首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Zheng S  Wang C  Qian G  Wu G  Guo R  Li Q  Chen Y  Li J  Li H  He B  Chen H  Ji F 《Free radical biology & medicine》2012,53(3):473-481
The interplay of a complex genetic basis with the environmental factors of chronic obstructive pulmonary disease (COPD) may account for the differences in individual susceptibility to COPD. Mitochondrial DNA (mtDNA) contributes to an individual's ability to resist oxidation, an important determinant that affects COPD susceptibility. To investigate whether mtDNA haplogroups play important roles in COPD susceptibility, the frequencies of mtDNA haplogroups and an 822-bp mtDNA deletion in 671 COPD patients and 724 control individuals from southwestern China were compared. Multivariate logistic regression analysis revealed that, whereas mtDNA haplogroups A and M7 might be associated with an increased risk for COPD (OR=1.996, 95% CI=1.149-2.831, p=0.006, and OR=1.754, 95% CI=1.931-2.552, p=0.021, respectively), haplogroups F, D, and M9 might be associated with a decreased risk for COPD in this population (OR=0.554, 95% CI=0.390-0.787, p=0.001; OR=0.758, 95% CI=0.407-0.965, p=0.002; and OR=0.186, 95% CI=0.039-0.881, p=0.034, respectively). Additionally, the increased frequency of the 822-bp mtDNA deletion in male cigarette-smoking subjects among COPD patients and controls of haplogroup D indicated that haplogroup D might increase an individual's susceptibility to DNA damage from external reactive oxygen species derived from heavy cigarette smoking. We conclude that haplogroups A and M7 might be risk factors for COPD, whereas haplogroups D, F, and M9 might decrease the COPD risk in this Han Chinese population.  相似文献   

2.
Mitochondria are central eukaryotic organelles in cellular metabolism and ATP production. Mitochondrial DNA (mtDNA) alterations have been implicated in the development of colorectal cancer (CRC). However, there are few reports on the association between mtDNA haplogroups or single nucleotide polymorphisms (SNPs) and the risk of CRC. The mtDNA of 286 Northern Han Chinese CRC patients were sequenced by next-generation sequencing technology. MtDNA data from 811 Han Chinese population controls were collected from two public data sets. Then, logistic regression analysis was used to determine the effect of mtDNA haplogroup or SNP on the risk of CRC. We found that patients with haplogroup M7 exhibited a reduced risk of CRC when compared to patients with other haplogroups (odds ratio [OR] = 0.532, 95% confidence interval [CI] = 0.285–0.937, p = 0.036) or haplogroup B (OR = 0.477, 95% CI = 0.238–0.916, p = 0.030). Furthermore, haplogroup M7 was still associated with the risk of CRC when the validation and combined control cohort were used. In addition, several haplogroup M7 specific SNPs, including 199T>C, 4071C>T and 6455C>T, were significantly associated with the risk of CRC. Our results indicate the risk potential of mtDNA haplogroup M7 and SNPs in CRC in Northern China.  相似文献   

3.
Luo Y  Gao W  Liu F  Gao Y 《Mitochondrial DNA》2011,22(5-6):181-190
Tibetans are well adapted to living and thriving in high-altitude environments. Mitochondria are central links to oxygen consumption, and variations in mitochondrial DNA (mtDNA) could play a role in high-altitude adaptation. Alleles at several polymorphic sites in mtDNA define common haplotypes, or haplogroups, including some that have been implicated in the risk of developing certain diseases. However, few reports have determined whether relationships exist between haplogroups and high-altitude adaptation in the Tibetan population. The D4 haplogroup is a major haplogroup of the Han Chinese. In the present study, genotypes of 12 polymorphisms were determined in members of a Tibetan population (n = 72), low altitude-Han (la-Han, n = 144), and high altitude-Han (ha-Han, n = 227) populations using polymerase chain reaction-restriction fragment length polymorphism and polymerase chain reaction-ligase detection reaction assays. The mitochondrial haplogroup D4 was negatively associated with high-altitude adaptation in Tibetans (P = 0.001 vs. la-Han, OR = 0.166, 95% CI = 0.048-0.567; P = 0.009 vs. ha-Han OR = 0.232, 95% CI = 0.069-0.778). The frequency of the nt3010G-nt3970C haplotype was significantly higher in Tibetans than in la-Han (P = 0.000) and ha-Han (P = 0.001) subjects. Findings in the present study suggest that unique mitochondrial variations determine a genetic background that is associated with high-altitude adaptation in the Tibetan population.  相似文献   

4.
Mitochondrial DNA background has been shown to be involved in the penetrance of Leber’s hereditary optic neuropathy (LHON) in western Eurasian populations. To analyze mtDNA haplogroup distribution pattern in Han Chinese patients with LHON and G11778A mutation, we analyzed the mtDNA haplogroups of 41 probands with LHON known to harbor G11778A mutation by sequencing the mtDNA control region hypervariable segments and some coding region polymorphisms. Each mtDNA was classified according to the available East Asian haplogroup system. The haplogroup distribution pattern of LHON sample was then compared to the reported Han Chinese samples. Haplogroups M7, D, B, and A were detected in 11 (26.8%), 10 (24.4%), 8 (19.5%), and 5 (12.2%) LHON families, respectively, and accounted for 82.9% of the total samples examined. For the remaining seven mtDNAs, six belonged to M8a, M10a, C, N9a, F1a, and R11, respectively, and one could only be assigned into macro-haplogroup M. The LHON sample was distinguished from other Han Chinese samples in the principal component map based on haplogroup distribution frequency. Our results show that matrilineal genetic components of Chinese LHON patients with G11778A are diverse and differ from related Han Chinese regional samples. mtDNA background might affect the expression of LHON and the G11778A mutation in Chinese population.  相似文献   

5.
Han Chinese is the largest ethnic group in the world. During its development, it gradually integrated with many neighboring populations. To uncover the origin of the Han Chinese, ancient DNA analysis was performed on the remains of 46 humans (~1700 to 1900 years ago) excavated from the Taojiazhai site in Qinghai province, northwest of China, where the Di‐Qiang populations had previously lived. In this study, eight mtDNA haplogroups (A, B, D, F, M*, M10, N9a, and Z) and one Y‐chromosome haplogroup (O3) were identified. All analyses show that the Taojiazhai population presents close genetic affinity to Tibeto‐Burman populations (descendants of Di‐Qiang populations) and Han Chinese, suggesting that the Di‐Qiang populations may have contributed to the Han Chinese genetic pool. Am J Phys Anthropol, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Derenko  M. V.  Lunkina  A. V.  Malyarchuk  B. A.  Zakharov  I. A.  Tsedev  Ts.  Park  K. S.  Cho  Y. M.  Lee  H. K.  Chu  Ch. H. 《Russian Journal of Genetics》2004,40(11):1292-1299
Using the data on mitochondrial DNA (mtDNA) restriction polymorphism, the gene pools of Koreans (N = 164) and Mongolians (N = 48) were characterized. It was demonstrated that the gene pools were represented by the common set of mtDNA haplogroups of East Asian origin (M*, M7, M8a, M10, C, D4, G*, G2, A, B*, B5, F1, and N*). In addition to this set, mtDNA haplogroups D5 and Y were identified in Koreans while Mongolians possessed haplogroup Z. Only in Mongolians, a European component with the frequency of 10.4% and represented by the mtDNA types belonging to haplogroups K, U4, and N1, was identified. Phylogenetic and statistical analyses of the data on mtDNA variation in the populations of South Siberia, Central, and East Asia suggested the existence of interpopulation differentiation within these regions, the main role in which was played by the geographical and linguistic factors. Analysis of the pairwise F ST distances demonstrated close genetic similarity of Koreans to Northern Chinese, which in turn, were clearly different from Southern Chinese populations. Mongolians occupied an intermediate position between the ethnic groups of South Siberia and Central/East Asia.  相似文献   

7.
Mitochondrial dysfunction has repeatedly been reported associated with type 2 diabetes mellitus (T2DM) and metabolic syndrome (MS), as have mitochondrial DNA (mtDNA) tRNA and duplication mutations and mtDNA haplogroup lineages. We identified 19 Taiwanese T2DM and MS pedigrees from Taiwan, with putative matrilineal transmission, one of which harbored the pathogenic mtDNA tRNALeu(UUR) nucleotide (nt) 3243A>G mutation on the N9a3 haplogroup background. We then recruited three independent Taiwanese cohorts, two from Taipei (N?=?498, mean age 52 and N?=?1002, mean age 44) and one from a non-urban environment (N?=?501, mean age 57). All three cohorts were assessed for an array of metabolic parameters, their mtDNA haplogroups determined, and the haplogroups correlated with T2DM/MS phenotypes. Logistic regression analysis revealed that mtDNA haplogroups D5, F4, and N9a conferred T2DM protection, while haplogroups F4 and N9a were risk factors for hypertension (HTN), and F4 was a risk factor for obesity (OB). Additionally, the 5263C>T (ND2 A165V) variant commonly associated with F4 was associated with hypertension (HTN). Cybrids were prepared with macro-haplogroup N (defined by variants m.ND3 10398A (114T) and m.ATP6 8701A (59T)) haplogroups B4 and F1 mtDNAs and from macro-haplogroup M (variants m.ND3 10398G (114A) and m.ATP6 8701G (59A)) haplogroup M9 mtDNAs. Additionally, haplogroup B4 and F1 cybrids were prepared with and without the mtDNA variant in ND1 3394T>C (Y30H) reported to be associated with T2DM. Assay of mitochondria complex I in these cybrids revealed that macro-haplogroup N cybrids had lower activity than M cybrids, that haplogroup F cybrids had lower activity than B4 cybrids, and that the ND1 3394T>C (Y30H) variant reduced complex I on both the B4 and F1 background but with very different cumulative effects. These data support the hypothesis that functional mtDNA variants may contribute to the risk of developing T2DM and MS.  相似文献   

8.
Mitochondrion-derived reactive oxygen species possibly play an important role in the pathogenesis of atherosclerosis and atherothrombotic cerebral infarction, because mitochondria in vascular endothelial cells are the major site of superoxide production. In the present study, we surveyed mitochondrial haplogroups associated with atherothrombotic cerebral infarction in 1081 Japanese subjects. Twenty-six mitochondrial single nucleotide polymorphisms of 11 major mitochondrial haplogroups (F, B, A, N9a, M7a, M7b, M7c, G1, G2, D4, and D5) were determined by use of 28-plex PCR and fluorescent beads combined with sequence-specific oligonucleotide probes. Multivariate logistic regression analysis with adjustment for conventional risk factors revealed that mitochondrial haplogroup A was associated with atherothrombotic cerebral infarction in female subjects (P< 0.05). However, no significant association was detected for males. Our study shows that haplogroup A confers an increased risk of atherothrombotic cerebral infarction in Japanese females. Validation of our findings will require additional studies with independent subject panels.  相似文献   

9.
Sequence variation in mitochondrial DNA (mtDNA) may cause slight differences both in the functioning of the respiratory chain and in free radical production, and an association between certain mtDNA haplogroups and longevity has been suggested. In order to determine further the role of mtDNA in longevity, we studied the frequencies of mtDNA haplogroups and haplogroup clusters among elderly subjects and controls in a Finnish population. Samples were obtained from 225 persons aged 90-91 years (Vitality 90+) and from 400 middle-aged controls and 257 infants. MtDNA haplogroups were determined by restriction fragment length polymorphism. The haplogroup frequencies of the Vitality 90+ group differed from both those of the middle-aged controls ( P=0.01) and the infants ( P=0.00005), haplogroup H being less frequent than among the middle-aged subjects ( P=0.001) and infants ( P=0.00001), whereas haplogroups U and J were more frequent. Haplogroup clusters also differed between Vitality 90+ and both the middle-aged subjects ( P=0.002) and infants ( P=0.00001), the frequency of haplogroup cluster HV being lower in the former and that of UK and WIX being higher. These data suggest an association between certain mtDNA haplogroups or haplogroup clusters and longevity. Furthermore, our data appear to favour the presence of advantageous polymorphisms and support a role for mitochondria and mtDNA in the degenerative processes involved in ageing.  相似文献   

10.
The relationships between five classes of Japanese people (i.e., 96 centenarians, 96 Alzheimer's disease (AD) patients, 96 Parkinson's disease (PD) patients, 96 type 2 diabetic (T2D) patients, and 96 healthy non-obese young males) and their mitochondrial single nucleotide polymorphism (mtSNP) frequencies at individual mtDNA positions of the entire mitochondrial genome were examined using the radial basis function (RBF) network and the modified method. New findings of mitochondrial haplogroups were obtained for individual classes. The five classes of people were associated with the following haplogroups: Japanese centenarians-M7b2, D4b2a, and B5b; Japanese AD patients-G2a, B4cl, and N9b1; Japanese PD patients-M7b2, B4e, and B5b; Japanese T2D patients-B5b, M8al, G, D4, and F1; and Japanese healthy non-obese young males-D4g and D4b1b. From the points of common haplogroups among the five classes, the cente- narians have the common haplogroups M7b2 and B5b with the PD patients and common haplogroup B5b with the T2D patients. In addition, the 112 Japanese semi-supercentenarians (over 105 years old) recently reported were also examined by the method proposed. The results obtained were the haplogroups D4a, B4c1a, M7b2, F1, M1, and B5b. These results are different from the previously reported haplogroup classifications. As the proposed analysis method can predict a person's mtSNP constitution and the probabilities of becoming a centenarian, AD patient, PD patient, or T2D patient, it may be useful in initial diagnosis of various diseases.  相似文献   

11.
Zheng S  Qian P  Li F  Qian G  Wang C  Wu G  Li Q  Chen Y  Li J  Li H  He B  Ji F 《PloS one》2012,7(2):e31322
Mitochondrial DNA (mtDNA) is particularly susceptible to oxidative damage and mutation due to the high rate of reactive oxygen species (ROS) production and limited DNA-repair capacity in mitochondrial. Previous studies demonstrated that the increased mtDNA copy number for compensation for damage, which was associated with cigarette smoking, has been found to be associated with lung cancer risk among heavy smokers. Given that the common and “non-pathological” mtDNA variations determine differences in oxidative phosphorylation performance and ROS production, an important determinant of lung cancer risk, we hypothesize that the mtDNA variations may play roles in lung cancer risk. To test this hypothesis, we conducted a case-control study to compare the frequencies of mtDNA haplogroups and an 822 bp mtDNA deletion between 422 lung cancer patients and 504 controls. Multivariate logistic regression analysis revealed that haplogroups D and F were related to individual lung cancer resistance (OR = 0.465, 95%CI = 0.329–0.656, p<0.001; and OR = 0.622, 95%CI = 0.425–0.909, p = 0.014, respectively), while haplogroups G and M7 might be risk factors for lung cancer (OR = 3.924, 95%CI = 1.757–6.689, p<0.001; and OR = 2.037, 95%CI = 1.253–3.312, p = 0.004, respectively). Additionally, multivariate logistic regression analysis revealed that cigarette smoking was a risk factor for the 822 bp mtDNA deletion. Furthermore, the increased frequencies of the mtDNA deletion in male cigarette smoking subjects of combined cases and controls with haplogroup D indicated that the haplogroup D might be susceptible to DNA damage from external ROS caused by heavy cigarette smoking.  相似文献   

12.
Decreased mitochondrial function plays a pivotal role in the pathogenesis of type 2 diabetes mellitus (T2DM). Recently, it was reported that mitochondrial DNA (mtDNA) haplogroups confer genetic susceptibility to T2DM in Koreans and Japanese. Particularly, mtDNA haplogroup N9a is associated with a decreased risk of T2DM, whereas haplogroups D5 and F are associated with an increased risk. To examine functional consequences of these haplogroups without being confounded by the heterogeneous nuclear genomic backgrounds of different subjects, we constructed transmitochondrial cytoplasmic hybrid (cybrid) cells harboring each of the three haplogroups (N9a, D5, and F) in a background of a shared nuclear genome. We compared the functional consequences of the three haplogroups using cell-based assays and gene expression microarrays. Cell-based assays did not detect differences in mitochondrial functions among the haplogroups in terms of ATP generation, reactive oxygen species production, mitochondrial membrane potential, and cellular dehydrogenase activity. However, differential expression and clustering analyses of microarray data revealed that the three haplogroups exhibit a distinctive nuclear gene expression pattern that correlates with their susceptibility to T2DM. Pathway analysis of microarray data identified several differentially regulated metabolic pathways. Notably, compared to the T2DM-resistant haplogroup N9a, the T2DM-susceptible haplogroup F showed down-regulation of oxidative phosphorylation and up-regulation of glycolysis. These results suggest that variations in mtDNA can affect the expression of nuclear genes regulating mitochondrial functions or cellular energetics. Given that impaired mitochondrial function caused by T2DM-associated mtDNA haplogroups is compensated by the nuclear genome, we speculate that defective nuclear compensation, under certain circumstances, might lead to the development of T2DM.  相似文献   

13.
Recent studies have shown association of mtDNA background with cancer development. We analyzed mitochondrial DNA (mtDNA) control region variation of 201 patients with nasopharyngeal carcinoma (NPC) and of 201 normal controls from Chaoshan Han Chinese to discern mtDNA haplogroup effect on the disease onset. Binary logistic regression analysis with adjustment for gender and age revealed that the haplogroup R9 (P = 0.011, OR = 1.91, 95% CI = 1.16–3.16), particularly its sub-haplogroup F1 (P = 0.015, OR = 2.43, 95% CI = 1.18–5.00), were associated significantly with increased NPC risk. These haplogroups were further confirmed to confer high NPC risk in males and/or individuals ≥40 years of age, but not in females or in subjects <40 years old. Our results indicated that mtDNA background confers genetic susceptibility to NPC in Chaoshan Han Chinese, and R9, particularly its sub-haplogroup F1, is a risk factor for NPC.  相似文献   

14.
Superoxide, which mitochondria mainly produce in vascular endothelial cells, plays an important role in the pathogenesis of atherosclerosis and coronary artery disease. Accordingly, mitochondrial functional differences are thought to be one of the most important factors for the risk of myocardial infarction among various individuals. In the present study, we surveyed mitochondrial haplogroups associated with myocardial infarction in Japanese subjects. The study population comprised 2,137 unrelated Japanese individuals, including 1,181 subjects with a first myocardial infarction (920 males, 261 females) and the control subjects (522 males, 434 females). Twenty-eight mitochondrial single nucleotide polymorphisms of 12 major mitochondrial haplogroups (A, B, D4, D5, F, G1, G2, M7a, M7b, M7c, N9a, and N9b) were determined by use of 28-plex PCR and fluorescent beads combined with sequence-specific oligonucleotide probes. After adjustment for age, sex, body mass index, and prevalence of smoking, hypertension, hypercholesterolemia, and type 2 diabetes, a significantly (P = 0.0019) lower prevalence of haplogroup N9b was detected in subjects with myocardial infarction than in the controls. Especially, the prevalence of this haplogroup was significantly lower (P = 0.0007) in the male subjects with the disease than in the male controls. In contrast, there were trends towards higher prevalence of the disease in haplogroup G1 for males (P < 0.05). No significant haplogroup-related associations were detected for females. Our data suggest that haplogroup N9b confers resistance against myocardial infarction in Japanese males. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

15.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024-16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to a common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uigur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplogroups with the Central Asian ethnic groups and Mongols. Comparisons with modern paleo-Asian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable paleo-Asian contribution to the modern Yakut gene pool.  相似文献   

16.
Mitochondrial 12S rRNA 1555A>G mutation is one of the important causes of aminoglycoside-induced and nonsyndromic deafness. Our previous investigations showed that the A1555G mutation was a primary factor underlying the development of deafness but was insufficient to produce deafness phenotype. However, it has been proposed that mitochondrial haplotypes modulate the phenotypic manifestation of the 1555A>G mutation. Here, we performed systematic and extended mutational screening of 12S rRNA gene in a cohort of 1742 hearing-impaired Han Chinese pediatric subjects from Zhejiang Province, China. Among these, 69 subjects with aminoglycoside-induced and nonsyndromic deafness harbored the homoplasmic 1555A>G mutation. These translated to a frequency of ~3.96% for the 1555A>G mutation in this hearing–impaired population. Clinical and genetic characterizations of 69 Chinese families carrying the 1555A>G mutation exhibited a wide range of penetrance and expressivity of hearing impairment. The average penetrances of deafness were 29.5% and 17.6%, respectively, when aminoglycoside-induced hearing loss was included or excluded. Furthermore, the average age-of-onset for deafness without aminoglycoside exposure ranged from 5 and 30 years old, with the average of 14.5 years. Their mitochondrial genomes exhibited distinct sets of polymorphisms belonging to ten Eastern Asian haplogroups A, B, C, D, F, G, M, N, R and Y, respectively. These indicated that the 1555A>G mutation occurred through recurrent origins and founder events. The haplogroup D accounted for 40.6% of the patient’s mtDNA samples but only 25.8% of the Chinese control mtDNA samples. Strikingly, these Chinese families carrying mitochondrial haplogroup B exhibited higher penetrance and expressivity of hearing loss. In addition, the mitochondrial haplogroup specific variants: 15927G>A of haplogroup B5b, 12338T>C of haplogroup F2, 7444G>A of haplogroup B4, 5802T>C, 10454T>C, 12224C>T and 11696G>A of D4 haplogroup, 5821G>A of haplogroup C, 14693A>G of haplogroups Y2 and F, and 15908T>C of Y2 may enhance the penetrace of hearing loss in these Chinese families. Moreover, the absence of mutation in nuclear modifier gene TRMU suggested that TRMU may not be a modifier for the phenotypic expression of the 1555A>G mutation in these Chinese families. These observations suggested that mitochondrial haplotypes modulate the variable penetrance and expressivity of deafness among these Chinese families.  相似文献   

17.
Zhang AM  Jia X  Bi R  Salas A  Li S  Xiao X  Wang P  Guo X  Kong QP  Zhang Q  Yao YG 《PloS one》2011,6(11):e27750
Recent studies have shown that mtDNA background could affect the clinical expression of Leber hereditary optic neuropathy (LHON). We analyzed the mitochondrial DNA (mtDNA) variation of 304 Chinese patients with m.11778G>A (sample #1) and of 843 suspected LHON patients who lack the three primary mutations (sample #2) to discern mtDNA haplogroup effect on disease onset. Haplogroup frequencies in the patient group was compared to frequencies in the general Han Chinese population (n = 1,689; sample #3). The overall matrilineal composition of the suspected LHON population resembles that of the general Han Chinese population, suggesting no association with mtDNA haplogroup. In contrast, analysis of these LHON patients confirms mtDNA haplogroup effect on LHON. Specifically, the LHON sample significantly differs from the general Han Chinese and suspected LHON populations by harboring an extremely lower frequency of haplogroup R9, in particular of its main sub-haplogroup F (#1 vs. #3, P-value = 1.46×10−17, OR = 0.051, 95% CI: 0.016–0.162; #1 vs. #2, P-value = 4.44×10−17, OR = 0.049, 95% CI: 0.015–0.154; in both cases, adjusted P-value <10−5) and higher frequencies of M7b (#1 vs. #3, adjusted P-value = 0.001 and #1 vs. #2, adjusted P-value = 0.004). Our result shows that mtDNA background affects LHON in Chinese patients with m.11778G>A but not suspected LHON. Haplogroup F has a protective effect against LHON, while M7b is a risk factor.  相似文献   

18.
To study the mitochondrial gene pool structure in Yakuts, polymorphism of mtDNA hypervariable segment I (16,024–16,390) was analyzed in 191 people sampled from the indigenous population of the Sakha Republic. In total, 67 haplotypes of 14 haplogroups were detected. Most (91.6%) haplotypes belonged to haplogroups A, B, C, D, F, G, M*, and Y, which are specific for East Eurasian ethnic groups; 8.4% haplotypes represented Caucasian haplogroups H, HV1, J, T, U, and W. A high frequency of mtDNA types belonging to Asian supercluster M was peculiar for Yakuts: mtDNA types belonging to haplogroup C, D, or G and undifferentiated mtDNA types of haplogroup M (M*) accounted for 81% of all haplotypes. The highest diversity was observed for haplogroups C and D, which comprised respectively 22 (44%) and 18 (30%) haplotypes. Yakuts showed the lowest genetic diversity (H = 0.964) among all Turkic ethnic groups. Phylogenetic analysis testified to common genetic substrate of Yakuts, Mongols, and Central Asian (Kazakh, Kyrgyz, Uighur) populations. Yakuts proved to share 21 (55.5%) mtDNA haplotypes with the Central Asian ethnic groups and Mongols. Comparisons with modern Paleoasian populations (Chukcha, Itelmen, Koryaks) revealed three (8.9%) haplotypes common for Yakuts and Koryaks. The results of mtDNA analysis disagree with the hypothesis of an appreciable Paleoasian contribution to the modern Yakut gene pool.  相似文献   

19.
Mitochondrial dysfunction has been widely reported in schizophrenia patients. To dissect the matrilineal structure of Han Chinese with or without schizophrenia and to decipher the maternal influence and evolutionary history of schizophrenia, a total of 1212 schizophrenia patients and 1005 matched healthy controls, all of Han Chinese origin, were recruited in Hunan Province, China. We classified haplogroup for each individual based on mitochondrial DNA (mtDNA) sequence variations and compared the haplogroup distribution pattern between cases and controls. Haplogroup B5a presented a higher frequency in cases than in controls (P = 0.02, OR = 1.67, 95% CI = [1.09, 2.56]), and this result could be confirmed by permutation analysis. Age estimation of haplogroup B5a in cases revealed a much younger age than that of controls, which was coincident with the Northern Hemisphere deglaciation at the end of the Last Glacial Maximum. Analysis of complete mtDNA in five patients belonging to haplogroup B5a showed that this background effect might be caused by haplogroup- defining variants m.8584G〉A and m.10398A〉G. Our results showed that matrilineal risk factor for schizophrenia had an ancient origin and might acquire a predisposing effect on schizophrenia due to the environment change and/or orchestration with other nuclear genetic factors appeared recently in human evolutionary history.  相似文献   

20.
Mitochondrial DNA (mtDNA) variation was studied in population of Oroks (n = 61), the indigenous inhabitants of Eastern Siberia. Most of the mtDNA types examined fell into five haplogroups (C, D, G, M10, and Y) typical of Eastern Eurasian populations. For three haplogroups (D, C, and M10), the founder effect was established. In one individual, a unique lineage belonging to haplogroup HV and typical of Caucasoids was detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号