首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于细胞核rDNA ITS片段的水青冈属的分子系统发育   总被引:6,自引:0,他引:6  
对山毛榉科水青冈属6种、1亚种、1栽培变种的ITS区片段进行了测序和分析,并对其中2个具有ITS序列多态性的分类群进行了ITS区克隆。水青冈属ITS系统发育树聚成两支,位于基部的是分布于北美的大叶水青冈,另一分支则包括了欧洲和东亚的类群。在欧洲和东亚分支中,又包括两支,其中日本北部的波叶水青冈位于基部,台湾水青冈和欧亚大陆的水青冈形成另外一支。ITS区分析与现行的水青冈属基于形态学性状的属下分类系统有一定差异,而与本属现存物种的地理分布格局较为一致。各类群间TIS区序列差异较小,显示属内现存物种的分化时间不是太长。  相似文献   

2.
Carex section Acrocystis currently includes 27 taxa in North America. Recent phylogenetic studies have suggested that the North American and some but not all of the Eurasian species form a clade. Relationships and biogeographic patterns among species in this core-Acrocystis group are explored here using nuclear ribosomal (nrDNA) internal transcribed spacer region (ITS) and nrDNA external transcribed spacer region (ETS) sequence data. While maximum parsimony analysis of the ITS and ETS data provides only a moderately resolved branching structure for species relationships within the core-Acrocystis clade, maximum likelihood analysis provides a more resolved hypothesis of relationships in the section. The core-Acrocystis clade consists of a grade of Eurasian and primarily western North American species, with a well-supported clade of only eastern North American species nested within this grade. ITS and ETS types do not coalesce within many species or species complexes. Possible explanations for the non-coalescent nature of ITS and ETS copies in Acrocystis are explored, including lineage sorting, hybridization, and cryptic species.  相似文献   

3.
Checker mallows (Sidalcea, Malvaceae) constitute a western North American genus of annuals and perennials that have been regarded as taxonomically difficult because of complex patterns of morphological variation putatively stemming from hybridization and polyploidy. In recent molecular phylogenetic investigations extensive polymorphism was observed in the internal and external transcribed spacers (ITS and ETS) of 18S-26S nuclear ribosomal DNA for some Sidalcea samples. To resolve the evolutionary basis for this polymorphism and to readdress the evolutionary impact of hybridization in Sidalcea we cloned and sequenced the polymorphic DNAs and included the clones in phylogenetic analyses together with direct sequences of non-polymorphic samples. The positions of cloned spacer sequences in the phylogenetic trees suggest that S. reptans and two subspecies of S. malviflora may have been influenced by past hybridization with lineages of the "glaucescens" clade. Polymorphic sequence patterns in other taxa may be a result of extensive interbreeding within young clades, in keeping with the minimal sequence divergence, largely overlapping geographic distributions and morphology, and ploidy variation in these groups. Other possible explanations for polymorphic sequences in members of Sidalcea include slow concerted evolution relative to mutation rates, incomplete lineage sorting, and recent pseudogene formation.  相似文献   

4.
We used cladistic analysis of chloroplast gene sequences (ndhF and rpl16) to test biogeographic hypotheses in the woody genus Gleditsia. Previous morphological comparisons suggested the presence of two eastern Asian-eastern North American species pairs among the 13 known species, as well as other intra- and inter-continental disjunctions. Results from phylogenetic analyses, interpreted in light of the amount of sequence divergence observed, led to the following conclusions. First, there is a fundamental division of the genus into three clades, only one of which contains both Asian and North American species. Second, the widespread and polymorphic Asian species, G. japonica, is sister to the two North American species, G. triacanthos and G. aquatica, which themselves are closely related inter se, but are both polymorphic and paraphyletic. Third, the lone South American Gleditsia species, G. amorphoides, forms a clade with two eastern Asian species. Gleditsia thus appears to have only one Asian-North American disjunction and no intercontinental species pairs. Low sequence divergence between G. amorphoides and its closest Asian relatives implicates long-distance dispersal in the origin of this unusual disjunction. Sequence divergence between Asian and North American Gleditsia is much lower than between Asian and North American species of its closest relative, Gymnocladus. Estimates of Asian-North American divergence times for Gymnocladus are in general accordance with fossil data, but estimates for Gleditsia suggest recent divergences that conflict with ages of known North American Gleditsia fossils.  相似文献   

5.
Artomyces pyxidatus (Auriscalpiaceae) is a lignicolous, coralloid basidiomycete found throughout temperate regions of the Northern Hemisphere. Previous studies established that populations from the eastern United States, Sweden, and China were conspecific based on mating compatibility and enzyme profiles. In this study, mating compatibility was extended to include collections from Russia, Costa Rica, Mexico, and Utah. The molecular diversity of A. pyxidatus was examined by DNA sequence and restriction site analyses of the nuclear ribosomal internally transcribed spacer region (ITS1-5.8S-ITS2). A phylogenetic analysis of twelve isolates based on ITS sequences revealed a broad geographical pattern in which Eurasian isolates comprise a sister clade to North American isolates. North American isolates appear to be further subdivided into northeastern and southwestern clades. A survey of 255 A. pyxidatus isolates using restriction enzymes revealed variable RFLP patterns that follow similar geographical patterns.  相似文献   

6.
Agaricus section Duploannulatae comprises the group of species allied with A. bisporus and A. bitorquis. Disagreement exists in the literature regarding the composition of this group. We used DNA sequence data from the ITS segments of the nuclear ribosomal DNA region, in a sample of European and North American isolates, to identify characters shared by this group, to further delimit species-level taxa within the section, and to develop a phylogenetic hypothesis. Shared polymorphisms that suggest a natural limit for section Duploannulatae were found. ITS1 data were assessed using parsimony, distance and maximum likelihood methods of phylogeny. The section Duploannulatae comprised six robust clades. Five clades corresponded to well characterized species from the temperate Northern Hemisphere (A. bisporus, A. subfloccosus, A. bitorquis, A. vaporarius, A. cupressicola). The sixth clade encompassed an A. devoniensis complex. Species concepts, nomenclature, and relationships are discussed and compared with prior reports.  相似文献   

7.
8.
Fungi in the basidiomycete species complex Heterobasidion annosum are significant root-rot pathogens of conifers throughout the northern hemisphere. We utilize a multilocus phylogenetic approach to examine hypotheses regarding the evolution and divergence of two Heterobasidion taxa associated with pines: the Eurasian H. annosum sensu stricto and the North American H. annosum P intersterility group (ISG). Using DNA sequence information from portions of two nuclear and two mitochondrial loci, we infer phylogenetic relationships via parsimony, Bayesian and median-joining network analysis. Analysis of isolates representative of the entire known geographic range of the two taxa results in monophyletic sister Eurasian and North American lineages, with North America further subdivided into eastern and western clades. Genetically anomalous isolates from the Italian presidential estate of Castelporziano are always part of a North American clade and group with eastern North America, upholding the hypothesis of recent, anthropogenically mediated dispersal. P ISG isolates from Mexico have phylogenetic affinity with both eastern and western North America. Results for an insertion in the mitochondrial rDNA suggest this molecule was obtained from the Heterobasidion S ISG, a taxon sympatric with the P ISG in western North America. These data are compatible with an eastern Eurasian origin of the species, followed by dispersal of two sister taxa into western Eurasia and into eastern North America over a Beringean land bridge, a pattern echoed in the phylogeography of other conifer-associated basidiomycetes.  相似文献   

9.
Shen Q  Geiser DM  Royse DJ 《Mycologia》2002,94(3):472-482
A phylogenetic analysis was performed on 51 isolates of the commercially valuable basidiomycete, Grifola frondosa (maitake), using sequences from the Internal Transcribed Spacers and 5.8S region of the nuclear ribosomal DNA (rDNA) and a portion of the β-tubulin gene. The β-tubulin gene provided more than twice as many variable characters as the ITS/5.8S regions. The isolates analyzed comprised 21 from eastern North America, 27 from Asia, one from Europe, and two of unknown geographic origin, one of which was the major US commercial production strain in use. Grifola sordulenta was used as an outgroup. Combined and separate analysis of both genes showed a partition separating Asian versus eastern North American isolates. Bootstrap analysis showed strong support for these clades in the β-tubulin data alone and in the combined data. The major commercial isolate of unknown geographic origin is apparently of Asian descent based on its grouping within the Asian clade. The single European isolate analyzed was distinct from both the eastern North American and Asian clades. These results indicate strong support for a species partition separating eastern North American and Asian isolates of G. frondosa, despite previous studies indicating no morphological distinction between them.  相似文献   

10.
Ceratocystis fimbriata is a widely distributed, plant pathogenic fungus that causes wilts and cankers on many woody hosts. Earlier phylogenetic analyses of DNA sequences revealed three geographic clades within the C. fimbriata complex that are centered respectively in North America, Latin America and Asia. This study looked for cryptic species within the North American clade. The internal transcribed spacer regions (ITS) of the rDNA were sequenced, and phylogenetic analysis indicated that most isolates from the North American clade group into four host-associated lineages, referred to as the aspen, hickory, oak and cherry lineages, which were isolated primarily from wounds or diseased trees of Populus, Carya, Quercus and Prunus, respectively. A single isolate collected from P. serotina in Wisconsin had a unique ITS sequence. Allozyme electromorphs also were highly polymorphic within the North American clade, and the inferred phylogenies from these data were congruent with the ITS-rDNA analyses. In pairing experiments isolates from the aspen, hickory, oak and cherry lineages were interfertile only with other isolates from their respective lineages. Inoculation experiments with isolates of the four host-associated groupings showed strong host specialization by isolates from the aspen and hickory lineages on Populus tremuloides and Carya illinoensis, respectively, but isolates from the oak and cherry lineages did not consistently reveal host specialization. Morphological features distinguish isolates in the North American clade from those of the Latin American clade (including C. fimbriata sensu stricto). Based on the phylogenetic evidence, interfertility, host specialization and morphology, the oak and cherry lineages are recognized as the earlier described C. variospora, the poplar lineage as C. populicola sp. nov., and the hickory lineage as C. caryae sp. nov. A new species associated with the bark beetle Scolytus quadrispinosus on Carya is closely related to C. caryae and is described as C. smalleyi.  相似文献   

11.
We used nucleotide sequences from the internal transcribed spacers and 5.8S gene of nuclear ribosomal DNA to test competing phylogenetic and biogeographic hypotheses in Gleditsia. Eleven of 13 Gleditsia species were sampled, along with two species of its sister genus, Gymnocladus. Analyses of ITS data and of a combined data set that included sequences of ITS and two chloroplast genes supported several conclusions that were interpreted in light of fossil data and current legume phylogeny. Gleditsia and Gymnocladus appear to have originated in eastern Asia during the Eocene. Eastern North American species of both genera most likely evolved from ancestors that migrated across the Bering land bridge, but the eastern Asian/eastern North American disjunction appears to be much older in Gymnocladus than in Gleditsia. Gleditsia amorphoides, from temperate South America, is sister to the rest of the genus, suggesting early long-distance dispersal from Asia. The remainder of Gleditsia is divided into three unresolved clades, possibly indicating a split early in the evolution of the genus. Two of those clades contain only Asian species, and one contains Asian and North American species. The North American species, Gleditsia triacanthos and Gleditsia aquatica, are polymorphic and paraphyletic with respect to their ITS and cpDNA sequences, which suggests recent diversification.  相似文献   

12.
Lindner DL  Banik MT 《Mycologia》2008,100(3):417-430
Phylogenetic relationships were investigated among North American species of Laetiporus, Leptoporus, Phaeolus, Pycnoporellus and Wolfiporia using ITS, nuclear large subunit and mitochondrial small subunit rDNA sequences. Members of these genera have poroid hymenophores, simple septate hyphae and cause brown rots in a variety of substrates. Analyses indicate that Laetiporus and Wolfiporia are not monophyletic. All North American Laetiporus species formed a well supported monophyletic group (the "core Laetiporus clade" or Laetiporus s.s.) with the exception of L. persicinus, which showed little affinity for any genus for which sequence data are available. Based on data from GenBank, the southern hemisphere species L. portentosus also fell well outside the core Laetiporus clade. Wolfiporia dilatohypha was found to represent a sister group to the core Laetiporus clade. Isolates of Phaeolus, Pycnoporellus and members of the core Laetiporus clade all fell within the Antrodia clade of polypores, while Leptoporus mollis and Laetiporus portentosus fell within the phlebioid clade of polypores. Wolfiporia cocos isolates also fell in the Antrodia clade, in contrast to previous studies that placed W. cocos in the core polyporoid clade. ITS analyses resolved eight clades within Laetiporus s.s., three of which might represent undescribed species. A combined analysis using the three DNA regions resolved five major clades within Laetiporus s.s.: a clade containing conifer-inhabiting species ("Conifericola clade"), a clade containing L. cincinnatus ("Cincinnatus clade"), a clade containing L. sulphureus s.s. isolates with yellow pores ("Sulphureus clade I"), a clade containing L. sulphureus s.s. isolates with white pores ("Sulphureus clade II") and a clade containing L. gilbertsonii and unidentified isolates from the Caribbean ("Gilbertsonii clade"). Although there is strong support for groups within the core Laetiporus clade, relationships among these groups remain poorly resolved.  相似文献   

13.
Angelica is a taxonomically complex genus widespread throughout the North Temperate Zone. Previous phylogenetic studies of the genus have focused primarily on its East Asian species. The relationships among its North American members, the monophyly of these species, and the value of fruit morphology in circumscribing its taxa have yet to be examined. This study represents the most comprehensive sampling of Angelica to date (100 species) and includes all 26 species in North America. Relationships are inferred using Bayesian inference, maximum likelihood, and maximum parsimony analyses of ITS sequences and, for multiple accessions of each North American species, cpDNA ndhF-rpl32, rpl32-trnL, and psbM-psbD sequences. The fruit morphological characters examined were those considered phylogenetically important in East Asian Angelica. The results revealed that the North American species fell into three major clades: North American Angelica clade, Archangelica clade, and the Eurasian Angelica clade. Angelica dawsonii has affinities with Lomatium brandegeei. Fourteen species within the North American Angelica clade were strongly supported as monophyletic. Two paraphyletic species resulted in new combinations in A. lineariloba and A. venenosa. Conflict between the ITS-derived and cpDNA-derived phylogenies and the lack of resolution in portions of the trees may be due to chloroplast capture and rapid species radiation. Fruit morphology supported some interspecific relationships based on molecular data, and relationships revealed by ITS and cpDNA data were roughly in accordance with fruit classification type and geographic distribution region, respectively. A diagnostic key based on fruit morphology is provided for the identification of the North American Angelica taxa.  相似文献   

14.
A conspicuous biogeographic pattern of the Northern Hemisphere is the disjunct occurrence of related taxa on different continents. Perhaps best studied in plants, this pattern includes disjunct distributions of genera in eastern Asia and eastern North America. Such continental disjunctions are thought to be the remnants of a mostly continuously distributed, mixed mesophytic forest dating to the Miocene, which subsequently became fragmented by geological and climatic changes. Some highly host-specific insects, namely aphids, live on descendants of the mixed mesophytic forest taxa and exhibit the same disjunct distributions as that of their host plants. We estimated the phylogeny of Hormaphidini aphids, which host-alternate between witch-hazel (Hamamelis; an eastern Asian-eastern North American disjunct genus) and birch (Betula). Based on partial nuclear elongation factor 1alpha and mitochondrial tRNA leucine/cytochrome oxidase II sequences, trees inferred from maximum-parsimony and maximum-likelihood showed strong support for two monophyletic genera (Hamamelistes and Hormaphis), each containing a clade of Japanese and a clade of North American species. The estimated divergence dates of Asian and North American clades in both genera was 20-30 million years ago, consistent with the idea that aphids may have experienced the same vicariance events as those of their host plants.  相似文献   

15.
Hughes KW  Mather DA  Petersen RH 《Mycologia》2010,102(6):1463-1478
Phylogenies based on ITS and LSU nrDNA sequences show Agaricus (Gymnopus) acervatus as unique within the Gymnopus/Rhodocollybia complex. These phylogenies imply that a separate genus is necessary, and Connopus is proposed. Infraspecific morphological and DNA-based variation within C. acervatus suggests that a western North American clade might be reproductively isolated from the eastern North American/Scandinavian clade and that in this species complex the European and eastern North American clade might be conspecific. A Scandinavian exemplar is selected for bar-coding. Two GenBank sequences with name-phylogenetic placement inconsistencies are identified.  相似文献   

16.
Shaw AJ 《Molecular ecology》2000,9(5):595-608
Nucleotide sequence variation in the ITS1-5.8S-ITS2 region of nuclear ribosomal DNA (nrDNA) from 70 populations of Mielichhoferia elongata and M. mielichhoferiana, plus two outgroup species, was analysed using maximum parsimony and maximum likelihood methods. High levels of nucleotide substitution and numerous insertion-deletion events were detected within and between the two species. M. elongata is monophyletic with regard to nrDNA variation, but M. mielichhoferiana is paraphyletic. (M. elongata is nested within it.) A clade within M. mielichhoferiana provides evidence of vicariance, with North American and Scandinavian sister groups of populations. Two major clades are resolved in M. elongata by sequence data that are completely congruent with previous isozyme work. One clade includes populations from both North America and Europe whereas the other is strictly North American. These two clades, resolved by multiple independent loci, clearly represent cryptic species within the morphologically uniform M. elongata. Certain geographical areas, most notably southwestern Colorado in Ouray and San Juan Counties, harbour diverse populations of M. elongata with distinct phylogenetic and phylogeographical histories. Morphologically indistinguishable but phylogenetically distant populations were detected a few metres apart at one site. In contrast, all populations collected over hundreds of kilometres in California belong to a single clade. Arctic North American populations belong to a clade that includes disjunct populations in Alaska, northern Ellesmere Island, and the northeastern USA, but not subarctic Swedish populations, which are more closely related to plants from the Rocky Mountains. Morphological uniformity belies complex infraspecific phylogenetic patterns within M. elongata and M. mielichhoferiana.  相似文献   

17.
18.
The North American freshwater limpet genus Laevapex (Walker, 1903) is a ubiquitous inhabitant of lentic and slow-moving lotic habitats east of the Rocky Mountains, but uncertainty clouds its systematic affinities, the phylogenetic validity of its constituent nominal species, and its degree of genetic connectivity among drainages. We addressed these issues by sampling the genus throughout much of its collective range and constructing representative nuclear and mitochondrial (mt) gene trees, in addition to performing morphometric analyses of shell shape variation. Our results identify neotropical Gundlachia and South American Uncancylus as sister lineages for Laevapex and reveal a pronounced sub-familial dichotomy within the Ancylidae, separating these three New World genera from a Holarctic (Ferrissia (Ancylus, Rhodacmea)) sister clade. Five nominal taxa (L. fuscus, L. diaphanus, L. peninsulae, L. sp., and "F."arkansasensis), indistinguishable in our morphometric analyses, were polyphyletic in the mt gene trees, exhibited modest levels (< 3.9%) of genetic divergence in the primary (103 of 109 individuals) mt clade and, with one minor exception, they appeared fixed for a single nuclear ITS-2 genotype. Although complicated by the presence of rare, highly divergent mt lineages (of either introgressive or persistent ancestral polymorphic origin) in some populations, the molecular data were consistent with a taxonomic conclusion that these five nominal taxa represent a single polymorphic lineage of the type species L. fuscus. AMOVA analyses indicated that 56% of the observed mt variation could be attributed to among population differences, only two of 36 haplotypes were detected in more than one sampling location, and estimates of among-population mt gene flow were generally low at both regional and continental scales. Unrooted network analyses revealed a number of mt tip clades, one restricted to the southwestern part of the range, the remainder having overlapping distributions in eastern North America. All of the eastern tip clades occurred in the Mid-Atlantic region, and these samples displayed by far the highest levels of collective mt diversity. However, directional gene flow estimates indicated that this region has been a recipient (especially from Alabama populations), rather than a source of haplotypic diversity, implying that it likely represents a center of overlap, not a primary ice age refugium, for this limpet species.  相似文献   

19.
In order to develop better insights into biogeographic patterns of eastern Asian and North American disjunct plant genera, sequences of nuclear ribosomal DNA internal transcribed spacer (nr DNA ITS) region were used to estimate interspecific relationships of Thuja L. (Cupressaceae) and infer its biogeography based on the phylogeny. According to the phylogenetic analysis, two clades were recognized. The first clade included Thuja plicata D. Don (western North America) and T. koraiensis Nakai (northeastern Asia), and the second one contained T. occidentalis (Gord.) Carr. (Japan). The ancestral area of Thuja was inferred to be eastern Asia, and two dispersal events were responsible for the modern distribution of Thuja in North America. Both the North Atlantic land bridge and Bering land bridge were possible routes for the migration of ancestral populations to North America.  相似文献   

20.
The phylogenetic relationships among some Randia (Rubiaceae) taxa   总被引:1,自引:0,他引:1  
Phylogenetic relationships among some Randia (Rubiaceae, Gardenieae) taxa were estimated based on sequence variation in the nuclear ribosomal internal transcribed spacers (ITS) and rps 16 intron (cpDNA). During the investigation of rpsl6 intron of 9 studied Central American Randia species, two well supported subclades were separated. Analysis of ITS data of 16 Randia species shows 3 major clades. A group of mainly lowland, South American Randia species is moderate supported (75%). Species from Mexico form a strongly supported (97%) clade, but the Central American and Mexican Randia species are low supported (58%). However the last two groups are well supported together (95%). The molecular delimination is well in line with the size of leaves combined with the texture of exocarp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号