首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Phosphorus and nitrogen excretion rates by zooplankton communities from two eutrophic and shallow Dutch lakes were measured in laboratory. The variations in excretion rates in the lakes (May–October) were caused mainly by fluctuation in zooplankton biomass. Mean summer excretion rates (June–September) were 2.4 and 0.9 µg PO4P·1–1·d–1 in Lake Loosdercht and Lake Breukeleveen, respectively. This difference between the lakes was caused mainly by the lower zooplankton biomass in Lake Breukeleveen. The excretion of 2.4 µg PO4P·1–1·d compared with the calculated P-demand of phytoplankton of 8.0 µg PO4P·1–1·d–1 is substantial in the summer (June–September) and far more important than the external P-supply of 0.4 µg P·1–1·d–1 and sediment release of 0.5 µg P·1–1·d–1. Both temperature and composition of zooplankton affected the weight specific excretion rates of the zooplankton community. The weight specific community excretion rates of P and N increased with temperature (exponential model); 1–8 g PO4P·mg–1 zooplankton-C·d–1 and 5–42 µg NH3N·mg–1 zooplankton-C·d–1 (10°C–20°C).  相似文献   

2.
Gulati  R. D.  Ejsmont-Karabin  J.  Rooth  J.  Siewertsen  K. 《Hydrobiologia》1989,(1):347-354
Phosphorus (PO4-P) and nitrogen (NH4-N) excretion rates of Euchlanis dilatata lucksiana, a rotifer, isolated from Lake Loosdrecht (The Netherlands) and cultured in the lake water at 18–19 °C, were measured in the laboratory.In a series of experiments, the effects of experiment duration on the P and N excretion rates were examined. The rates measured in the first half-hour were about 2 times higher for P and 2–4 times for N than the rates in the subsequent three successive hours which were quite comparable.Eight experiments were carried out in triplicate, 4 each for P and N excretion measurements, using animals of two size ranges: 60–125 µm and > 125 µm. The specific excretion rates varied from 0.06 to 0.18 µg P.mg–1 DW.h–1 and 0.21 to 0.76 µg N.mg–1 DW.h–1. Generally an inverse relationship was observed between the specific excretion rates and the mean individual weight. The excretion rates of Euchlanis measured by us are lower than those reported for several other rotifer species, most of which are much smaller than Euchlanis.Extrapolating the excretion rates of Euchlanis to the other rotifer species in Lake Loosdrecht, and accounting for their density, size and temperature, rotifer excretion appears to be a significant, potential nutrient (N,P) source for phytoplankton growth in the lake. The excretion rates for the rotifers appear to be about two thirds of the total zooplankton excretion, even though the computed rotifer mean biomass is about one-third of the total zooplankton biomass.  相似文献   

3.
The uptake of ammonium, nitrate and phosphate by laboratory-grown young sporophytes of Laminaria abyssalis was measured in a perturbed system (batch mode) at 18 °C and 35 ± 5 µE m–2 s–1 photon flux density. Uptake of all appeared to follow saturation-type nutrient uptake kinetics. The NO inf3 sup– (K s = 14.0 µM, V max = 5.0 µmol h–1 g–1 dry wt) and NH inf4 sup+ (K s = 4.6 µM, V max= 2.0 µmol h–1 g–1 dry wt) were taken up simultaneously, although NH inf4 sup+ was taken up more rapidly. Values of K 3 and V max for phosphate were, respectively, 2.21 µM and 0.83 µmol h–1 g–1 dry wt. Nitrate and phosphate were both consumed in similar rates (V max /Ks 0.37) at low concentrations. NH inf4 sup+ , thus, might be a more efficient form of N fertilizer if artificial enrichment of seawater is used.  相似文献   

4.
In potassium-limited chemostat cultures of Paracoccus denitrificans the maximum specific growth rate (µmax) was found to depend on the input potassium concentration: At 0.21mM µmax was 0.10–0.11 h-1; at 0.44 mM 0.15–0.16 h-1 and at 0.66 mM 0.20–0.21 h-1. The plots of the specific rates of oxygen-, succinate-and potassium consumption against gave straight lines. The intracellular potassium concentration was a linear function of and varied from 1% (0.13 M) at a value of 0.034 h-1 to 2.2% (0.29 M) at =0.26 h-1; the potassium concentration gradient and the potassium concentration in the culture fluid in the steady state were dependent on the input potassium concentration. The potassium concentration gradient varied from 8,900-1,200. At all values 20–25% of the total energy production was used for potassium transport. 350,100 and 30 ATP molecules were calculated to be required to maintain one potassium ion intracellular during 1 h at values of 0.034, 0.197 and 0.257 h-1 respectively. It is concluded that the amount of circulation of potassium is dependent on the potassium concentration gradient or on the potassium concentration in the culture in the steady state. The dependency of µmax on the input potassium concentration was explained by the assumption that at low input potassium concentrations the net uptake of potassium (influx-efflux) is not rapidly enough to maintain the high potassium gradient in the existing cells and to establish it in the newly formed cells. At high values and at high input potassium concentrations µmax is limited by the specific rate of oxygen consumption, which was found to be 11–12 mmol O2 g dry weight-1 h-1 at µmax for potassium-, succinate-and sulphate-limited chemostat cultures.  相似文献   

5.
A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of qVG=10 mL h–1. Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate qVG=20 and 30 mL h–1, respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking–Piret/Levenspiel term).List of symbols cA acetate concentration (g L–1) - cA,0 acetate concentration in the feed (g L–1) - cG glucose concentration (g L–1) - cG,0 glucose concentration in the feed (g L–1) - cP pyruvate concentration (g L–1) - cP,max critical pyruvate concentration above which reaction cannot proceed (g L–1) - cX biomass concentration (g L–1) - KI inhibition constant for pyruvate production (g L–1) - KIA inhibition constant for biomass growth on acetate (g L–1) - KP saturation constant for pyruvate production (g L–1) - KP inhibition constant of Jerusalimsky (g L–1) - KSA Monod growth constant for acetate (g L–1) - KSG Monod growth constant for glucose (g L–1) - mA maintenance coefficient for growth on acetate (g g–1 h–1) - mG maintenance coefficient for growth on glucose (g g–1 h–1) - n constant of extended Monod kinetics (Levenspiel) (–) - qV volumetric flow rate (L h–1) - qVA volumetric flow rate of acetate (L h–1) - qVG volumetric flow rate of glucose (L h–1) - rA specific rate of acetate consumption (g g–1 h–1) - rG specific rate of glucose consumption (g g–1 h–1) - rP specific rate of pyruvate production (g g–1 h–1) - rP,max maximum specific rate of pyruvate production (g g–1 h–1) - t time (h) - V reaction (broth) volume (L) - YP/G yield coefficient pyruvate from glucose (g g–1) - YX/A yield coefficient biomass from acetate (g g–1) - YX/A,max maximum yield coefficient biomass from acetate (g g–1) - YX/G yield coefficient biomass from glucose (g g–1) - YX/G,max maximum yield coefficient biomass from glucose (g g–1) - growth associated product formation coefficient (g g–1) - non-growth associated product formation coefficient (g g–1 h–1) - specific growth rate (h–1) - max maximum specific growth rate (h–1)  相似文献   

6.
A fermentation medium based on millet (Pennisetum typhoides) flour hydrolysate and a four-phase feeding strategy for fed-batch production of baker's yeast,Saccharomyces cerevisiae, are presented. Millet flour was prepared by dry-milling and sieving of whole grain. A 25% (w/v) flour mash was liquefied with a thermostable 1,4--d-glucanohydrolase (EC 3.2.1.1) in the presence of 100 ppm Ca2+, at 80°C, pH 6.1–6.3, for 1 h. The liquefied mash was saccharified with 1,4--d-glucan glucohydrolase (EC 3.2.1.3) at 55°C, pH 5.5, for 2 h. An average of 75% of the flour was hydrolysed and about 82% of the hydrolysate was glucose. The feeding profile, which was based on a model with desired specific growth rate range of 0.18–0.23 h–1, biomass yield coefficient of 0.5 g g–1 and feed substrate concentration of 200 g L–1, was implemented manually using the millet flour hydrolysate in test experiments and glucose feed in control experiments. The fermentation off-gas was analyzed on-line by mass spectrometry for the calculation of carbon dioxide production rate, oxygen up-take rate and the respiratory quotient. Off-line determination of biomass, ethanol and glucose were done, respectively, by dry weight, gas chromatography and spectrophotometry. Cell mass concentrations of 49.9–51.9 g L–1 were achieved in all experiments within 27 h of which the last 15 h were in the fedbatch mode. The average biomass yields for the millet flour and glucose media were 0.48 and 0.49 g g–1, respectively. No significant differences were observed between the dough-leavening activities of the products of the test and the control media and a commercial preparation of instant active dry yeast. Millet flour hydrolysate was established to be a satisfactory low cost replacement for glucose in the production of baking quality yeast.Nomenclature C ox Dissolved oxygen concentration (mg L–1) - CPR Carbon dioxide production rate (mmol h–1) - C s0 Glucose concentration in the feed (g L–1) - C s Substrate concentration in the fermenter (g L–1) - C s.crit Critical substrate concentration (g L–1) - E Ethanol concentration (g L–1) - F s Substrate flow rate (g h–1) - i Sample number (–) - K e Constant in Equation 6 (g L–1) - K o Constant in Equation 7 (mg L–1) - K s Constant in Equation 5 (g L–1) - m Specific maintenance term (h–1) - OUR Oxygen up-take rate (mmol h–1) - q ox Specific oxygen up-take rate (h–1) - q ox.max Maximum specific oxygen up-take rate (h–1) - q p Specific product formation rate (h–1) - q s Specific substrate up-take rate (g g–1 h–1) - q s.max Maximum specific substrate up-take rate (g g–1 h–1) - RQ Respiratory quotient (–) - S Total substrate in the fermenter at timet (g) - S 0 Substrate mass fraction in the feed (g g–1) - t Fermentation time (h) - V Instantaneous volume of the broth in the fermenter (L) - V 0 Starting volume in the fermenter (L) - V si Volume of samplei (L) - x Biomass concentration in the fermenter (g L–1) - X 0 Total amount of initial biomass (g) - X t Total amount of biomass at timet (g) - Y p/s Product yield coefficient on substrate (–) - Y x/e Biomass yield coefficient on ethanol (–) - Y x/s Biomass yield coefficient on substrate (–) Greek letters Moles of carbon per mole of yeast (–) - Moles of hydrogen atom per mole of yeast (–) - Moles of oxygen atom per mole of yeast (–) - Moles of nitrogen atom per mole of yeast (–) - Specific growth rate (h–1) - crit Critical specific growth rate (h–1) - E Specific ethanol up-take rate (h–1) - max.E Maximum specific ethanol up-take rate (h–1)  相似文献   

7.
Summary From acetylene reduction assays over a 10-month period starting in April 1979, nodule activities averaged 18.78 (se 4.67) moles C2H4 g nodule dw–1 h–1 forAlnus rubra and 59.95 (se 12.14) moles C2H4 g nodule dw–1 h–1 forCytisus scorparius. Plant rates were 1.91 (se. 47) moles C2H4 plant–1 h–1 forA. rubra and 0.55 (se. 17) moles C2H4 plant–1 h–1 forC. Scoparius. Plant activity and total leaf N were strongly correlated with the dw of other plant parts, but nodule activity and percent leaf N were not. Plant and nodule activities were not associated with temperature, moisture stress, precipitation events or percent light for either species over the growing season nor for 54A. rubra sampled in mid-season 1979 on one replication. After 5 to 6 growing seasons, 14A. rubra on the same site ranged from 30 to 332 cm in height and showed strong correlation between nodule dw, leaf dw, plant size and total leaf N. Results from this study and others indicate logistic equations may be modified to predict the effect of adding a N2 fixing plant to a population of non N2 fixing trees.  相似文献   

8.
O'Neil  J. M.  Roman  M. R. 《Hydrobiologia》1994,292(1):235-240
Trichodesmium is a filamentous, colonial nitrogen fixing cyanobacteria, ubiquitous in tropical and subtropical regions of the world's oceans. Trichodesmium fixes atmospheric nitrogen and can comprise a significant fraction of total primary production in oceanic surface waters. Therefore, the consumption and fate of Trichodesmium has important consequences for understanding carbon and nitrogen cycling in the open ocean. The pelagic harpacticoid copepod Macrosetella gracilis uses Trichodesmium not only as a physical substrate for juvenile development, but also as a food source. Several different types of pelagic copepods (including several species of calanoids, harpacticoids and a poecilostomatoid species) were tested for ingestion of Trichodesmium by labelling the cyanobacteria with 14C. Only the pelagic harpacticoids ingested Trichodesmium. Here we report the first grazing rates based on 14C-uptake measurements for Macrosetella gracilis (0.173 µg C copepod–1 h–1), and the first quantitative measurements of both Miracia efferata (0.402 µg C copepod–1 h–1) and Oculosetella gracilis (0.126 µg C copepod–1 h–1) ingesting this cyanobacteria. Ingestion rates of M. gracilis and M. efferata on the two different species of Trichodesmium, T. thiebautii and T. erythraeum, as well as the two different colonial morphologies of T. thiebautii, spherical-shaped (puffs) and fusiform (tufts), were also compared. Both Miracia and Macrosetella had higher ingestion rates on the puff colonies than the tuft colonies of T. thiebautii.. Both also had higher ingestion rates of T. erythraeum than T. thiebautii. Trichodesmium thiebautii contains a previously reported neurotoxin which may be an important factor in determining trophodynamic interactions. Our results suggest that pelagic harpacticoid copepods can be quantitatively important in determining the fate of Trichodesmium carbon and nitrogen.  相似文献   

9.
The growth of the anaerobic acetogenic bacterium Acetobacterium woodii DSM 1030 was investigated in fructose-limited chemostat cultures. A defined medium was developed which contained fructose, mineral salts, cysteine · HCl and Ca pantothenate (1 mg · 1–1) supplied in a vitamin supplement. Growth at high dilution rates was dependent on the presence of CO2 in the gas phase. The max was found to be 0.16 h–1 and the fructose maintenance requirement was 0.1 to 0.13 mmol fructose · (g dry wt)–1 · h–1. A growth yield of 61 g dry wt · (mol fructose)–1, corrected for the cell maintenance requirement and for incorporation of fructose carbon into cell biomass, was determined from the fructose consumption. A corresponding growth yield of 69 g dry wt · (mol fructose)–1 was calculated from the acetate production assuming that fructose fermentation was homoacetogenic. A YATP of 12.2 to 13.8 g dry wt · (mol ATP)–1 was calculated from these growth yields using a value of 5 mol ATP · (mol fructose)–1 as an estimate of the amount of ATP synthesised from fructose fermentation. The addition of yeast extract (0.5 g · 1–1) to the medium did not influence the max or cell yield. After prolonged growth under fructose-limited conditions the requirement of the culture for CO2 in the gas phase was reduced.Abbreviations YE yeast extract - IC inorganic carbon - D fermenter dilution rate : h–1 - MX maintenance requirement for X: mmol X · (g dry wt)–1 · h–1 - X may be fructose (Fruct), fructose consumed in energy metabolism (Fruct [E]), acetate (Ac) - ATP CO2, NH inf4 sup+ or Pi - qX specific rate of utilisation or consumption of X: mmol X · (g dry wt)–1 · h–1 - V fermenter volume: litre - rC · Cell, fermenter cell carbon production: mmol C · h–1 - YX yield of cells on X: g dry wt · (mol X)–1 - Y infx supmax the yield corrected for cell maintenance: g dry wt · (mol X)–1 - SATP stoichiometry of ATP synthesis from fructose: mol ATP · (mol frucose)–1 - x cell concentration: g dry wt · 1–1 - specific growth rate : h–1 - max maximum specific growth rate: h–1  相似文献   

10.
Predator-induced bottom-up effects in oligotrophic systems   总被引:1,自引:1,他引:0  
Five treatments (replication n=2) were applied to mesocosms in an oligotrophic lake (TP=6–10 µg 1-1) to assess the effects of fish on planktonic communities. The treatments were: (1) high fish (30 kg ha–1 Lepomis auritus, Linnaeus), (2) low fish (10 kg ha–1), (3) high removal of zooplankton, (4) low removal of zooplankton and (5) control. Total phosphorus, chlorophyll a, zooplankton biomass, and species richness decreased from high fish > low fish > control > low removal > high removal treatments. The fish treatments were dominated by crustacean zooplankton, while rotifers outnumbered the other zooplankters in the removal treatments. Calculations of zooplankton grazing rates suggested that clearance rates seldom exceeded 2% of the enclosure volume d–1 and were unlikely to have had much influence on phytoplankton biomass. Calculations from a phosphorus bioenergetics model revealed that when fish were present, their excretion rates were higher than the rates ascribed to zooplankton. Diet analysis showed that the fish derived most of their energy from the benthos and periphyton, and that fish excretion and egestion made significant contributions to the very oligotrophic pelagic phosphorus pool. In the absence of fish, zooplankton excretion was highest in the control treatments and lowest in the zooplankton removal treatments. Our results suggest that in oligotrophic systems, planktivorous fish can be significant sources of phosphorus and that fish and zooplankton induced nutrient cycling have significant impacts on planktonic community structure.  相似文献   

11.
The growth yield of the PUFA-producing marine microalgaIsochrysis galbana ALII-4 grown in a light limited chemostat, was measured under a wide variety of conditions of incident irradiance (I O ) and dilution rates (D). The experiments were conducted under laboratory conditions at 20 °C under continuous light. D ranged from 0.0024 to 0.0410 h–1 at three intensities of Io (820, 1620 and 3270 µmol photon m–2 s–1) close to those found in outdoor cultures. A maximum efficiency max = 0.616 g mol photon–1 was obtained at I O = 820 µmol photon m–2 s–1 and D = 0.030 h–1 and the maximum capacity of the biomass to metabolize the light harvested was found to be 13.1 µmol photon g–1 s–1. Above this value, a significant drop in the system efficiency was observed. A new approach based in the averaged irradiance is used to assess the photon flux absorbed by the biomass.  相似文献   

12.
Lactobacillus delbrueckii subsp. bulgaricus NCFB 2483, when grown on lactose in continuous culture, showed increasing specific yields and volumetric productivities of exopolysaccharide (EPS) with increasing dilution rate. Specific and volumetric productivities of lactate and galactose, as extracellular metabolites, increased in response to the incremental changes in the dilution rate up to 0.4 h–1. Elevated Yp/s values determined for EPS (0.025 g EPSg lactose–1) at the dilution rates of 0.3 h–1–0.4 h–1, relative to those determined at lower dilution rates, suggest a diversion of carbon flux towards EPS being associated with the higher rates of growth.  相似文献   

13.
Respiration, ammonia and phosphate excretion experiments were performed with planula larvae ofAurelia aurita (Scyphozoa) from Kiel Fjord, Baltic Sea, in summer 1983. The mean respiration measured was 3.22 nl O2 ind–1 h–1 (at 20 °C). Excretion experiments revealed average values of 11.41 pM NH4-N ind–1, and 0.92 pM PO4-P ind–1h–1, respectively. The atomic C:N:P ratio of excretion products was 133:10:1. The O:N ratio of 25:1 and O:P ratio of 313:1 point to a lipid-carbohydrate-oriented catabolism of theAurelia larvae. On the basis of experimental results and of biomass determinations, the maximal survival period of the non-feeding free swimming planula stage was calculated. Typically, the value lies in the range of some days to one week.  相似文献   

14.
Concentration of dissolved free amino acids (DFAA) and assimilation of the 5 most abundant DFAA (glutamic acid, serine, glycine, alanine and ornithine) were measured at 3-h intervals over 27 h in two Danish, eutrophic lakes. The carbon flux of the amino acid assimilation was compared with the major routes of carbon flux, including primary production, bacterial production and zooplankton grazing. In Frederiksborg Slotssø, the mean DFAA concentration was 275 nM with distinct peaks (up to 783 nM) 3 h after sunrise. Assimilation rates of the 5 amino acids amounted on the average to 2.03 µg Cl–1 h–1, but high values up to 7.41 µg Cl–1 h–1 occurred 3 h after sunrise and at midnight. The mean turnover time of the amino acid pools was 3.2 h. In Lake Mossø, the mean DFAA concentration was 592 nM with peak of 1 161 nM at dusk. The assimilation rate averaged 0.44 µg Cl–1 h–1, and the mean turnover time of the amino acid pools was 39 h. In Lake Mossø, similar turnover times of glutamic acid and serine were determined from the 14C-amino acid tracer technique and Michaelis-Menten uptake kinetics, indicating that the tracer technique gave reliable values of the actual assimilation. The average respiration percentages of the assimilated amino acids were 45% in Frederiksborg Slotssø and 51% in Lake Mossø. Extracellular organic carbon (EOC) released from the phytoplankton contributed DFAA to the water. In Lake Mossø, 81% of the ambient EOC pool was <700 daltons and 9.3% of the EOC was DFAA. This corresponded to about 2.4% of the DFAA pool. Bacterial productivity, determined by means of frequency of dividing cells and 35S-SO4 dark uptake techniques gave similar results and constituted 4.5 and 3.7 µg Cl–1 h–1 in Frederiksborg Slotssø and Lake Mossø, respectively. The bacterial productivity suggested that DFAA were essential substrates to the bacteria, especially in Frederiksborg Slotssø. The zooplankton biomass in Frederiksborg Slotssø was six times larger than that in Lake Mossø, but cladocerans were dominant in both lakes. The zooplankton grazing probably was an important regulatory factor for the bacterial productivity.  相似文献   

15.
Production of hydrogen peroxide has been found in Ulva rigida (Chlorophyta). The formation of H2O2 was light dependent with a production of 1.2 mol·g FW–1·h–1 in sea water (pH 8.2) at an irradiance of 700 mol photons m–2·s–1. The excretion was also pH dependent: in pH 6.5 the production was not detectable (< 5 nmol·g FW–1·h–1) but at pH 9.0 the production was 5.0 mol·g FW–1·h–1. The production of H2O2 was totally inhibited by 3-(3,4-dichlorophenyl)-1,1 dimethylurea (DCMU). The ability of U. rigida growing in tanks (7501) under a natural light regime to excrete H2O2 was checked and found to be seven times higher at 08.00 hours than other times of the day. The H2O2 concentration in the cultivation tank (density: 2 g FW·l–1) reached the highest value (3 M) at 11.00 hours. Photosynthesis was not influenced by H2O2 formation. The H2O2 is suggested to come from the Mehler reaction (pseudocyclic photophosphorylation). With an oxygen evolution of 120 mmol·g FW–1·h–1 at pH 8.2 and 90 mmol·g FW–1·h–1 at pH 9.0, 0.5% and 2.7% of the electrons were used for extracellular H2O2 production. The H2O2 production is sufficiently high to be of physiological and ecological significance, and is suggested to be a part of the defence against epi and endophytes.Abbreviations ACL artificial, continuous light - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - GNL greenhouse - LDC Luminol-dependent chemiluminescence - SOD Superoxide dismutase This investigation was supported by SAREC (Swedish Agency for Research Cooperation with Developing Countries), Hierta-Retzius Foundation, Marianne and Marcus Wallenberg Foundation, the Swedish Environmental Protection Board, and CICYT Spain.  相似文献   

16.
Eurytemora affinis, a calanoid copepod, has been encountered in Volkerak-Zoommeer (Rhine delta region, S.W. Netherlands) both before this lake system was isolated in 1987 from the estuarine influence, and after. It was the main particle-feeding crustacean at all the 3 sampling stations in March–April 1990 when it reached densities of up to 215 ind.l–1. Its decline from mid April onwards, and low densities through summer, coincided with increase in cladocerans, especiallyDaphnia spp. (D. pulex andD. galeata), a decrease in seston (<33m) and chlorophyll concentrations and in primary production rates. The clearance rates (CR) ofEurytemora measured in the spring period varied enormously (0.6–24 ml.ind–1.d–1) depending mainly on size (0.44–1.06 mm), food concentration (0.8–2.2 mg C.l–1), and the water temperature which varied only narrowly (8.0–9.0°C). Mean ingestion rates of the animals measuring 0.68±0.02 mm during the study was 6.7±3.2 gC.ind–1.d–1; and assimilation efficiency varied between 27 and 53% (mean: 41±9%). The weight specific CR (SCR) varied between 0.96 and 6.4 litre.mg–1 body C.d–1. Pooled regression of SCR on the animal's body weight at the 3 study stations revealed a significant inverse relationship. Also daily ration and specific assimilation ofE. affinis varied greatly and inversely with the body weight. This calanoid contributed from about 50 to 100% to the zooplankton community grazing rates and assimilation rates, the former often exceeding the phytoplankton primary production.  相似文献   

17.
Thomas Mock 《Hydrobiologia》2002,470(1-3):127-132
An in situ incubation technique used successfully to measure the photosynthetic carbon assimilation of internal algal assemblages within thick multiyear Arctic ice was developed and improved to measure the photosynthetic carbon assimilation within young sea ice only 50 cm thick (Eastern Weddell Sea, Antarctica). The light transmission was improved by the construction of a cylindrical frame instead of using a transparent acrylic-glass barrel. The new device enabled some of the first precise measurements of in situ photosynthetic carbon assimilation in newly formed Antarctic sea ice, which is an important component in the sea ice ecosystem of the Antarctic Ocean. The rates of carbon assimilation of the interior algal assemblage (top to 5 cm from bottom) was 0.25 mg C m–2 d–1 whereas the bottom algal community (lowest 5 cm) attained only 0.02 mg C m–2 d–1. Chl a specific production rates (PChl) for bottom algae (0.020 – 0.056 g C g chl a –1 h–1) revealed strong light limitation, whereas the interior algae (PChl = 0.7 – 1.2 g C g chl a –1 h–1) were probably more limited by low temperatures (< –5 °C) and high brine salinities.  相似文献   

18.
Summary The influence of different operational parameters, such as the dilution rate (D) and the bleeding rate (B), in the production of a flocculent strain ofLactobacillus plantarum was studied. The effect of the dilution rate was demonstrated to be related to the lactic acid concentration inside the reactor. The effect of the bleeding rate was shown to be critical in the stabilization of the operation (due to a better pH control). It also allowed a continuous recovery of cells outside the reactor. Viability testing of the lactic starter cultures showed that operation with cell purge increased the viability of the starter cultures obtained.Nomenclature B Bleeding rate, h–1 - D Dilution rate, h–1 - F Feed flow rate, L h–1 - I Feed velocity, m h–1 - Specific growth rate, h–1 - v Lactic acid specific productivity, g g–1 h–1 - P Product concentration (lactic acid), g L–1 - P out Product concentration leaving the system, g L–1 - Q b Bleeding flow rate, L h–1 - R Recirculation velocity, m h–1 - S Substract concentration, g L–1 - t Time, h - T p Time of ascensional flow (length of the column/total ascensional velocity), h - T r Residence time (1/D), h - V Volume of the reactor, L - X Cell concentration, g L–1 - X out Cell concentration leaving the system, g L–1  相似文献   

19.
Joaquim-Justo  C.  Gosselain  V.  Descy  J. P.  Thomé  J. P. 《Hydrobiologia》1995,(1):249-257
To determine the contribution of food ingestion (trophic pathway) to PCB contamination of zooplankton in the river Meuse (Belgium), we used 14C-labelled algae (Dictyosphaerium ehrenbergianum) to measure ingestion and assimilation rates in the rotifer species Brachionus calyciflorus. When the concentration of algae in the culture medium varied from 20 103 to 200 103 algal cells ml–1 (0.12 to 1.18 mg Cl–1), the Brachionus calyciflorus ingestion rate varied from 0.25 ± 0.12 to 1.52 ± 0.43 ng C ind–1 h–1 at 15 °C and from 0.74 ± 0.17 to 5.93 ± 0.61 ng C ind–1 h–1 at 20 °C. The assimilation efficiency (ratio of the assimilation rate to the ingestion rate) measured in a culture medium containing 200 103 algal cells ml–1 was 55.7 ± 5.8%. Since the PCB concentration measured in the phytoplankton of the river Meuse is about 3 µg PCBs g–1 D.W., the estimated PCB contamination of zooplankton ascribable to the trophic pathway ranges from 0.22 ± 0.17 to 1.31 ± 0.77 µg PCBs g–1 D.W. at 15 °C and from 0.64 ± 0.34 to 5.10 ± 2.10 µg PCBs g–1 D.W. at 20°C. The lower figure based on measurements effected at 20 °C is comparable to the actual level measured in zooplankton samples collected in the river Meuse (0.69 ± 0.20 µg PCBs g–1 D.W.). The applicability of the formula used in our estimate was checked in a 48-hour in vitro experiment in which the rotifers were fed contaminated algae. The PCB accumulation measured in the rotifers was found to coincide with the calculated PCB contamination. Additional experiments were carried out to determine the contribution of the direct pathway to PCB contamination of zooplankton living in the river Meuse (0.02 µg PCBs l–1 of water; average dissolved organic matter: 3 mg C 1–1). The PCB concentration in zooplankton resulting from direct uptake of PCBs from the water was estimated at 0.19 ± 0.05 µg PCBs g–1 D.W. These results show that in zooplankton living in polluted ecosystems, PCBs are likely to accumulate via the trophic pathway to concentrations up to 30 times higher than by direct contamination. Furthermore, our estimates of PCB contamination via the trophic pathway coincide quite well with actual concentrations measured in situ.  相似文献   

20.
Beside being an ordinary fermenter, the present equipment was conceived to sample the medium, to store the samples and to record photographs of the yeasts. Ten sensors were used to measure gas exchanges. During the growth of ScM1 (a Saccharomyces cerevisiae strain) on glucose, we could observe two different linear decreases of CO2 production rates (18.17±0.12 mmol CO2 h–2 (g biomass)–1 and 8.67±0.12 mmol CO2 h–2 (g biomass)–1), together with a sudden variation of slope during the respiro-fermentative phase. Nomenclature Fin InletairFlowl h –1 Fout OutletgasFlowl h –1 in Inletairtemperature°Cout Outletgastemperature°CP atm AtmosphericPressuremmHgP in InletairOverPressuremmHgP out OutletgasOverPressuremmHgDODissolvedO 2 mg l–1 pO2 PartialPressureO 2 in Outlet gas % (v/v) pCO2 PartialPressureCO 2 in Outlet gas % (v/v) Int(t) Whole number of hours  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号