首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The initial growth of the nacreous layer is crucial for comprehending the formation of nacreous aragonite. A flat pearl method in the presence of the inner-shell film was conducted to evaluate the role of matrix proteins in the initial stages of nacre biomineralization in vivo. We examined the crystals deposited on a substrate and the expression patterns of the matrix proteins in the mantle facing the substrate. In this study, the aragonite crystals nucleated on the surface at 5 days in the inner-shell film system. In the film-free system, the calcite crystals nucleated at 5 days, a new organic film covered the calcite, and the aragonite nucleated at 10 days. This meant that the nacre lamellae appeared in the inner-shell film system 5 days earlier than that in the film-free system, timing that was consistent with the maximum level of matrix proteins during the first 20 days. In addition, matrix proteins (Nacrein, MSI60, N19, N16 and Pif80) had similar expression patterns in controlling the sequential morphologies of the nacre growth in the inner-film system, while these proteins in the film-free system also had similar patterns of expression. These results suggest that matrix proteins regulate aragonite nucleation and growth with the inner-shell film in vivo.  相似文献   

2.
Molecular mechanism of the nacreous layer formation in Pinctada maxima   总被引:7,自引:0,他引:7  
We have cloned the cDNAs that encode two kinds of molluscan shell matrix proteins, namely N66 and N14, in the nacreous layer of Pinctada maxima. N66 is composed of carbonic anhydrase-like and repeat domains, as described for nacrein (1) in the pearls of P. fucata. N14 is homologous to N16, recently found in the nacreous layer of P. fucata (2) and is characterized by high proportions of Gly, Tyr, and Asn together with NG repeat sequences. The molecular weights of these proteins were estimated as 59,814 and 13,734 Da, respectively. Structural differences were clearly indicated in the alignment and length of the repeat sequences of the sets of the homogeneous proteins (N66/nacrein and N14/N16). The longer repeat sequences of N66 and N14 may be responsible for P. maxima's excellent property of calcification. The in vitro crystallization experiments revealed that the mixture of N66 and N14 could induce platy aragonite layers highly similar to the nacreous layer, once adsorbed onto the membrane of the water-insoluble matrix.  相似文献   

3.
CaCO3结晶广泛分布于生物界,其主要结晶形式为方解石、霰石及球霰石。用X-射线衍射法对三角帆蚌及合浦珍珠母贝的珍珠层、墨鱼骨和大黄鱼耳石的CaCO3结晶进行测定,发现各样品均有一定取向性,以三角帆蚌和合浦珍珠母贝珍珠层的取向性为最强,墨鱼骨的取向性次之,大黄鱼耳石的取向性最小,以上材料粉末样的衍射分析表明,各样品对应d值间差异极小,均为X射线衍射卡(5—0453)所表征的CaCO3霰石结构。  相似文献   

4.
几种生物CaCO3霰石结晶的取向性   总被引:1,自引:0,他引:1  
CaCO3结晶广泛分布于生物界,其主要结晶形式为方解石、霰石及球霰石。用X-射线衍射法对三角帆蚌及合浦珍珠母贝的珍珠层、墨鱼骨和大黄鱼耳石的CaCO3结晶进行测定,发现各样品均有一定取向性,以三角帆蚌和合浦珍珠母贝珍珠层的取向性为最强,墨鱼骨的取向性次之,大黄鱼耳石的取向性最小,以上材料粉末样的衍射分析表明,各样品对应d值间差异极小,均为X射线衍射卡(5-0453)所表征的CaCO3霰石结构。  相似文献   

5.
Magnesium is widely used to control calcium carbonate deposition in the shell of pearl oysters. Matrix proteins in the shell are responsible for nucleation and growth of calcium carbonate crystals. However, there is no direct evidence supporting a connection between matrix proteins and magnesium. Here, we identified a novel acidic matrix protein named PfN44 that affected aragonite formation in the shell of the pearl oyster Pinctada fucata. Using immunogold labeling assays, we found PfN44 in both the nacreous and prismatic layers. In shell repair, PfN44 was repressed, whereas other matrix proteins were up-regulated. Disturbing the function of PfN44 by RNAi led to the deposition of porous nacreous tablets with overgrowth of crystals in the nacreous layer. By in vitro circular dichroism spectra and fluorescence quenching, we found that PfN44 bound to both calcium and magnesium with a stronger affinity for magnesium. During in vitro calcium carbonate crystallization and calcification of amorphous calcium carbonate, PfN44 regulated the magnesium content of crystalline carbonate polymorphs and stabilized magnesium calcite to inhibit aragonite deposition. Taken together, our results suggested that by stabilizing magnesium calcite to inhibit aragonite deposition, PfN44 participated in P. fucata shell formation. These observations extend our understanding of the connections between matrix proteins and magnesium.  相似文献   

6.
The scanning electron microscope has been used to describe the morphology of the mature shell in a fresh-water bivalve. The structure of the organic and inorganic components within the nacre, the myostracum, and the prismatic layer is described. A transitional or intermediate zone, interposed between the prismatic layer and the nacre, was identified. In demineralized samples, the organic component of the nacre was found to consist of parallel matricial sheets interconnected by irregular transverse bridges. The structure of the mineral component of the nacre was found to vary with the method of specimen preparation. With polished-etched samples, brick-like units were seen. When shells were simply broken and fixed in osmium, the layers of nacreous material consisted of fusing rhomboidal crystals of aragonite which demonstrated subconchoidal fractures. On the inner surface of the shell, the rhomboidal crystals showed an apparent spiral growth pattern. The myostracum was characterized by regions of modified nacreous structure consisting of enlarged aragonite crystals with a pyramidal morphology. The peripheral aspect of the muscle scars was characterized by rhomboidal crystals, the latter fusing to form the typical nacreous laminae. The uniqueness of the anterior adductor scar is exemplified by the presence of pores, each pore walled by pyramidal units, for the insertion of adductor fibres. In most regions of the shell, the prismatic layer consisted of one prism unit thickness with a height of approximately 225–250 μm. However, in two specialized regions of the shell, this layer was seen to consist of multiple layers of stacked prisms. The organic matrices of the prismatic layer are arranged in a honeycomb-like arrangement and packed with mineralized spherical subunits.  相似文献   

7.
1. The topography of the organic components (conchiolin) has been investigated on positive, postshadow-cast, formvar, and carbon replicas of mother-of-pearl from shells of a Cephalopod, of two Gastropods, and of six Pelecypods. All these shells are characterized by a true nacreous inner shell layer. 2. The material included normal shell surfaces, fragments of cleavage obtained by fracture, and surfaces polished tangentially and transversally to the inner surface of the shells. Replicas of these surfaces were prepared before and after etching of graded heaviness, induced by a chelating agent (sequestrene NA 2, titriplex III). Micrographs of the successive steps of the process of corrosion have been recorded. 3. Corrosion unmasked, on the nacreous surfaces, organic membranes or sheets, running as continuous formations in between adjacent mineral lamellae, and separating the individual crystals of aragonite which are aligned in rows and constitute each lamella. 4. The interlamellar sheets of material exhibit a reticulated structure, which is especially visible in preparations orientated tangentially to the lamellae and to the tabular surface of the aragonite crystals. The pattern of this lace-like structure, different in the various species studied, appeared in the same species as closely similar to that reported previously in leaflets of thoroughly decalcified mother-of-pearl, dissociated by ultrasonic waves. The present results support former conclusions with regard to the existence of taxonomic differences between Cephalopods, Gastropods, and Pelecypods in the morphological organization of the organic phase within mother-of-pearl.  相似文献   

8.
TOPOGRAPHY OF THE ORGANIC COMPONENTS IN MOTHER-OF-PEARL   总被引:3,自引:0,他引:3       下载免费PDF全文
1. The topography of the organic components (conchiolin) has been investigated on positive, postshadow-cast, formvar, and carbon replicas of mother-of-pearl from shells of a Cephalopod, of two Gastropods, and of six Pelecypods. All these shells are characterized by a true nacreous inner shell layer. 2. The material included normal shell surfaces, fragments of cleavage obtained by fracture, and surfaces polished tangentially and transversally to the inner surface of the shells. Replicas of these surfaces were prepared before and after etching of graded heaviness, induced by a chelating agent (sequestrene NA 2, titriplex III). Micrographs of the successive steps of the process of corrosion have been recorded. 3. Corrosion unmasked, on the nacreous surfaces, organic membranes or sheets, running as continuous formations in between adjacent mineral lamellae, and separating the individual crystals of aragonite which are aligned in rows and constitute each lamella. 4. The interlamellar sheets of material exhibit a reticulated structure, which is especially visible in preparations orientated tangentially to the lamellae and to the tabular surface of the aragonite crystals. The pattern of this lace-like structure, different in the various species studied, appeared in the same species as closely similar to that reported previously in leaflets of thoroughly decalcified mother-of-pearl, dissociated by ultrasonic waves. The present results support former conclusions with regard to the existence of taxonomic differences between Cephalopods, Gastropods, and Pelecypods in the morphological organization of the organic phase within mother-of-pearl.  相似文献   

9.
Electron diffraction patterns showing orientation of the chitin and protein constituents of the insoluble organic matrix of mollusc shell nacreous layers have been obtained, using low dose conditions and samples cooled to −100°C. Diffraction patterns of the aragonite crystals were also observed. In a gastropod and a bivalve the spatial relationship between the organic matrix constituents and the aragonite crystallographic axes were shown to be the same as was previously observed for a cephalopod using X-ray diffraction, supporting the notion that mineral crystal growth occurs epitaxially upon a matrix template.  相似文献   

10.
The prisms in the shell of Mytilus edulis Linné are calcite needles. Their small size and their thin conchiolin cases distinguish them from the prisms of many other species of mollusks. These Mytilus prisms have been studied with the electron microscope. The material consisted of positive replicas of surfaces of the prismatic layer, etched with chelating agents, and of preparations of tubular cases from decalcified prisms which were compared with the conchiolin from decalcified mother-of-pearl of the same species. In the replicas, the cases appear as thin pellicles in the intervals between the prism crystals. Both the prism cases and the nacreous conchiolin, disintegrated by exposure to ultrasonic waves and sedimented on supporting films, appear in the form of tightly meshed, reticulated sheets, described as "tight pelecypod pattern" in former studies on nacreous conchiolin of Mytilus. The results show that in the shell of this species the same conchiolin structure is associated with aragonite in mother-of-pearl and with calcite in the prismatic layer.  相似文献   

11.
The shells of most anomalodesmatan bivalves are composed of an outer aragonitic layer of either granular or columnar prismatic microstructure, and an inner layer of nacre. The Thraciidae is one of the few anomalodesmatan families whose members lack nacreous layers. In particular, shells of members of the genus Thracia are exceptional in their possession of a very distinctive but previously unreported microstructure, which we term herein “dendritic prisms.” Dendritic prisms consist of slender fibers of aragonite which radiate perpendicular to, and which stack along, the axis of the prism. Here we used scanning and transmission electron microscopical investigation of the periostracum, mantle, and shells of three species of Thracia to reconstruct the mode of shell calcification and to unravel the crystallography of the dendritic units. The periostracum is composed of an outer dark layer and an inner translucent layer. During the free periostracum phase the dark layer grows at the expense of the translucent layer, but at the position of the shell edge, the translucent layer mineralizes with the units typical of the dendritic prismatic layer. Within each unit, the c‐axis is oriented along the prismatic axis, whereas the a‐axis of aragonite runs parallel to the long axis of the fibers. The six‐rayed alignment of the latter implies that prisms are formed by {110} polycyclically twinned crystals. We conclude that, despite its distinctive appearance, the dendritic prismatic layer of the shell of Thracia spp. is homologous to the outer granular prismatic or prismatic layer of other anomalodesmatans, while the nacreous layer present in most anomalodesmatans has been suppressed.  相似文献   

12.
Fang D  Xu G  Hu Y  Pan C  Xie L  Zhang R 《PloS one》2011,6(7):e21860
Mollusk shell formation is a fascinating aspect of biomineralization research. Shell matrix proteins play crucial roles in the control of calcium carbonate crystallization during shell formation in the pearl oyster, Pinctada fucata. Characterization of biomineralization-related genes during larval development could enhance our understanding of shell formation. Genes involved in shell biomineralization were isolated by constructing three suppression subtractive hybridization (SSH) libraries that represented genes expressed at key points during larval shell formation. A total of 2,923 ESTs from these libraries were sequenced and gave 990 unigenes. Unigenes coding for secreted proteins and proteins with tandem-arranged repeat units were screened in the three SSH libraries. A set of sequences coding for genes involved in shell formation was obtained. RT-PCR and in situ hybridization assays were carried out on five genes to investigate their spatial expression in several tissues, especially the mantle tissue. They all showed a different expression pattern from known biomineralization-related genes. Inhibition of the five genes by RNA interference resulted in different defects of the nacreous layer, indicating that they all were involved in aragonite crystallization. Intriguingly, one gene (UD_Cluster94.seq.Singlet1) was restricted to the 'aragonitic line'. The current data has yielded for the first time, to our knowledge, a suite of biomineralization-related genes active during the developmental stages of P. fucata, five of which were responsible for nacreous layer formation. This provides a useful starting point for isolating new genes involved in shell formation. The effects of genes on the formation of the 'aragonitic line', and other areas of the nacreous layer, suggests a different control mechanism for aragonite crystallization initiation from that of mature aragonite growth.  相似文献   

13.
The functional morphology of shell infrastructure in 2 speciesof intertidal trochid was compared with that in 2 species ofnerite. The shell of Monodonta constrictais typical of the majorityof trochids. The shell is composed of 4 layers: a distal layer(calcite), anouter prismatic layer (aragonite), a nacreous layer(aragonite), and an oblique prismatic layer (aragonite). Monodontalabio lacks a distal layer and an oblique prismatic layer. Theoblique prismatic layer is replaced by an inner prismatic layerwhich forms an apertural ridge as a result of deposition andresorption. The shells of Nerita versicolor and N. tessellataconsistof 3 layers: an outer prismatic layer (calcite), a crossedlamellar layer (aragonite), and a complex crossed lamellar layer(aragonite). The complex crossed lamellar layer is covered withinclined platelets which superficially resemble the surfaceof the ique prismatic layer of trochids. In addition, the complexcrossed lamellar layer forms an apertural ridge which is similarin appearance to that of Monodonta labio. The outer surfaceof the mantle of Nerita versicolor and N. tessellata is throwninto a series of large folds which lie in contact with the inclinedplatelets of the omplex crossed lamellar layer. The interactionof the mantle folds with the inclined platelets is thought toserve as a rachet mechanism to aid in extension of themantle;a similar function has previously been proposed for trochids.The apertural ridges of Monodonta labio and Nerita are thoughtto prevent excessive desiccation when these gastropodsare exposedat low tide. 1Contribution No. 56 of the Tallahassee, Sopchoppy & GulfCoast Marine Biological Association (Received 6 July 1979;  相似文献   

14.
Abstract We have isolated a protein complex from the nacreous layer of pearl beads and oyster shells. This complex was mainly composed of pearlin and pearl keratin. Addition of a minute amount of the complex to a calcium-carbonate-saturated solution containing Mg2+ induced aragonite crystallization. The complex was dissociated to individual components in the presence of EDTA and urea. Conversely, the complex was reconstituted from a mixture of components upon incubation with Ca2+ and urea. The mixture of the components was unable to induce aragonite crystallization, but the reconstituted complex recovered this capacity. Thus it is concluded that the complex is the indivisible functional unit required for aragonite crystallization.  相似文献   

15.
The shell of the Japanese pearl oyster, Pinctada fucata, consists of two layers, the prismatic layer on the outside and the nacreous layer on the inside, both of which comprise calcium carbonate and organic matrices. Previous studies indicate that the nacreous organic matrix of the central layer of the framework surrounding the aragonite tablet is beta-chitin, but it remains unknown whether organic matrices in the prismatic layer contain chitin or not. In the present study, we identified chitin in the prismatic layer of the Japanese pearl oyster, Pinctada fucata, with a combination of Calcofluor White staining with IR and NMR spectral analyses. Furthermore, we cloned a cDNA encoding chitin synthase (PfCHS1) that produces chitin, contributing to the formation of the framework for calcification in the shell.  相似文献   

16.
17.
Ultrastructural Characteristics of the Nacre in Some Gastropods   总被引:2,自引:0,他引:2  
The nacreous layer in Gibbula, Calliostoma, Trochus and Haliotis is described on the basis of scanning electron microscopic studies. The central part of each nacreous tablet contains a significant amount of calcified organic matrix which is insoluble in a chromium sulphate and a 25% glutaraldehyde solution. In most cases, the tablet is subdivided by radial vertical organic membranes into a varying number (2 to 50) of crystalline sectors. These sectors represent polysynthetically twinned crystal individuals which form cyclic or interpenetrant twins. The nacreous tablets in gastropods are compared with those in bivalves, and with the non-biogenic aragonite. The mechanical properties of the nacre, and the effects of the interlamellar conchiolin membranes upon the nucleation of the tablets, are discussed.  相似文献   

18.
Amos FF  Ponce CB  Evans JS 《Biomacromolecules》2011,12(5):1883-1890
The formation of aragonite in the mollusk shell nacre layer is linked to the assembly of framework protein complexes that interact with β-chitin polysaccharide. What is not yet understood is how framework nacre proteins control crystal growth. Recently, a 30 AA intrinsically disordered nacre protein sequence (n16N) derived from the n16 framework nacre protein was found to form aragonite, vaterite, or ACC deposits when adsorbed onto β-chitin. Our present study now establishes that n16N assembles to form amorphous nonmineralized supramolecular complexes that nucleate calcium carbonate polymorphs in vitro. These complexes contain unfolded or disordered (54% random coil, 46% β structures) n16N polypeptide chains that self-assemble in response to alkaline pH shift. The pH-dependent assembly process involves two stages, and it is likely that side chain salt-bridging interactions are a major driving force in n16N self-association. Intriguingly, Ca(II) ions are not required for n16N assembly but do shift the assembly process to higher pH values, and it is likely that Ca(II) plays some role in stabilizing the monomeric form of n16N. Using preassembled fibril-spheroid n16N assemblies on Si wafers or polystyrene supports, we were able to preferentially nucleate vaterite at higher incidence compared to control scenarios, and it is clear that the n16N assemblies are in contact with the nucleating crystals. We conclude that the framework nacre protein sequence n16N assembles to form supramolecular complexes whose surfaces act as nucleation sites for crystal growth. This may represent a general mineralization mechanism employed by framework nacre proteins in general.  相似文献   

19.
Mollusc shells are acellular biominerals, in which macromolecular structures are intimately associated with mineral phases. Most studies are devoted to proteins, despite sugars have been described. Lipids were extracted from the calcite prismatic and aragonite nacreous layer of two mollusc shells. Fourier Transform Infrared Spectrometry shows that lipids are present in both samples, but they are not similar. Thin layer chromatography confirms that lipids are different in the two studied layers, so that it may be suggested they are species-dependant. Although not yet deciphered, their role in biomineralization and fossilisation processes is probably important.  相似文献   

20.
Yan Z  Fang Z  Ma Z  Deng J  Li S  Xie L  Zhang R 《Biochimica et biophysica acta》2007,1770(9):1338-1344
Calmodulin-like protein (CaLP) was believed to be involved in the shell formation of pearl oyster. However, no further study of this protein was ever performed. In this study, the in vitro crystallization experiment showed that CaLP can modify the morphology of calcite. In addition, aragonite crystals can be induced in the mixture of CaLP and a nacre protein (at 16 kDa), which was detected and purified from the EDTA-soluble matrix of nacre. These results agreed with that of immunohistological staining in which CaLP was detected not only in the organic layer sandwiched between nacre (aragonite) and the prismatic layer (calcite), but also around the prisms of the prismatic layer. Take together, we concluded that (1) CaLP, as a component of the organic layer, can induce the nucleation of aragonite through binding with the 16-kDa protein, and (2) CaLP may regulate the growth of calcite in the prismatic layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号