首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
栓菌420(Trametes sp. 420)漆酶基因lacD以两种方式在巴斯德毕赤酵母(Pichia pastoris)进行异源表达,产生两种重组漆酶:rLacDx(具有天然N-末端)和rLacDe(N-末端带有8个额外的氨基酸残基)。摇瓶发酵18d,rLacDx和rLacDe的产量分别为1.21×105u/L、7.38×104u/L [以2,2′-连氮-3-乙苯-二噻唑-6磺酸(ABTS)为底物]。在高密度发酵条件下,rLacDx的产量增加到2.39×105u/L,同时其生产周期降至7.5 d。两种重组酶对愈创木酚底物的氧化特性相似,且在50℃和pH3~10的范围内均稳定。然而,rLacDx对底物ABTS的比活力(1761u/mg)高于rLacDe (1122u/mg),其表观Km值(427μmol/L)低于rLacDe (604μmol/L)。  相似文献   

2.
根据漆酶铜结合保守区氨基酸序列设计简并引物,从新型漆酶合成菌株栓菌420(Trametes sp.420)基因组DNA扩增得到一新的漆酶同工酶基因(lacC)片段,应用长距离反向PCR技术获得其两端侧翼序列。克隆得到的lacC序列长3640bp,包括长2263bp的开放读码框及5′和3′-非编码区。lacC cDNA序列长1560bp,编码一519aa的多肽。推导的LacC蛋白序列内部存在有10个潜在的N-糖基化位点和4个铜原子结合区。将不含自身信号序列的lacC cDNA以pPIC9载体为媒介克隆到表达载体pPIC9K上,转化毕赤酵母(Pichiapastoris)GS115细胞。重组菌在含有0.3mmol/LCuSO4和0.8%丙氨酸的BMM培养基中20℃培养9d,重组漆酶(rLacC)产量达到1.62×104U/L。用发酵粗酶液对终浓度50mg/L的染料进行脱色实验,结果表明,6U/L的rLacC对测试的三甲基类和偶氮类染料具有良好的脱色作用,小分子介体ABTS和HBT能够提高rLacC对染料的脱色效率和脱色速度。  相似文献   

3.
漆酶是一种含铜的多酚氧化酶,与植物病原菌致病性、黑色素合成及降解木质素等方面相关。为明确漆酶在新月旋孢腔菌的催化作用及其催化活性,以2,2′-连氮-双(3-乙基苯并噻唑-6-磺酸)(简称ABTS)为底物,利用分光光度计在420nm下测定胞内漆酶活力,结果表明酶活测定最佳反应条件为缓冲液pH2.8、Cu2+浓度500μmol/L和0.6mmol/L ABTS。根据漆酶Cu2+结合保守结构域设计了1条引物,对新月旋孢腔菌漆酶基因进行克隆,并通过RACE技术克隆了其全长cDNA序列。开放阅读框长1,803bp,  相似文献   

4.
5.
一株产漆酶菌株的筛选鉴定和发酵条件的研究   总被引:2,自引:0,他引:2  
刘敏  张明 《生物学杂志》2008,25(3):40-43
以愈创木酚为底物,采用平板筛选法筛选得到一株产漆酶菌株WS1-2,形态学特性表明该茵属于绿色木霉.对产酶条件的初步研究结果表明,WS1-2菌株的产酶高峰期出现在接种培养后的第4d.与蔗糖、乳糖、半乳糖和可溶性淀粉相比,以葡萄糖为碳源时,发酵上清液的漆酶活力明显要高,最大值达230U/L.以NH4Cl为氮源,最有利于WS1-2漆酶的产生,漆酶活力最高可达到234U/L.0.01mmol/L的愈创木酚和ABTS对WS1-2产漆酶有明显的诱导作用,3~5mg/L的Tween-80可以明显提高WS1-2的产酶水平.  相似文献   

6.
彩绒革盖菌CV-8胞外漆酶的诱导、纯化及部分性质研究   总被引:2,自引:0,他引:2  
为探讨彩绒革盖菌(Coriolus versicolor)漆酶的生产条件和性质,对其进行了硫酸铵盐析、半透膜透析、DEAE-纤维素离子交换、Sephadex G100柱层析纯化,粗酶液被纯化36.1倍,比活力10180u/mg,回收率44.6%。凝胶过滤法测定酶的分子量为62kDa。研究了漆酶的产酶曲线及酶作用最适条件。结果表明在该培养条件下,彩绒革盖菌第11d达产酶高峰,峰值酶活为398u/ml,酶作用的最适pH值为4.6,最适温度为25℃,Mg2 、Mn2 、Cu2 对漆酶有激活作用,而Ag 、Fe3 和Cl-则抑制漆酶活性。以邻联甲苯胺为底物的表观Km值为892×10-3mol/L。该菌可作为木质素降解和环保工业漆酶生产菌种。  相似文献   

7.
漆酶在磁性壳聚糖微球上的固定及其酶学性质研究   总被引:5,自引:0,他引:5  
以磁性壳聚糖微球为载体,戊二醛为交联剂,共价结合制备固定化漆酶。探讨了漆酶固定化的影响因素,并对固定化漆酶的性质进行了研究。确定漆酶固定化适宜条件为:50 mg磁性壳聚糖微球,加入10mL 0.8mg/mL 漆酶磷酸盐缓冲液(0.1mol/L,pH 7.0),在4℃固定2h。固定化酶最适pH为3.0, 最适温度分别为10℃和55℃,均比游离酶降低5℃。在pH 3.0,温度37℃时,固定化酶对ABTS的表观米氏常数为171.1μmol/L。与游离酶相比,该固定化漆酶热稳定性明显提高,并具有良好的操作和存储稳定性。  相似文献   

8.
目的:用pGAP启动子在P.pastoris中组成型表达漆酶.方法:用PCR从枯草芽孢杆菌基因组中扩增漆酶基因lac2.用Not和EcoRⅠ双酶切将lac2基因重组于表达载体PGAP9K.通过电转法将其转化于P.pastoris基因组,筛选高G418抗性以及高表达Lac2酶的重组子作为工程菌Gs115( pGAP9k - lac2).用甘油作为碳源在50L生物反应器中表达重组漆酶Lac2.用ABTS法测定发酵液中的漆酶活力.结果:在发酵30h时,其Lac2酶的表达达峰值,其活性为136.67U/L.其峰值的Lac2酶的表达量为50mg/L.表达产物具有分解ABTs的活性.结论:成功克隆了漆酶基因lac2,并首次实现用pGAP启动子在P.pastorris中组成型表达漆酶,为用P.Pastoris规模化生产漆酶奠定了基础.  相似文献   

9.
根据GenBank中的序列设计引物,克隆芽孢杆菌中的β-脱卤酶基因(命名为bhd)。以pET30a(+)为载体、Escherichia coli BL21(DE3)-CondonPlus为宿主菌,实现了bhd的高效表达。使用HisTrapTMFF亲和层析柱纯化重组β-脱卤酶,分子量约为23.1 kD。酶学性质研究表明,纯化的重组β-脱卤酶水解3-氯丙酸制备3-羟基丙酸的最适反应体系为30°C,100 mmol/L,pH 7.0的磷酸钠缓冲液。在最适反应条件下,重组β-脱卤酶的比活为16.2 U/mg,Km和Vmax分别为3.26μmol/L和17.86 mmol/(min.g protein)。在最适反应条件下,以10 mmol/L 3-氯丙酸为底物,反应36 h的转化率在93%以上。  相似文献   

10.
红栓菌胞外漆酶的诱导,纯化及部分特性研究   总被引:28,自引:0,他引:28  
红栓菌(pycnoporus cinnabarius)在发酵培养3d后出现胞外漆酶活性峰。木素类似物对红栓菌胞外漆酶活性有诱导作用,阿魏酸、香兰素,愈创木酚和DL-β-苯丙氨酸诱导24h后,发酵液中漆酶活性分别是对照的2.8、4.3、3.5和1.7倍。发酵液经(NH_4)_2S0_4沉淀,Sephadex G-150、DEAE-Sephadex A-25、Sephadex G-25柱层析纯化后,冷冻干燥。高效液相色谱(HPLC)检测为一单峰,分子量为26000,含17种氨基酸,氨基酸总量占酶组成的64.27%。等离子光谱(ICP)分析表明漆酶含有铜。该酶反应的最适温度为30℃,与邻联苯甲胺反应最适pH为4.0,Km值为385μmol/L;与丁香醛连氮反应最适pH为5.8,Km值为833μmol/L。  相似文献   

11.
Lactoperoxidase (LPO) was purified from bovine milk using Amberlite CG 50 H+ resin, CM Sephadex C-50 ion-exchange chromatography, and Sephadex G-100 gel filtration chromatography. During the purification steps, the activity of enzyme was measured using 2,2'-azino-bis (3-ethylbenzthiazoline-6 sulfonic acid) diamonium salt (ABTS) as a chromogenic substrate at pH 6. Optimum pH and optimum temperature values for LPO were determined for ABTS, p-phenylendiamine, catechol, epinephrine, and pyrogallol as substrates, and then Km and Vmax values for the same substrate were obtained by means of Lineweaver-Burk graphics. The purification degree of the enzyme was controlled by SDS-PAGE and Rz (A412/A280) values. Km values, at optimum pH and 20 degrees C, were 0.197 mM, 0.063 mM, 0.64 mM, 25.2 mM, and 63.95 mM for p-phenylendiamine, ABTS, epinephrine, pyrogallol, and catechol, respectively. Vmax values, at optimum pH and 20 degrees C, were 3.5x10(-5) EU/mL, 4.0x10(-5) EU/mL, 5.8x10(-4) EU/mL, 8.4x10(-4) EU/mL, and 1.01x10(-3) EU/mL for the same substrates, respectively. p-Phenylendiamine was first found as a new substrate for LPO.  相似文献   

12.
A membrane-bound sialidase was isolated from blood stream (BS) Trypanosoma evansi partially purified and characterized. The enzyme is a glycosyl phosphatidyl inositol (GPI) membrane anchored protein. It was solubilized from T. evansi cells recovered from infected camel blood by detergent treatment with Triton CF 54 and partially purified by a series of chromatography steps. The enzyme was optimally active at pH 5.5 and 37 degrees C. It had a KM and Vmax values of 4.8 x 10(-6) M and 3.75 x 10(-6) mol/min x mg protein with Neu5Acalpha2, 3lac as substrate respectively. The KM and Vmax values with fetuin (4-nitrophenyl-oxamic acid) as substrate were 2.9 x 10(-2) M and 4.2 x 10(-3) mol/min x mg protein in the same respect. Kinetic analysis with methly umbelliferyl sialate (MU-Neu5Ac) gave KM and Vmax values of 0.17 mM and 0.84 mmol/min x mg protein respectively. The T. evansi SD could hydrolyse internally linked sialic acid residues of the ganglioside GM2, but was inactive towards colomic acid, and NeuSAc2, 6. lac. When ghost red blood cell (RBC) was used as substrate, it desialylated the RBC in the following order of efficiency; mouse, rat, camel, goat, and dog. Similarly, cerebral cells isolated from BalbC mouse was desialylated by the T. evansi SD. Inhibition studies using 2-deoxy-2, 3 didehydro-N-acetyl neuraminic acid (NeuAc2, 3en) against MU-Neu5Ac revealed a competitive inhibition pattern with Ki of 5.8 microM. The enzyme was also inhibited non-competitively by parahydroxy oxamic acid (pHOA), and competitively by N-ethylmaleimide and N-bromosuccinate with Ki values of 25, 42, and 53 microM, respectively. It was activated by Mg2+ ion and inhibited by Cu2+ and Zn2+.  相似文献   

13.
4-Methyl-5-nitrocatechol (4M5NC) monooxygenase (DntB) from Burkholderia sp. strain DNT catalyzes the second step of 2,4-dinitrotoluene degradation by converting 4M5NC to 2-hydroxy-5-methylquinone with the concomitant removal of the nitro group. DntB is a flavoprotein that has a very narrow substrate range. Here, error-prone PCR was used to create variant DntB M22L/L380I, which accepts the two new substrates 4-nitrophenol (4NP) and 3-methyl-4-nitrophenol (3M4NP). At 300 microM of 4NP, the initial rate of the variant expressing M22L/L380I enzyme (39 +/- 6 nmol/min/mg protein) was 10-fold higher than that of the wild-type enzyme (4 +/- 2 nmol/min/mg protein). The values of kcat/Km of the purified wild-type DntB enzyme and purified variant M22L/L380I were 40 and 450 (s(-1) M(-1)), respectively, which corroborates that the variant M22L/L380I enzyme has 11-fold-higher efficiency than the wild-type enzyme for 4NP degradation. In addition, the variant M22L/L380I enzyme has fourfold-higher activity toward 3M4NP; at 300 microM, the initial nitrite release rate of M22L/L380I enzyme was 17 +/- 4 nmol/min/mg protein, while that of the wild-type enzyme was 4.4 +/- 0.7 nmol/min/mg protein. Saturation mutagenesis was also used to further investigate the role of the individual amino acid residues at positions M22, L380, and M22/L380 simultaneously. Mutagenesis at the individual positions M22L and L380I did not show appreciable enhancement in 4NP activity, which suggested that these two sites should be mutated together; simultaneous saturation mutagenesis led to the identification of the variant M22S/L380V, with 20% enhanced degradation of 4NP compared to the variant M22L/L380I. This is the first report of protein engineering for nitrite removal by a flavoprotein.  相似文献   

14.
The oxidative deamination of serotonin (5-HT) to 5-hydroxyindoleacetic acid (5-HIAA) by rat primary astrocyte cultures was investigated in intact cells using HPLC. All detectable 5-HIAA accumulated in the extracellular medium, and its rate of production was proportional to the 5-HT concentration over the tested range of 5 x 10(-7) to 10(-4) M. At 5 x 10(-7) M 5-HT, intracellular 5-HT was detectable only in astrocytes treated with monoamine oxidase (MAO) inhibitors. These findings are consistent with the idea that 5-HT taken up into astrocytes is not stored for re-release, but is rapidly metabolized to 5-HIAA, which is then extruded from the cell. At 5 x 10(-7) M 5-HT, 5-HIAA formation in intact cells was blocked 63% by the selective high-affinity 5-HT uptake inhibitor fluoxetine. 5-HT oxidation to 5-HIAA is carried out principally by MAO-A, because clorgyline was more effective at inhibiting the production of 5-HIAA than was pargyline. Radioenzymatic determinations of MAO activity in cell homogenates supported these findings, because under these conditions clorgyline was 1,000-fold more effective than pargyline at inhibiting MAO activity toward 14C-labelled 5-HT. However, the relatively selective MAO-B substrate beta-phenylethylamine (PEA) was also oxidized, showing that these cultures also contained MAO-B activity; the Km values for MAO-A oxidation of 5-HT and MAO-B oxidation of PEA were 135 and 45 microM, and Vmax values were 88 and 91 nmol/mg of total cell protein/h, respectively. Higher concentrations of PEA (greater than 20 microM) were oxidized by both MAO-A and MAO-B isozymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The epoxide 5(S) trans-5,6 oxido, 7,9 trans-11,14,17 cis eicosatetraenoic acid (leukotriene A5) was chemically synthesized and demonstrated to be both a substrate and an inhibitor of partially purified rat and human LTA4 hydrolase. Both rat and human LTA4 hydrolase utilized leukotriene A5 less effectively as a substrate than leukotriene A4. Incubation of leukotriene A5 (10 microM) or leukotriene A4 (10 microM) with rat neutrophils demonstrated formation of 123 pmol LTB5/min/10(7) cells and 408 pmol LTB4/min/10(7) cells respectively. Purified rat neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 22 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 50 nmol LTB4/min/mg protein. Human neutrophil LTA4 hydrolase incubated with 100 microM leukotriene A5 produced 24 nmol LTB5/min/mg protein and when incubated with 100 microM leukotriene A4 produced 52 nmol LTB4/min/mg protein. Leukotriene A5 was an inhibitor of the formation of leukotriene B4 from leukotriene A4 by both the rat and human neutrophil LTA4 hydrolase. Excess leukotriene A5 prevented covalent coupling of [3H] leukotriene A4 to LTA4 hydrolase suggesting inhibition may involve covalent coupling of leukotriene A5 to the LTA4 hydrolase.  相似文献   

16.
Lactose-Hydrolyzing Enzymes of Lactobacillus Species   总被引:9,自引:5,他引:4       下载免费PDF全文
beta-Galactosidase (beta-gal, EC 3.2.1.23) and beta-D-phosphogalactoside galactohydrolase (beta-Pgal) activities were observed in all of 13 Lactobacillus species studied except L. casei and L. buchneri. Only the latter enzyme was detected in nine strains of L. casei. The beta-gal from L. thermophilus and the beta-Pgal from L. casei were purified and characterized. In comparison with beta-gal, the beta-Pal was slightly less active (V(max) values were 28.9 and 50.0 mumoles per mg per min, respectively), but the substrate affinitives were similar (K(m) values were 1.69 x 10(-3) M and 1.59 x 10(-3) M, respectively). Although the two enzymes had similar amino acid compositions, the molecular weight of beta-gal was 5.4 x 10(5) and that of beta-Pgal was 1.3 x 10(5). The beta-gal from L. thermophilus and the beta-Pgal from L. casei had optimal temperature and pH activity values of 55 C at pH 6.2 and 37 C at pH 5.0, respectively. The complete absence of beta-gal from a homofermentative Lactobacillus species of industrial importance is further evidence of the heterogeneity of this genus.  相似文献   

17.
Kinetic mechanism of guinea pig neutrophil 5-lipoxygenase   总被引:2,自引:0,他引:2  
The kinetic mechanism of guinea pig neutrophil 5-lipoxygenase was investigated using a continuous spectrophotometric assay that monitors product diene formation at 236 nm due to substrate oxygenation. Progress curves for reactions with both arachidonic acid and eicosapentaenoic acid are characterized by 1-3-min lag phases in the attainment of steady-state velocities and product inhibition, as indicated by the total cessation of the reaction prior to complete depletion of substrate. The dependence of the steady-state velocity on arachidonic acid concentration appears to follow Michaelis-Menten kinetics, with Vmax = 4.2 +/- 0.4 nmol of 5-hydroxy-6,8,11,14-eicosatetraenoic acid/min/mg of protein and Ks = 25 +/- 4 microM. The addition of Ca2+ results in an overall activation: lag phases are shortened to 10-20 s, Vmax increases to 24 +/- 2 nmol/min/mg of protein, and Ks decreases to 7.7 +/- 1.7 microM; and a change in a mechanism to one involving substrate inhibition (Kss = 13 +/- 1 microM). The observed activation by Ca2+ has a half-maximal response at around 30 microM. In the presence of Ca2+, ATP causes an increase in Vmax to 30 +/- 4 nmol/min/mg of protein without changing Ks or Kss and a reduction of the lag to less than 5 s. The half-maximal response for ATP is 31 +/- 7 microM. Oxygenation of eicosapentaenoic acid in the presence of Ca2+ and ATP occurs with similar kinetics, except for significantly less substrate inhibition: Vmax = 31 +/- 6 nmol/min/mg of protein, Ks = 7 +/- 1 microM, and Kss = 33 +/- 2 microM. This is the first report suggesting a kinetic mechanism for 5-lipoxygenase, which accounts for substrate inhibition, regulation by Ca2+, and ATP and substrate specificity.  相似文献   

18.
Protein methylesterase (PME) amino acid composition and substrate specificity towards methylated normal and deamidated protein substrates were investigated. The enzyme contained 23% acidic and 5% basic residues. These values are consistent with a pI of 4.45. The product formed from methylated protein by PME was confirmed as methanol by h.p.l.c. The kcat. and Km values for several methylated protein substrates ranged from 20 x 10(-6) to 560 x 10(-6) s-1 and from 0.5 to 64 microM respectively. However, the kcat./Km ratios ranged within one order of magnitude from 11 to 52 M-1.s-1. Results with the irreversible cysteine-proteinase inhibitor E-64 suggested that these low values were in part due to the fact that only one out of 25 molecules in the PME preparations was enzymically active. When PME was incubated with methylated normal and deamidated calmodulin, the enzyme hydrolysed the latter substrate at a higher rate. The Km and kcat. for methylated normal calmodulin were 0.9 microM and 31 x 10(-6) s-1, whereas for methylated deamidated calmodulin values of 1.6 microM and 188 x 10(-6) s-1 were obtained. The kcat./Km ratios for methylated normal and deamidated calmodulin were 34 and 118 M-1.s-1 respectively. By contrast, results with methylated adrenocorticotropic hormone (ACTH) substrates indicated that the main difference between native and deamidated substrates resides in the Km rather than the kcat. The Km for methylated deamidated ACTH was 5-fold lower than that for methylated native ACTH. The kcat./Km ratios for methylated normal and deamidated ACTH were 43 and 185 M-1.s-1 respectively. These results indicate that PME recognizes native and deamidated methylated substrates as two different entities. This suggests that the methyl groups on native calmodulin and ACTH substrates may not be on the same amino acid residues as those on deamidated calmodulin and ACTH substrates.  相似文献   

19.
The apparent active site of human leukocyte glycoasparaginase (N4-(beta-acetylglucosaminyl)-L-asparaginase EC 3.5.1.26) has been studied by labeling with an asparagine analogue, 5-diazo-4-oxo-L-norvaline. Glycoasparaginase was purified 4,600-fold from human leukocytes with an overall recovery of 12%. The purified enzyme has a Km of 110 microM, a Vmax of 34 mumol x l-1 x min-1, and a specific activity of 2.2 units/mg protein with N4-(beta-N-acetylglucosaminyl)-L-asparagine as substrate. The carbohydrate content of the enzyme is 15%, and it exhibits a broad pH maximum between 7 and 9. The 88-kDa native enzyme is composed of 19-kDa light (L) chains and 25-kDa heavy (H) chains and it has a heterotetrameric structure of L2H2-type. The glycoasparaginase activity decreases rapidly and irreversibly in the presence of 5-diazo-4-oxo-L-norvaline. At any one concentration of the compound, the inactivation of the enzyme is pseudo-first-order with time. The inhibitory constant, K1, is 80 microM and the second-order rate constant 1.25 x 10(3) M-1 min-1 at pH 7.5. The enzyme activity is competitively protected against this inactivation by its natural substrate, aspartylglucosamine, indicating that this inhibitor binds to the active site or very close to it. The covalent incorporation of [5-14C]diazo-4-oxo-L-norvaline paralleled the loss of the enzymatic activity and one inhibitor binding site was localized to each L-subunit of the heterotetrameric enzyme. Four peptides with the radioactive label were generated, purified by high performance liquid chromatography, and sequenced by Edman degradation. The sequences were overlapping and all contained the amino-terminal tripeptide of the L-chain. By mass spectrometry, the reacting group of 5-diazo-4-oxo-L-norvaline was characterized as 4-oxo-L-norvaline that was bound through an alpha-ketone ether linkage to the hydroxyl group of the amino-terminal amino acid threonine.  相似文献   

20.
The synthesis and release of leukotriene B4 (LTB4) from canine polymorphonuclear leukocytes (PMNs) was characterized in terms of incubation time, temperature and effects of calcium ionophore A23187 concentrations. Maximal LTB4 concentrations were determined when canine PMNs were incubated with 10 microM A23187. Increasing LTB4 concentrations were determined through 10 min incubation. The maximal LTB4 concentrations (310 +/- 30 pg LTB4/2.5 x 10(5) cells) determined at 10 min did not change through a 55 min incubation period. Greater LTB4 concentrations were synthesized by canine PMNs at 37 degrees C (268 +/- 12 pg LTB4/2.5 x 10(5) cells) than at 25 degrees C (206 +/- 11 pg LTB4/2.5 x 10(5) cells) or 5 degrees C (59 +/- 3 pg LTB4/2.5 x 10(5) cells). The synthesis of LTB4 in canine PMNs was inhibited by incubation of the cells with either of two known lipoxygenase inhibitors, BWA4C or BW755C. BWA4C inhibited LTB4 synthesis with an approximate IC50 = 0.1 microM, whereas BW755C inhibited LTB4 synthesis with an approximate IC50 = 10 microM. These results indicate canine PMNs have the capability to synthesize large quantities of LTB4 when stimulated with calcium ionophore A23187. Furthermore, the 5-lipoxygenase inhibitors BWA4C, an acetohydroxyamic acid, and BW755C, a phenyl pyrazoline, can readily inhibit LTB4 synthesis in canine PMNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号