首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
本研究在原来CASA模型的基础上,对模型参数最大光能利用率和水分胁迫系数的算法进行了改进,利用改进后的CASA模型模拟了2010年内蒙古锡林郭勒盟草原植被净初级生产力(NPP),并用地面实测样方数据对改进后的模型进行精度验证。结果表明:改进的CASA模型可应用于内蒙古草原小尺度植被NPP的估测,模拟NPP值与地面实测值之间的相关性达到显著水平(R2=0.829,P0.05);2010年内蒙古锡林郭勒盟草原植被生长季(4—10月)NPP为284.64 g C·m-2·a-1,不同地区年均NPP相差较大,东北部东乌珠穆沁旗草原NPP高达411.11 g C·m-2·a-1,而西北部的二连浩特市草原NPP仅为158.87 g C·m-2·a-1;整体上,锡林郭勒盟草原的NPP由东向西逐步递减,这与该区域水热条件限制基本一致;由于降水量的时滞效应,该年度内NPP出现两次峰值;2010年锡林郭勒境内草原NPP集中分布在250~350 g C·m-2·a-1,草甸草原的NPP最大,典型草原次之,荒漠草原最小。  相似文献   

2.
基于MOD17A3的陕西省植被NPP变化特征   总被引:9,自引:0,他引:9  
利用2000-2006年MOD17A3数据集的年均NPP数据和GIS技术定量分析了陕西省植被NPP的时空变化特征,结果表明:陕西省年NPP变化范围为340 ~434 g C·m-2·a-1,平均值为383 g C·m-2·a-1;年均NPP分布全省呈现北低南高,关中、陕南呈现西高东低的趋势.长城沿线风沙区年平均NPP在0~200gC·m-2·a-1,黄土高原丘陵沟壑区年平均NPP在200~ 300 g C·m-2·a-1,中部林区年平均NPP在400~500 g C·m-2·a-1,渭北旱作农业区年平均NPP在300~400 g C·m-2·a-1,关中灌溉农作区年平均NPP大部在400~500 g C·m-2·a-1,秦巴山地林区年平均NPP >400 gC·m-2·a-1.与2000年相比,2006年陕西省年NPP大部分地区是增加的,年NPP增加的面积占国土面积的90.5%.陕西省NPP线性变化趋势以增加为主,NPP变化百分率增加10%以上的面积所占陕西省国土面积的比例为50.6%;植被NPP的变化百分率>10%的植被主要分布在延安市以北地区,说明通过实施退耕还林等生态建设工程,这些地区植被状况得到较好的改善.  相似文献   

3.
利用2001-2010年EOS/MODIS17A3卫星遥感资料,对广西植被净初级生产力(NPP)时空特征及其影响因素进行分析.结果表明:(1)NPP 表现出明显的年际变化,2005年植被年均 NPP 最小为625 gC??m-2??a-1,2003年最大,为714 gC??m-2??a-1,十年间广西植被年NPP平均值为662 gC??m-2??a-1;(2)不同植被类型NPP有较大差异,森林、灌木、农作物的NPP 平均值分别为834、614、517 gC??m-2??a-1;(3)十年间广西区年均NPP为显著下降趋势,且年均气温和降水对NPP时间变化作用显著,而日照时数对 NPP 时间变化的作用不显著;(4)广西区NPP空间格局形成主要影响因素为坡度,其次为经度,再次为地貌特征、纬度和降水;(5)非喀斯特区域北热带季雨林、南亚热带季雨林化/季雨化常绿阔叶林年均 NPP 大于喀斯特地区,相反,喀斯特地区中亚热带常绿阔叶林,农作物年均NPP大于非喀斯特地区.整体而言,广西非喀斯特地区植被NPP为683 gC??m-2??a-1,喀斯特地区植被NPP为620 gC??m-2??a-1.  相似文献   

4.
基于2003~2012年的遥感数据及DEM高程模型校准后的气候数据,利用CASA模型估算了祁连山地区植被净初级生产力(NPP),并对NPP的年内、年际变化以及时空分布规律和变化趋势进行分析。结果表明:(1)祁连山地区年内NPP集中在6~8月,占全年NPP总量的86.39%;2003~2007年,NPP年均值在165.28~192.75g·m-2·a-1之间小幅波动;2007~2009年呈现出较明显的下降趋势,由168.63g·m-2·a-1下降到153.17g·m-2·a-1;2009~2012年表现出明显的上升趋势,最大值达207.13g·m-2·a-1。(2)祁连山地区的NPP东西部分布差异大,东部地区大多在200~400g·m-2·a-1之间,部分地区可达500g·m-2·a-1之上;中部地区存在较明显的南北差异,南部大多地区在100~300g·m-2·a-1之间,北部大多地区在100~400g·m-2·a-1之间;西部广大地区大多在0~100g·m-2·a-1之间,荒漠和高山冰雪覆盖区域生物量最低。(3)近十年来,祁连山地区的NPP呈波动增加趋势,增加面积约9 867km2,约占植被总面积的21.19%,减少面积约8 173km2,约占植被总面积的17.52%,表明祁连山的生态健康水平总体在改善但局部在恶化。  相似文献   

5.
基于IBIS模型的东北森林净第一性生产力模拟   总被引:3,自引:0,他引:3  
王萍 《生态学报》2009,29(6):3213-3220
集成生物圈模型(the integrated biosphere simulator, IBIS)作为目前最复杂的基于动态植被模型的陆面生物模型之一,已经成为模拟大尺度(全球区域)的植被地理分布、净第一性生产力和碳平衡以及预测气候变化对陆地生态系统潜在影响的有效工具.应用IBIS模型对2004~2005年大小兴安岭的植被净第一性生产力(net primary productivity, NPP)进行了定量估算,模拟与研究了大小兴安岭森林生态系统植被NPP的空间分布格局以及不同植被类型的NPP季节变化特征,结果表明:大小兴安岭森林植被年均NPP值为494.7 gCm-2 · a-1,年吸收0.06Pg的大气碳.研究区年均NPP的空间分布主要受热量条件的影响,大兴安岭地区基本上呈现出由北向南增加的趋势,小兴安岭地区除单位面积年均NPP大于1.1kgCm-2 · a-1在小兴安岭北部孙吴和逊克地区分布外,基本上呈现出均匀分布的趋势.加强基础数据研究的同时如何根据中国的实际合理确定模型参数,使模型在我国典型生态系统中应用是值得进一步研究的.  相似文献   

6.
基于1981-2004年遥感监测和气象数据,采用CASA(Carnegie-Ames-Stanford Approach)模型模拟分析藏北地区草地植被净第一性生产力(NPP)及其时空变化特征.结果表明:受水热条件的制约,藏北地区草地植被NPP空间分布规律呈水平地带性分布,由东南向西北逐渐由230g C.m-2.a-1减少到接近0.藏北地区草地植被NPP整体水平较低,年均草地植被总NPP为21.5×1012g C.a-1,多年平均值仅为48.1g C.m-2.a-1,明显低于青藏高原和其它草原区.藏北地区坡度小于1°平地和平滩地,以及南坡的草地植被年平均NPP相对较低.藏北主要高寒草地7-9月NPP占全年NPP的64.0%~70.0%.1981-2004年间,藏北地区草地植被总NPP的年际变化较大,并有进一步下降趋势.  相似文献   

7.
植被净初级生产力(NPP)是草原湿地生态系统碳收支平衡和气候变化的核心内容之一。本研究基于植被指数、气象数据(降水和气温)、植被类型数据,利用CASA模型对若尔盖草原湿地1999—2015年NPP进行估算,分析了若尔盖草原湿地NPP时空格局特征及其与气候因子的关系。结果表明: NPP实测值与模拟值之间显著相关,R2为0.78,均方根误差为120.3 g C·m-2·a-1;研究区年均和生长季(4—9月)NPP分别为329.0、229.4 g C·m-2·a-1,年际间波动明显,以2.3、1.6 g C·m-2·a-1的微弱趋势下降,不同植被类型的年均及生长季NPP的年际波动与整个研究区的波动趋势基本一致;年均和生长季NPP的变化斜率分别为-21.3~18.7、-31.5~23.1 g C·m-2·a-1,显著增加的面积分别占研究区总面积的0.3%和0.7%,主要分布于森林覆盖区和湿地生态补偿区;显著下降的面积分别占研究区总面积的1.4%和6.4%,主要分布于人类活动集中的地区;研究区不同植被的固碳能力存在差异,其中,森林最强,草地次之,湿地最弱;降水是影响草原湿地植被NPP的主导气候因子。  相似文献   

8.
应用BIOME-BGC模型和树木年轮数据模拟1952-2008年华北地区典型油松林生态系统净初级生产力(NPP)动态,探究了树木径向生长和NPP对区域气候变暖的响应以及未来气候情景下油松林生态系统NPP动态变化.结果表明:1952-2008年,研究区油松林生态系统NPP波动于244.12 ~645.31 g C·m-2·a-1,平均值为418.6 g C·m-2·a-1.5-6月的平均温度和上年8月至当年7月的降水是限制该地区油松径向生长和油松林生态系统NPP的主要因子.研究期间,随着区域暖干化趋势的加强,树木径向生长和生态系统NPP均呈下降趋势.未来气候情景下,NPP对温度和降水的单独和复合变化的响应为正向.CO2浓度升高有利于油松林生态系统NPP的增加,CO2的施肥效应使NPP增加16.1%.在生态系统和区域水平,树木年轮是一种理想的指示生态系统动态变化的代用资料,可以检验和校正包括BIOME-BGC模型在内的各种生态系统过程模型.  相似文献   

9.
南方丘陵山地带植被净第一性生产力时空动态特征   总被引:10,自引:7,他引:3  
王静  王克林  张明阳  章春华 《生态学报》2015,35(11):3722-3732
基于MODIS数据并结合气象资料和植被参数,利用修正过最大光能利用率的CASA(Carnegie-Ames-Stanford Approach)模型,对国家生态安全屏障区的"两屏三带"之一南方丘陵山地带2000—2010年的植被净第一性生产力(NPP)进行模拟,并对其时空分布格局进行了分析。研究结果表明:(1)研究区2000—2010年期间年NPP的变化范围为406.0—485.6 g C m-2a-1,年平均NPP为445.7 g C m-2a-1,高于全国平均水平;NPP年际上升趋势不显著(P=0.39),平均增加值为2.28 g C m-2a-1;(2)NPP空间分布特征与植被类型具有较好的一致性,单位面积NPP以混交林覆盖区最高(501.0 g C m-2a-1),草地覆盖区NPP最低(390.7 g C m-2a-1);(3)植被NPP的时空变化与气温、降雨和太阳辐射等自然因素的变化有直接关系,而社会、经济、政策等人为因素通过改变土地利用方式来间接影响。  相似文献   

10.
中国西南喀斯特区自1999年开始实施了退耕还林(草)与生态移民等生态恢复措施。对不同恢复阶段植被碳储量的研究对评估生态恢复措施的生态服务效益具有重要意义。本文基于2000—2010年连续11年的MODIS遥感数据,结合气象与样地调查数据,运用地理信息系统技术,对桂西北典型喀斯特区植被碳储量时空特征进行了分析。结果表明:植被净初级生产力(net primary productivity,NPP)和生态系统净初级生产力(net ecosystem productivity,NEP)均呈波动上升变化趋势,11年间年均NPP和NEP分别为396.61和370.58 g C·m-2,变化显著的面积比例分别为21.14%和18.09%(P0.05);年均NPP、NEP及其变化趋势在不同分区之间存在差异,年均NPP和NEP以西部喀斯特区最高(NPP:422.73 g C·m-2,NEP:397.25 g C·m-2),10年变化率则以石漠化治理区最大(NPP:34.20 g C·m-2,NEP:30.30 g C·m-2)(P0.05);年均NPP、NEP与降水或温度之间相关性不显著,各植被类型NPP和NEP变化趋势相关性程度不同;桂西北喀斯特区退耕还林(草)与生态移民生态恢复措施显著增加了植被碳储量,提升了生态服务效益。  相似文献   

11.
东北林区不同尺度森林的含碳率   总被引:6,自引:0,他引:6  
准确估算森林生态系统碳储量对整个陆地生态系统碳循环及全球变化研究具有至关重要的作用.本研究利用2007、2008年东北林区(大兴安岭林区、小兴安岭林区、张广才岭和长白山林区)标准地调查数据及同一时期的一类样地清查数据,采用地面乔、灌、草生物量模型及实验室Multi N/C 3000分析仪测定的林木含碳率,计算不同尺度上森林生物量及碳储量,分析不同尺度森林含碳率的变化及稳定性.结果表明: 东北林区林木不同器官的含碳率差异明显,其平均含碳率为树叶(0.4448)>树枝(0.4422)>树皮(0.4398)>树干(0.4351).张广才岭和长白山林区针叶林的含碳率高于阔叶林,而大、小兴安岭林区阔叶林的含碳率高于针叶林.研究区域森林的含碳率相对稳定,东北林区森林总含碳率为0.44.  相似文献   

12.
“一江两河”中部流域植被净初级生产力估算   总被引:4,自引:0,他引:4  
基于中分辨率成像光谱仪(MODIS)的遥感数据以及地面实际观测资料,采用数学模型方法,对西藏“一江两河”中部流域地区2000和2006年的植被净初级生产力(NPP)进行了估算.结果表明:研究区NPP由河谷向山脊逐渐递减,这与该区的水热梯度基本一致;该区单位面积年NPP平均为86.8 g C·m-2·a-1,2006年比2000年高2.15 g C·m-2·a-1,不同植被类型的单位面积年NPP以农田(243.1 g C·m-2·a-1)最大,荒漠(35.6 g C·m-2·a-1)最小;研究区两年平均总NPP为512.8×1010 g C·a-1,2006年比2000年高12.7×1010 g C·a-1,不同植被类型的总NPP以草甸(194.4×1010 g C·a-1)最高,荒漠(30.3×1010 g C·a-1)最低.研究期间,人类活动强烈区域(道路缓冲区0~4 km)的植被NPP呈下降趋势,而人类活动较难到达区域的植被NPP呈增加趋势.  相似文献   

13.
曹晓杰  曹伟  张悦  郭佳  高燕 《植物研究》2022,42(5):753-761
为了更好地理解植物区系的起源、种系分化及演化进程,推进特有植物保护工作,本文对东北地区内分布的中国特有植物、东北地区特有植物和植物区系地区特有植物的物种组成、科属结构、生活型组成、区系特征和地理分布情况进行了系统研究。结果表明:①研究区域内共有中国特有植物289种、东北地区特有植物109种、长白植物区系地区特有植物154种、大兴安岭植物区系地区特有植物16种、蒙古草原植物区系地区特有植物10种、华北植物区系地区特有植物20种。②各类特有植物中均以草本植物种数最多,其中多年生草本植物占绝对优势,乔木、灌木和藤本相对较少。③中国特有植物集中分布在东北地区大兴安岭山脉和长白山山脉。④东北地区特有植物集中分布地区与东北地区主要山脉走向一致,说明东北地区特有植物以山地起源植物为主。⑤长白植物区系地区植物特有性较强,表现出区系较为成熟的性质。大兴安岭植物区系地区、蒙古草原植物区系地区和华北植物区系地区特有性较弱,表现出区系较年轻的性质。⑥长白植物区系地区特有植物集中分布在吉林长白山山脉和长白山山脉向南延伸的余脉上。大兴安岭植物区系地区特有植物在区内分布较均匀,华北植物区系地区和蒙古草原植物区系地区特有植物在区内分布较零散。  相似文献   

14.
陈智 《应用生态学报》2019,30(5):1625-1632
中国东北森林生态系统是重要的碳汇功能区,也是对环境变化响应的敏感区,分析其植被生产力和碳素利用效率的变化特征及其对气候变化的响应对于区域碳收支的准确评估和预测具有重要意义.本研究利用MODIS的长期监测数据,结合植被类型分布数据,对中国东北森林生态系统2000—2015年生产力(净初级生产力NPP、总初级生产力GPP)和碳素利用率(NPP/GPP)时空变化特征进行分析.结果表明: 研究期间,东北森林生态系统平均NPP和GPP分别为346.4和773 g C·m-2·a-1,平均NPP/GPP为0.45.不同森林类型的NPP和GPP依次为针阔混交林>落叶阔叶林>针叶林,NPP/GPP在不同森林类型间无显著差异.NPP和GPP呈现出东南高、西北低的空间分布特点.2000—2015年间,东北森林生态系统NPP、GPP和NPP/GPP呈波动增加趋势,固碳能力逐步增强.NPP、GPP和NPP/GPP的变化趋势和变化速率表现出空间差异性,在大兴安岭南部地区显著增加,在大兴安岭北部地区显著下降,其余区域呈微弱增加趋势.与气候因子的相关性分析表明,年降水量的增加是驱动东北森林生态系统NPP、GPP和NPP/GPP波动增加的主要因素.  相似文献   

15.
对中国东北地区3个种群(大兴安岭、小兴安岭和长白山山脉)的远东鼩鼱(77个样本)Cyt b基因全序列进行分析,共获得64个单倍型。整体单倍型多态性为0.9920,核苷酸多态性为0.0105,表明该地区远东鼩鼱具有较高遗传多样性,且长白山山脉远东鼩鼱种群遗传多样性明显高于大兴安岭和小兴安岭种群。F-统计量、遗传相似系数和遗传距离分析结果均显示,种群间和采样地间的遗传距离与地理距离基本相符。方差分析显示,种群间的变异占总变异的33.4%,种群内的采样地间变异占总变异的10.2%,采样点内部变异占总变异的56.4%。种群历史分析显示,东北地区远东鼩鼱未经历过数量扩张。从GenBank下载了欧亚其他地区远东鼩鼱序列进行遗传结构研究。远东鼩鼱系统发生树分化为2大分支:一大支主要由大兴安岭和小兴安岭种群构成,两种群具有一定分化;另一大支又分为两个分支。中介网络图显示,远东鼩鼱具有3个谱系:一个谱系主要由大兴安岭和小兴安岭的单倍型样本构成,还包括长白山山脉的4个单倍型样本;另一谱系包括来自于中国东北地区3个种群的个别单倍型,还包括俄罗斯贝加尔湖单倍型和芬兰单倍型;最后一个谱系完全是由长白山山脉单倍型构成。遗传多样性、系统发生树和中介网络图结果均表明,长白山山脉为远东鼩鼱末次冰期避难所。  相似文献   

16.
An improved individual-based forest ecosystem carbon budget model for China (FORCCHN) was applied to investigate the spatial-temporal dynamics of net primary productivity of different forest types in northeastern China. In this study, the forests of northeastern China were categorized into four ecological types according to their habitats and generic characteristics (evergreen broadleaf forest, deciduous broadleaf forest, evergreen needleleaf forest and deciduous needleleaf forest). The results showed that distribution and change of forest NPP in northeastern China were related to the different forest types. From 1981 to 2002, among the forest types in northeastern China, per unit area NPP and total NPP of deciduous broadleaf forest were the highest, with the values of 729.4 gC/(m2•yr) and 106.0 TgC/yr, respectively, followed by mixed broadleaf- needleleaf forest, deciduous needleleaf forest and evergreen needleleaf forest. From 1981 to 2002, per unit area NPP and total NPP of different forest types in northeastern China exhibited significant trends of interannual increase, and rapid increase was found between the 1980s and 1990s. The contribution of the different forest type’s NPP to total NPP in northeastern China was clearly different. The greatest was deciduous broadleaf forest, followed by mixed broadleaf- needleleaf forest and deciduous needleleaf forest. The smallest was evergreen needleleaf forest. Spatial difference in NPP between different forest types was remarkable. High NPP values of deciduous needleleaf forest, mixed broadleaf- needleleaf forest and deciduous broadleaf forest were found in the Daxing’anling region, the southeastern of Xiaoxing’anling and Jilin province, and the Changbai Mountain, respectively. However, no regional differences were found for evergreen needleleaf NPP. This study provided not only an estimation NPP of different forest types in northeastern China but also a useful methodology for estimating forest carbon storage at regional and global levels.  相似文献   

17.
1982~2003年东北地区植被覆盖变化特征分析   总被引:7,自引:3,他引:4  
利用1982~2003年GIMMS-NDVI数据集和GIS技术,结合多种统计分析方法,定量分析了东北地区植被覆盖时空变化规律。结果显示:(1)1982~2003年东北地区森林、草地和农田植被年内变化曲线均为单峰型,峰值都出现在夏季,森林植被年内NDVI变化曲线峰值最高,农田次之,草地最低。(2)22年期间,森林植被覆盖呈下降趋势;草地和农田植被覆盖总体亦呈下降趋势,但西辽河平原草地和松嫩平原农田植被覆盖呈上升趋势;相同植被类型比较,长白山东北部林地、西辽河平原草地、松嫩平原农田植被覆盖均比较稳定。(3)1982~2003年,东北地区植被覆盖总体呈缓慢下降趋势,其中1982~1992年,东北地区植被覆盖呈增加趋势,植被覆盖增加的面积为545 435 km2,占东北地区总面积的43.91%;植被覆盖减少面积为96 491 km2,占总面积的7.77%;1993~2003年,东北地区植被覆盖呈减少趋势,植被覆盖减少的面积为626 839 km2,占东北地区总面积的50.45%,植被覆盖增加的面积较少,仅为27 025 km2,占总面积的2.18%,且呈零星分布。研究表明,人类活动和自然因素的变化是东北地区植被覆盖下降的主要原因。  相似文献   

18.
我国不同季节陆地植被NPP对气候变化的响应   总被引:20,自引:1,他引:19  
阐明不同季节陆地植被净第一性生产力(NPP)对全球变化的响应将有助于理解陆地生态系统和气候系统之间的相互作用以及NPP变化机制。本文使用1982-1999年间的AVHRR/NDVI、气温、降水以及太阳辐射等资料,结合植被分布图和土壤质地图,利用生态过程模型,研究不同季节我国陆地植被NPP的年际变化及其地理分异。结果表明,在1982-1999年的18年间,4个季节的NPP都呈显著增加趋势。其中,春季是NPP增加速率最快的季节,夏季是NPP增加量最大的季节,不同植被类型对全球变化的响应有很大差异。常绿阔叶林,常绿针叶林和落叶针叶林NPP的增加主要由生长季节的提前所致。而落叶阔叶林、针阔混交林、矮林灌丛,温带草原及草甸,稀树草原、高寒植被,荒漠以及人工植被NPP的增加主要来自生长季生长加速的贡献。从区域分布看,在四季中春季NPP增加量最大的地区主要集中在东部季风区域;夏季NPP增量最大的地区包括西北干旱区域和青藏高原的大部分地区,小兴安岭-长白山区,三江平原,松辽平原,四川盆地,雷州半岛,长江中下游部分地区以及江南山地东部;而秋季植被NPP增加量最大的地区主要有云南高原-西藏东部和呼伦湖的周围等地区。不同植被和地理区域NPP的这些响应方式与区域气候特征及其变化趋势有关。  相似文献   

19.
利用美国环境预测中心的再分析气象资料和由GIMMS NDVI 资料生成的叶面积指数对BEPS生态模型进行驱动,模拟分析了2000-2005年亚洲东部地区总初级生产力(GPP)和总净初级生产力(NPP)的时空变化特征.在进行区域模拟计算前,使用15个站点不同生态系统的GPP观测数据及1300个样点的NPP观测数据对模型进行验证.结果表明: BEPS模型能较好地模拟不同生态系统的GPP和NPP变化,模拟的GPP与观测数据之间的R2为0.86~0.99,均方根误差(RMSE)为0.2~1.2 g C·m-2·d-1;BEPS模拟值能够解释78%的年NPP变化,其RMSE为118 g C·m-2·a-1.2000-2005年,亚洲东部地区GPP和NPP总量平均值分别为21.7和10.5 Pg C·a-1.NPP和GPP具有相似的时空变化特征.研究期间,NPP总量的变化范围为10.2~10.7 Pg C·a-1, 变异系数为2.2%.NPP由东南向西北显著减少,高值区〖JP2〗(>1000 g C·m-2·a-1)出现在东南亚海岛国家,我国的西北干旱沙漠地区为低值区(<30 g C·m-2·a-1),〖JP〗其空间格局主要由气候因子决定.不同国家的人均NPP差异很大,其中,蒙古最高,达70217 kg C·a-1,远高于中国的人均NPP(1921 kg C·a-1),印度的人均NPP最小,为757 kg C·a-1.  相似文献   

20.
研究水热波动和土地覆盖变化对植被净初级生产力(Net Primary Productivity,NPP)的影响对于估算陆地碳循环及其驱动机制具有重要意义。利用MODIS遥感影像获得的时间序列NPP和土地覆盖产品,结合气象观测数据(气温和降水),采用相关分析、回归分析和空间分析相结合的方法,研究2000-2015年东北地区植被NPP的时空变化特征,并定量评估水热波动和土地覆盖变化对该地区植被NPP的相对影响。研究结果表明,2000-2015年东北地区植被NPP呈波动上升趋势,从2000年的369.24 g C m-2 a-1增加到2015年的453.84 g C m-2 a-1,平均值是412.10 g C m-2 a-1,年际增加速率为4.54 g C m-2 a-1。近16年来东北地区年均植被NPP空间上呈现南高北低、东高西低的分布格局,整体变化趋势以增加为主,其中轻微增加面积占该地区总面积的45.9%。不同土地覆盖类型的年均NPP差异明显,其中灌木最高为400.34 g C m-2 a-1,草地最低为300.49 g C m-2 a-1。东北地区植被NPP与气温的相关性不明显,而与降水量主要表现为正效应。水热波动对该地区不同土地覆盖类型NPP总量变化的贡献大于土地覆盖变化的贡献,其中对森林和农田的贡献最大,均达到70%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号