhancement of immune responses to inflammatory stimuli. These results might reveal a possible mechanistic explanation for the significance of fever in activating innate immune responses.  相似文献   

7.
8.
9.
IL-10 is a potent inhibitor of T-cell activation and has tolerizing effects on these cells. These effects are primarily mediated via modulation of antigen presenting cell function. Here, it is demonstrated that IL-10 completely inhibits LPS-induced DC maturation, resulting in altered DC-T-cell interactions and reduced T-cell responses. IL-10 inhibited LPS-induced upregulation of costimulatory molecules, MHC Class II, and the secretion of IL-12, TNF-alpha, IL-6, and IL-1beta by DCs, although it upregulated the SLAM (CD150) expression at both the mRNA and protein levels. IL-10 pre-treated DC did not respond to subsequent LPS activation and its stimulatory ability for allogeneic and antigen-specific T-cells was severely impaired. Importantly, T-cells derived from co-cultures with Ag-pulsed, IL-10-treated DC were impaired in their responses to subsequent Ag-specific restimulation. Transwell and DC-derived plasma membrane experiments indicated that the capacity of IL-10-treated DC to induce T-cell unresponsiveness results from alterations in the cell surface molecules rather than modulation of cytokine secretion.  相似文献   

10.
Educating dendritic cells (DC) to become tolerogenic DC, which promote regulatory IL-10 immune responses, represents an effective immune evasion strategy for pathogens. Yersinia pestis virulence factor LcrV is reported to induce IL-10 production via interaction with Toll-like receptor (TLR) 2. However, TLR2-/- mice are not protected against subcutaneous plague infection. Using complementary in vitro and in vivo approaches and LcrV as a model, we show that TLR6 associates with TLR2 to induce tolerogenic DC and regulatory type-1 T cells selectively secreting IL-10. In contrast, TLR1 heterodimerizes with TLR2 to promote proinflammatory IL-12p40 cytokine, producing DC and inflammatory T cell differentiation. LcrV specifically hijacks the TLR2/6 pathway to stimulate IL-10 production, which blocks host protective inflammatory responses. These results explain why TLR2 can mediate both pro- and anti-inflammatory responses and identify TLR6 as a distinct receptor driving regulatory IL-10 responses.  相似文献   

11.
Signaling through the PGI(2) receptor (IP) has been shown to inhibit inflammatory responses in mouse models of respiratory syncytial viral infection and OVA-induced allergic responses. However, little is known about the cell types that mediate the anti-inflammatory function of PGI(2.) In this study, we determined that PGI(2) analogs modulate dendritic cell (DC) cytokine production, maturation, and function. We report that PGI(2) analogs (iloprost, cicaprost, treprostinil) differentially modulate the response of murine bone marrow-derived DC (BMDC) to LPS in an IP-dependent manner. The PGI(2) analogs decreased BMDC production of proinflammatory cytokines (IL-12, TNF-alpha, IL-1alpha, IL-6) and chemokines (MIP-1alpha, MCP-1) and increased the production of the anti-inflammatory cytokine IL-10 by BMDCs. The modulatory effect was associated with IP-dependent up-regulation of intracellular cAMP and down-regulation of NF-kappaB activity. Iloprost and cicaprost also suppressed LPS-induced expression of CD86, CD40, and MHC class II molecules by BMDCs and inhibited the ability of BMDCs to stimulate Ag-specific CD4 T cell proliferation and production of IL-5 and IL-13. These findings suggest that PGI(2) signaling through the IP may exert anti-inflammatory effects by acting on DC.  相似文献   

12.
The costimulatory molecule B7.2 (CD86) plays a vital role in immune activation and development of Th responses. The molecular mechanisms by which B7.2 expression is regulated are not understood. We investigated the role of mitogen-activated protein kinases (MAPK) in the regulation of B7.2 expression in LPS-stimulated human monocytic cells. LPS stimulation of human monocytes resulted in the down-regulation of B7.2 expression that could be abrogated by anti-IL-10 Abs. Furthermore, SB202190, a specific inhibitor of p38 MAPK, inhibited LPS-induced IL-10 production and reversed B7.2 down-regulation, suggesting that LPS-induced B7.2 down-regulation may be mediated, at least in part, via regulation of IL-10 production by p38 MAPK. In contrast to human promonocytic THP-1 cells that are refractory to the inhibitory effects of IL-10, LPS stimulation enhanced B7.2 expression. This IL-10-independent B7.2 induction was not influenced by specific inhibitors of either p38 or p42/44 MAPK. To ascertain the role of the c-Jun N-terminal kinase (JNK) MAPK, dexamethasone, an inhibitor of JNK activation, was used, which inhibited LPS-induced B7.2 expression. Transfection of THP-1 cells with a plasmid expressing a dominant-negative stress-activated protein/extracellular signal-regulated kinase kinase 1 significantly reduced LPS-induced B7.2 expression, thus confirming the involvement of JNK. To study the signaling events downstream of JNK activation, we show that dexamethasone did not inhibit LPS-induced NF-kappaB activation in THP-1 cells, suggesting that JNK may not be involved in NF-kappaB activation leading to B7.2 expression. Taken together, our results reveal the distinct involvement of p38 in IL-10-dependent, and JNK in IL-10-independent regulation of B7.2 expression in LPS-stimulated monocytic cells.  相似文献   

13.
Mannose-capped lipoarabinomannans (Man-LAMs) are members of the repertoire of Mycobacterium tuberculosis modulins that the bacillus uses to subvert the host innate immune response. Interleukin-12 (IL-12) production is critical for mounting an effective immune response by the host against M. tuberculosis. We demonstrate that Man-LAM inhibits IL-12 p40 production mediated by subsequent challenge with lipopolysaccharide (LPS). Man-LAM inhibits LPS-induced IL-12 p40 expression in an IL-10-independent manner. It attenuates LPS-induced NF-kappaB-driven luciferase gene expression, suggesting that its effects are likely directly related to inhibition of NF-kappaB. This is probably because of dampening of the Toll-like receptor signaling. Man-LAM inhibits IL-1 receptor-associated kinase (IRAK)-TRAF6 interaction as well as IkappaB-alpha phosphorylation. It directly attenuates nuclear translocation and DNA binding of c-Rel and p50. Man-LAM exerts these effects by inducing the expression of Irak-M, a negative regulator of TLR signaling. Knockdown of Irak-M expression by RNA interference reinstates LPS-induced IL-12 production in Man-LAM-pretreated cells. The fact that Irak-M expression could be elicited by yeast mannan suggested that ligation of the mannose receptor by the mannooligosaccharide caps of LAM was the probable trigger for IRAK-M induction.  相似文献   

14.
Proteinase-activated receptor 2 (PAR(2)), a 7-transmembrane G protein-coupled receptor, contributes to inflammation either positively or negatively in different experimental systems. Previously, we reported that concurrent activation of PAR(2) and TLRs in human lung and colonic epithelial cells resulted in a synergistic increase in NF-κB-mediated gene expression, but a down-regulation of IRF-3-mediated gene expression. In this study, the effect of PAR(2) activation on LPS-induced TLR4 signaling was examined in primary murine macrophages. The PAR(2) activation of wild-type macrophages enhanced LPS-induced expression of the anti-inflammatory cytokine, IL-10, while suppressing gene expression of pro-inflammatory cytokines, TNF-α, IL-6, and IL-12. Similar PAR(2)-mediated effects on LPS-stimulated IL-10 and IL-12 mRNA were also observed in vivo. In contrast, PAR 2-/- macrophages exhibited diminished LPS-induced IL-10 mRNA and protein expression and downstream STAT3 activation, but increased KC mRNA and protein. PAR(2) activation also enhanced both rIL-4- and LPS-induced secretion of IL-4 and IL-13, and mRNA expression of alternatively activated macrophage (AA-M) markers, e.g. arginase-1, mannose receptor, Ym-1. Thus, in the context of a potent inflammatory stimulus like LPS, PAR(2) activation acts to re-establish tissue homeostasis by dampening the production of inflammatory mediators and causing the differentiation of macrophages that may contribute to the development of a Th2 response.  相似文献   

15.
16.
BackgroundNew generation synthetic surfactants represent a promising alternative in the treatment of respiratory distress syndrome in preterm infants. CHF5633, a new generation reconstituted agent, has demonstrated biophysical effectiveness in vitro and in vivo. In accordance to several well-known surfactant preparations, we recently demonstrated anti-inflammatory effects on LPS-induced cytokine responses in human adult monocytes. The present study addressed pro- and anti-inflammatory effects of CHF5633 in human cord blood monocytes.MethodsPurified neonatal CD14+ cells, either native or simultaneously stimulated with E. coli LPS, were exposed to CHF5633. TNF-α, IL-1β, IL-8 and IL-10 as well as TLR2 and TLR4 expression were analyzed by means of real-time quantitative PCR and flow cytometry.ResultsCHF5633 did not induce pro-inflammation in native human neonatal monocytes and did not aggravate LPS-induced cytokine responses. Exposure to CHF5633 led to a significant decrease in LPS-induced intracellular TNF-α protein expression, and significantly suppressed LPS-induced mRNA and intracellular protein expression of IL-1β. CHF5633 incubation did not affect cell viability, indicating that the suppressive activity was not due to toxic effects on neonatal monocytes. LPS-induced IL-8, IL-10, TLR2 and TLR4 expression were unaffected.ConclusionOur data confirm that CHF5633 does not exert unintended pro-apoptotic and pro-inflammatory effects in human neonatal monocytes. CHF5633 rather suppressed LPS-induced TNF-α and IL-1β cytokine responses. Our data add to previous work and may indicate anti-inflammatory features of CHF5633 on LPS-induced monocyte cytokine responses.  相似文献   

17.
During Toxoplasma gondii infection, macrophages, dendritic cells, and neutrophils are important sources of pro-inflammatory cytokines from the host. To counteract the pro-inflammatory activities, T. gondii is known to have several mechanisms inducing down-regulation of the host immunity. In the present study, we analyzed the production of proand anti-inflammatory cytokines from a human myelomonocytic cell line, THP-1 cells, in response to treatment with T. gondii lysate or lipopolysaccharide (LPS). Treatment of THP-1 cells with LPS induced production of IL-12, TNF-alpha, IL-8, and IL-10. Co-treatment of THP-1 cells with T. gondii lysate inhibited the LPS-induced IL-12, IL-8 and TNF-alpha expression, but increased the level of IL-10 synergistically. IL-12 and IL-10 production was down-regulated by anti-human toll-like receptor (TLR)-2 and TLR4 antibodies. T. gondii lysate triggered nuclear factor (NF)-kappaB-dependent IL-8 expression in HEK293 cells transfected with TLR2. It is suggested that immunosuppression induced by T. gondii lysate treatment might occur via TLR2-mediated NF-kappaB activation.  相似文献   

18.
Mammalian Toll-like receptors (TLRs) are required for cell activation by bacterial lipoproteins (bLP) and LPS. Stimulation of monocytes with bLP and LPS results in a TLR-dependent induction of immunomodulatory genes leading to the production of pro-inflammatory cytokines. In this paper, we compared the expression and response of TLRs on monocytes and dendritic cells (DC). TLR2, but not TLR4, was detected on peripheral blood monocytes and DC, in lymphoid tissue CD1alpha+ DC as well as on in vitro monocyte-derived DC. Upon stimulation with bLP or LPS, monocytes produced IL-12 and IL-10 at similar levels, whereas monocyte-derived DC produced comparable levels of IL-12, but little IL-10. Greater than 90% of the bLP-induced production of IL-12 was blocked by anti-TLR2 mAb. Thus, DC express TLR2 and activation of this receptor by bLP provides an innate mechanism by which microbial pathogens preferentially activate cell-mediated immunity.  相似文献   

19.
IL-27, which is produced by activated APCs, bridges innate and adaptive immunity by regulating the development of Th cells. Recent evidence supports a role for IL-27 in the activation of monocytic cells in terms of inflammatory responses. Indeed, proinflammatory and anti-inflammatory activities are attributed to IL-27, and IL-27 production itself is modulated by inflammatory agents such as LPS. IL-27 primes LPS responses in monocytes; however, the molecular mechanism behind this phenomenon is not understood. In this study, we demonstrate that IL-27 priming results in enhanced LPS-induced IL-6, TNF-α, MIP-1α, and MIP-1β expression in human primary monocytes. To elucidate the molecular mechanisms responsible for IL-27 priming, we measured levels of CD14 and TLR4 required for LPS binding. We determined that IL-27 upregulates TLR4 in a STAT3- and NF-κB-dependent manner. Immunofluorescence microscopy revealed enhanced membrane expression of TLR4 and more distinct colocalization of CD14 and TLR4 upon IL-27 priming. Furthermore, IL-27 priming enhanced LPS-induced activation of NF-κB family members. To our knowledge, this study is the first to show a role for IL-27 in regulating TLR4 expression and function. This work is significant as it reveals new mechanisms by which IL-27 can enhance proinflammatory responses that can occur during bacterial infections.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号