首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   45篇
  2010年   2篇
  2009年   2篇
  2007年   1篇
  2005年   2篇
  2002年   3篇
  1999年   1篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   1篇
  1985年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
  1972年   1篇
排序方式: 共有45条查询结果,搜索用时 31 毫秒
1.
The structure, feeding and metabolism of the filterfeeders community of Lake Vechten (The Netherlands) were investigated for seven years in relation to the functioning of the lake's ecosystem. The 14C-technique used in the grazing and assimilation study is discussed in detail with a critical analysis of the methodological errors.The three major species which contributed to the annual density, biomass and grazing maxima in spring are: Bosmina longirostris, Daphnia spp. and Eudiaptomus gracilis. The rise in grazing pressure in recent years, particularly in May, was accompanied by a corresponding decrease in the seston (<33 µm) biomass, and in increase of inedible algae, especially Ceratium hirudinella, in late summer. The means of daily grazing ranged from 3% in March to 34% in June. The mean annual ratio ingestion: phytoplankton production varied from 70 to 230%. The specific filtering rate, SFR (ml · day–1 · mg–1 · zoop · C), was related directly to water temperature but inversely to the food concentrations.The main errors in the ingestion and assimilation rates were related to the leaching of the isotope from the animals in the preservation fluid. The loss of tracer was 42 and 26%, respectively, for the two rates.In spring, the food removed by the grazers per day was equivalent to 125–400% of the daily primary production. This caused a sharp decrease in the seston concentrations and a recurring clear water phase because of a sharp increase in the Secchi depth. The zooplankton assimilatory removal of carbon and the sedimentation loss rates to the hypolimnion exceeded the primary production rates. The inconsistencies in the carbon budget are possibly due to our lack of knowledge of the horizontal transport of material from the littoral, bacteria as an alternative food source for zooplankton, and the DOC dynamics.The grazers' activity as SFR in deep, stratifying lakes like Vechten is 3 to 4 times that in the shallow, mixed and more eutrophic Dutch lakes. In the former category of lakes the crustacean herbivores serve as an important link in the food chain in the limnetic region.  相似文献
2.
The hypertrophic Lake Zwemlust, a small water body used as a swimming pool, was characterized by algal blooms in summer, reducing the Secchi disk transparency to less than 0.3 m. Since in The Netherlands a Secchi disk transparency of 1 m is obligatory for swimming waters, corrective measures were called for to improve the light climate of the lake. In March, 1987, as an experiment, the lake was drained by pumping out the water to facilitate fish elimination. Planktivorous and benthivorous fish species, which were predominant, were removed by seine- and electro-fishing. After the lake had refilled by seepage it was restocked by a new simple fish community comprising pike (Esox lucius) and rudd (Scardinius erythrophthalmus) only. Stacks of willow twigs (Salix) and macrophytes (roots ofNuphar lutea and seedlings ofChara globularis) were introduced into the lake as spawning grounds and refuges for the pike against cannibalism and as shelter for the zooplankton. The effects of this food web manipulation on the light climate, phytoplankton, zooplankton, fish, macrophytes, macrofauna and on the nutrient concentrations were monitored during 1987 and 1988. In summer 1987, despite of high nutrient concentrations, the phytoplankton density was low, due to control by zooplankton, causing a Secchi disk transparency of 2.5 m, the maximum depth. Chlorophyll-a concentrations were low (<5 g Chl.l–1), blooms of cyanobacteria did not occur and a shift from rotifers to cladocerans took place. In 1988, however, also some negative effects were noticed. Macrophytes and filamentous green algae reached a much higher biomass (50–60% cover of the lake bottom) than in 1987; some species, growing through the entire water column, interfered with the lake's recreational use. Associated with the macro-vegetation and possibly with the absence of larger cyprinids, the diet of which also comprises snails, a large scale development of the snail population, among themLymnaea peregra var.ovata took place. This species is known to act as an intermediate host of the bird-parasitizing trematodeTrichobilharzia ocellata, the cercariae of which cause an itching sensation at the spot of penetration of the human skin, accompanied by rash (schistosome dermatitis or swimmers' itch); in July, 1988, about 40% of the bathers complained about this itching. A positive effect of the macrophytes and filamentous green algae was the high uptake of nitrogen, resulting in a low nitrogen concentration in the lake and growth limitation of the phytoplankton population by nitrogen in the summer of 1988. In 1988 the cladocerans were abundant in April only; and unlike in 1987, in the summer of 1988 there was a shift from cladocerans to rotifers. Therefore, only in early spring (April) zooplankton grazing controlled phytoplankton growth and in summer nitrogen limitation was the major controlling factor, keeping chlorophyll-a concentrations low.  相似文献
3.
Lake Breukeleveen (180 ha, mean depth 1.45 m), a compartment of the eutrophic Loosdrecht lakes system, was selected to study the effects of whole-lake foodweb manipulation on a large scale. In Lake Loosdrecht (dominated by filamentous cyanobacteria), due to water management measures taken from 1970–1984 (sewerage systems, dephosphorization) the external P load has been reduced from 1.2 g m−2 y−1 to 0.35 g m−2 y−1. The water transparency (Secchi-depthca. 30 cm), however, has not improved. The aim of the food-web manipulation in Lake Breukeleveen was not only to improve the light climate of the lake, but also to study if the successfull effects observed in small lakes (a few ha) can be upscaled. In March 1989 the standing crop of planktivorous and bentivorous fish populations was reduced by intensive fishery, fromca. 150 kg ha−1 toca. 57 kg ha−1. The lake was made unaccessible to fish migrating from the other lakes and it was stocked with large-sized daphnids and 0+ pike. However, water transparency did not increase in the following summer and autumn 1989, which is in contrast with great improvement in the light conditions previously observed in smaller lakes. The main explanations for the negative outcome in Lake Breukeleveen are: 1) the rapid increase of the planktivorous fish biomass and carnivorous cladocerans, predating on the zooplankton community; 2) suppression of the large daphnids by the high concentrations of filamentous cyanobacteria; 3) high turbidity of the lake due to resuspension of bottom material induced by wind, unlike in smaller lakes, and thus inability of submerged macrophytes to develop and to stabilize the ecosystem.  相似文献
4.
Whole-lake food-web manipulation was carried out in the hypertrophic Lake Zwemlust (The Netherlands), with the aim of studying the effects on the lake's trophic status and to gain an insight into complex interactions among lake communities. Before manipulation this small (1.5 ha) and shallow (1.5 m) lake was characterized byMicrocystis blooms in summer and high chlorophyll-a concentrations were common (ca. 250 μg 1−1). In March 1987 the planktivorous and benthivorous fish species in the lake were completely removed (ca. 1000 kg ha−1), a new simple fish community (pike and rudd) was introduced and artificial refuges were created. The effects of this manipulation on the light climate, nutrient concentrations, phytoplankton, zooplankton, fish, macrophytes, and macrofauna were monitored during 1987, 1988 and 1989. Community interactions were investigated in phytoplankton bioassays and zooplankton grazing experiments. After the manipulation, despite the still high P and N loads to the lake (ca. 2.2 g P m−2 y−1 andca. 5.3 g N m−2 y−1), the phytoplankton density was low (Chl-a<5μg l−1), due to control by large-sized zooplankton in spring and N-limitation in summer and autumn. A marked increase in the abundance of macrophytes and filamentous green algae in 1988 and 1989, as well as N loss due to denitrification, contributed to the N limitation of the phytoplankton. Before manipulation no submerged macro-vegetation was present but in 1988, the second year after manipulation, about 50% of the lake bottom was covered by macrophytes increasing to 80% in 1989. This led to substantial accumulation of both N and P, namely 76% and 73% respectively of the total nutrients in the lake in particulate matter. Undesirable features of the increase in macrophytes were: 1) direct nuisance to swimmers; and, 2) the large scale development of snails, especiallyL. peregra, which may harbour the parasite causing ‘swimmers' itch’. But harvesting of only about 3% of the total macrophyte biomass from the swimmers' area, twice a year, reduced the nuisance for swimmers without adversely affecting the water clarity.  相似文献
5.
The paper summarizes the results of a ten-year (1981–1991) zooplankton research on the Lake Loosdrecht, a highly eutrophic lake. The main cause of the lake's eutrophication and deteriorating water quality was supply up to mid 1984 of water from the River Vecht. This supply was replaced by dephosphorized water from the Amsterdam-Rhine Canal in 1984. The effects of this and other restoration measures on the lake's ecosystem were studied. Despite a reduction in the external P-load from ca. 1.0 g P m–2 y–1 to ca. 0.35 g m–2 y–1 now, the filamentous prokaryotes, including cyanobacteria and Prochlorothrix, continue to dominate the phytoplankton.Among the crustacean plankton Bosmina spp, Chydorus sp. and three species of cyclopoid copepods and their nauplii are quite common. Though there was no major change in the composition of abundant species, Daphnia cucullata, which is the only daphnid in these lakes, became virtually extinct since 1989. Among about 20 genera and 40 species of rotifers the important ones are: Anuraeopsis fissa, Keratella cochlearis, Filinia longiseta and Polyarthra. The rotifers usually peak in mid-summer following the crustacean peak in spring. The mean annual densities of crustaceans decreased during 1988–1991. Whereas seston (< 150 µm) mean mass in the lake increased since 1983 by 20–60%, zooplankton (> 150 µm) mass decreased by 15–35%.The grazing by crustacean community, which was attributable mainly to Bosmina, had mean rates between 10 and 25% d–1. Between 42 and 47% of the food ingested was assimilated. In spring and early summer when both rotifers and crustaceans have their maximal densities the clearance rates of the rotifers were much higher. Based on C/P ratios, the zooplankton (> 150 µm) mass contained 2.5 times more phosphorus than seston (< 150 µm) mass so that the zooplankton comprised 12.5 % of the total-P in total particulate matter in the open water, compared with only 4.5% of the total particulate C. The mean excretion rates of P by zooplankton varied narrowly between 1.5 and 1.8 µg P 1 d–1, which equalled between 14 and 28% d–1 of the P needed for phytoplankton production.The lack of response to restoration measures cannot be ascribed to one single factor. Apparently, the external P-loading is still not low enough and internal P-loading, though low, may be still high enough to sustain high seston levels. Intensive predation by bream is perhaps more important than food quality (high concentrations of filamentous cyanobacteria) in depressing the development of large-bodied zooplankton grazers, e.g. Daphnia. This may also contribute to resistance of the lake's ecosystem to respond to rehabilitation measures.  相似文献
6.
Structure and grazing activities of crustacean zooplankton were compared in five lakes undergoing manipulation with several unmanipulated eutrophic (shallow) and mesotrophic (deep) lakes in The Netherlands. The biomanipulated lakes had lesser number of species and their abundance, both of rotifers and crustaceans, and had much larger mean animal size (3–11 μg C ind.−1) than in the unmanipulated eutrophic lakes (0.65 μG C ind.−1). WhereasD. hyalina (=D. galeata) andD. cucullata generally co-occurred in the unmanipulated lakes, in the manipulated lakes bothD. hyalina and other large-bodied daphnids,D. magna,D. pulex (=D. pulicaria), were the important grazers. In the biomanipulated lakes an increase in the individual crustacean size and of zooplankton mass were reflected in a decrease in seston concentration, higher Secchi-disc depth and a marked decrease in the share in phytoplankton biovolume of cyanobacteria. Biomass relationship between seston (150 μm) and zooplankton indicated a Monod type relationship, with an initial part of the curve in which the zooplankton responds linearly to the seston increase up to aboutca. 2 mg C l−1, followed by a saturation of zooplankton mass (0.39 mg C l−1) at 3–4 mg C l−1 seston, and an inhibitory effect on zooplankton mass at seston levels>4 mg C l−1. This latter is related to predominance in the seston of cyanobacteria. In the biomanipulated lakes, the zooplankton grazing rates often exceeded 100% d−1, during the spring, and food levels generally dropped to <0.5 mg C l−1. The computed specific clearance rate (SCR) of zooplankton of 1.9 l mg−1 Zoop C is well within the range of SCR values (1.7–2.2 l mg−1 Zoop C) from deep and mesotrophic waters, but about an order of magnitude higher than in the eutrophic lakes, with the food levels 10-fold higher. For 25% d−1 clearance of lake seston between 35 and 60 ind. l−1 are needed in the biomanipulated lakes against 1200–1300 ind. l−1 in eutrophic lakes. Similarly, about 10 to 15 times more crustacean grazers are required to eliminate the daily primary production in the eutrophic lakes than in the biomanipulated lakes. These numbers are inversely related to the differences in animal size. The corresponding biomass values of zooplankton needed to clear the daily primary production in the eutrophic waters were 0.1–0.2 mg C l−1 in the biomanipulated lakes, but about 0.45 mg C l−1 in the unmanipulated eutrophic waters. Only if the water was kept persistently clear by zooplankton was there a balanced seston budget between the inputvia primary production and elimination by zooplankton. Mostly, however, the input exceeded the assimilatory removal by zooplankton, such that the estimated seston loss could be attributed to sedimentation and mineralization.  相似文献
7.
R. D. Gulati 《Hydrobiologia》1990,191(1):173-188
A five-year zooplankton study (1982–86) on three shallow and highly eutrophic lakes in the Loosdrecht area (The Netherlands) did not reveal any significant changes following the considerable reduction in external P-loading (from about 1.0 g to 0.3 g P m–2 year–1) since mid-1984.The recent annual fluctuations in the rotifer and crustacean densities are within the range of those found before the restoration measure became operative. A decrease in the average size of the crustaceans and an absence of large-bodied forms reflects an increased fish predation rather than a change in the quality or quantity of their sestonic food ( < 150 µm) which continues to be dominated by filamentous cyanobacteria and Prochlorothrix hollandica, a prochlorophyte discovered in these lakes recently.  相似文献
8.
The biomanipulation study in Lake Zwemlust (area 1.5 ha; mean depth 1.5 m) is among the series of such investigations initiated recently in The Netherlands. The effects of the lake's reffilling (after it was first completely drained empty) almost entirely the nutrient-rich seepage water from the River Vecht flowing nearby and of removal of the planktivorous bream (Abramis brama), on zooplankton community structure and feeding activities of crustaceans were monitored for two successive years (1987, 1988). In these years a classical pattern of succession occurred, with the rotifer spring maximum preceding the crustacean maximum by about 3 weeks. Among the fiveDaphnia species, which appeared in quick succession during May–July, two were large-bodied forms (D. magna; D. pulex). OnlyD. pulex persisted and was the important grazer species in the second year, especially in spring. In the first year the crustacean grazing, with several values >100%.d–1, contributed significantly to the lake's improved water clarity, with Secchi-disc transparencies of 1.5 m and more almost throughout the summer, compared with 0.3 m before the biomanipulation. Even though the water clarity climate in the second year was quite similar to that in the first, the causal factor was high macrophytic vegetation, rather than zooplankton grazing. The lake developed a rich littoral flora and fauna in the second year in response to the optimal light and nutrient conditions. Apparently, the predation by the introduced planktivorous rudd (Scardinius erythrophthalmus) on zooplankton was an important factor in the changes in zooplankton structure, and in the reduced role of zooplankton in seston elimination during the second year. There is some evidence from bioassay work that, simultaneously with the littoral development, nitrogen limitation of the phytoplankton also contributed to the improved light situation in the second year.  相似文献
9.
10.
Phosphorus and nitrogen excretion rates by zooplankton communities from two eutrophic and shallow Dutch lakes were measured in laboratory. The variations in excretion rates in the lakes (May–October) were caused mainly by fluctuation in zooplankton biomass. Mean summer excretion rates (June–September) were 2.4 and 0.9 µg PO4P·1–1·d–1 in Lake Loosdercht and Lake Breukeleveen, respectively. This difference between the lakes was caused mainly by the lower zooplankton biomass in Lake Breukeleveen. The excretion of 2.4 µg PO4P·1–1·d compared with the calculated P-demand of phytoplankton of 8.0 µg PO4P·1–1·d–1 is substantial in the summer (June–September) and far more important than the external P-supply of 0.4 µg P·1–1·d–1 and sediment release of 0.5 µg P·1–1·d–1. Both temperature and composition of zooplankton affected the weight specific excretion rates of the zooplankton community. The weight specific community excretion rates of P and N increased with temperature (exponential model); 1–8 g PO4P·mg–1 zooplankton-C·d–1 and 5–42 µg NH3N·mg–1 zooplankton-C·d–1 (10°C–20°C).  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号