首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang JH  Nie HL  Tam SC  Huang H  Zheng YT 《FEBS letters》2002,531(2):295-298
Trichosanthin (TCS) is a type I ribosome inactivating (RI) protein possessing anti-tumor and antiviral activity, including human immunodeficiency virus (HIV). The mechanism of these actions is not entirely clear, but is generally attributed to its RI property. In order to study the relationship between the anti-HIV-1 activity of TCS and its RI activity, three TCS mutants with different RI activities were constructed by using site-directed mutagenesis. The anti-HIV-1 activities of the three mutants were tested in vitro. Results showed that two TCS mutants, namely TCS(M(120-123)), TCS(E160A/E189A), with the greatest decrease in RI activity, lost almost all of the anti-HIV activity and cytopathic effect. Another mutant TCS(R122G), which exhibited a 160-fold decrease in RI activity, retained some anti-HIV activity. The results from this study suggested that RI activity of TCS may have significant contribution to its anti-HIV-1 property.  相似文献   

2.
Trichosanthin (TCS) was the first ribosome inactivating protein found to possess anti-HIV-1 activity. Phase I/II clinical trial of this compound had been done. Antigenicity and short plasma half-life were the major side effects preventing further clinical trial. Modification of TCS is therefore necessary to revive the interest to develop this compound as an anti-HIV agent. Three potential antigenic sites (Ser-7, Lys-173, and Gln-219) were identified by computer modeling. Through site-directed mutagenesis, these three antigenic amino acids were mutated to a cysteine residue resulting in 3 TCS mutants, namely S7C, K173C, and Q219C. These mutants were further coupled to polyethylene glycol with a molecular size of 20 kDa (PEG) via the cysteine residue. This produced another three TCS derivatives, namely PEG20k-S7C, PEG20k-K173C, and PEG20k-Q219C. PEGylation had been widely used recently to decrease immunogenicity by masking the antigenic sites and prolong plasma half-life by expanding the molecular size. The in vitro anti-HIV-1 activity of these mutants and derivatives was tested. Results showed that the anti-HIV-1 activity of S7C, K173C, and Q219C was decreased by about 1.5- to 5.5-fold with slightly lower cytotoxicity. On the other hand, PEGylation produced larger decrease (20- to 30-fold) in anti-HIV activity. Cytotoxicity was, however, weakened only slightly by about 3-fold. The in vitro study showed that the anti-HIV activity of PEGylated TCS was retained with reduced potency. The in vivo activity is expected to have only slightly changed due to other beneficial effects like prolonged half-life.  相似文献   

3.
4.
Tryptophan hydroxylase (TPH) catalyses the first and rate limiting step in the biosynthesis of the neurotransmitter serotonin. There are two TPH isoenzymes in humans, encoded by two different genes: TPH1 and the recently described TPH2. We have expressed both human enzymes and various deletion mutants of TPH2 (DeltaN44, DeltaC17, DeltaC19, DeltaC51) in COS7 cells. TPH1 and 2 displayed different kinetic properties with a lower K(m) value of TPH1. Removal of 44 amino acids from the N-terminus of TPH2 resulted in a 3-4-fold increased V(max), which indicates a strong inhibitory function of this part on the enzymes activity. TPH1 and 2 were able to form homooligomers and also heterooligomers with each other. The different deletion mutants (DeltaC17, DeltaC19 and DeltaC51), which lack the putative C-terminal leucine zipper tetramerization domain, existed as monomeric enzymes. While short deletions (DeltaC17 and DeltaC19) hardly changed V(max) values, the DeltaC51 mutant lost 99% of TPH activity. These data identify a region between the C-terminal oligomerization domain and the catalytic domain, which is indispensable for TPH2 activity.  相似文献   

5.
Ding Y  Too H  Wang Z  Liu Y  Bartlam M  Dong Y  Wong K  Shaw P  Rao Z 《Protein engineering》2003,16(5):351-356
Trichosanthin (TCS) is a type I ribosome-inactivating protein (RIP) possessing N-glycosidase activity. TCS has various pharmacological properties, including immunomodulatory, anti-tumor and anti-HIV activities. Up to seven C-terminal residues of TCS (TCS-C7) can be deleted resulting in lower antigenicity with minimal effects on its activity. However, an additional problem is that the minimal effects on activity are higher than the reduction in antigenicity. In the present work, the crystal structure of TCS-C7 was determined. It shows the details of the C-terminal residues of TCS-C7, and in particular the hydrogen bonds between P35 and L240, S196 and L240, and W192 and L239, which play an important role in maintaining the structure of TCS-C7. Further analysis shows that the hydrogen bonds related to Leu240 are key in maintaining the relationship between N- and C-terminal domains. The major role of the C-terminal tail appears to stabilize the structure of TCS. The conformation between helix H7 at the N-terminal domain and the C-terminal tail at the C-terminal domain is also revealed. Two mutants, TCS-W192F and TCS-C7-W192F, were prepared and crystal structures were determined. These variants have greatly reduced ribosome-inactivating activities compared with TCS and TCS-C7, respectively, and TCS-W192F and TCS-C7-W192F have a similar stability in guanidine hydrochloride compared with TCS-C7. This suggests that Trp192 can affect the ribosome-inactivating activity of TCS.  相似文献   

6.
C Z Lee  P J Chen    D S Chen 《Journal of virology》1995,69(9):5332-5336
Hepatitis delta virus (HDV) encodes two proteins, the small delta antigen (SHDAg) and large delta antigen (LHDAg). The latter is identical to the former except for the presence of additional 19 amino acids at the C terminus. While SHDAg is required for HDV replication, LHDAg inhibits replication and, together with hepatitis B surface antigen (HBsAg), is required for the assembly of HDV. The last 19 C-terminal amino acids of LHDAg are essential for HDV assembly. Most of LHDAg (amino acids 19 to 146 and 163 to 195) had been shown to be dispensable for packaging with HBsAg. To discern whether the last 19 C-terminal amino acids solely constitute the signal for packaging with HBsAg, we constructed two LHDAg deletion mutants and tested their abilities to be packaged with HBsAg in cotransfection experiments. We found that deletion of amino acids 2 to 21 and 142 to 165 did not affect LHDAg packaging. This result suggested that only the last 19 C-terminal amino acids of LHDAg are required for packaging. We further constructed two plasmids which expressed c-H-ras with or without additional 19 C-terminal amino acids identical to those in LHDAg. Only c-H-ras with additional 19 amino acids could be cosecreted with HBsAg in the cotransfection experiment. This result confirmed that the C-terminal 19 amino acids are the packaging signal for HBsAg. We also tested the trans activation activity and trans-dominant inhibitory activity of the deletion mutants of SHDAg and LHDAg, respectively. In contrast to deletion of amino acids 142 to 165, deletion of amino acids 2 to 21 impaired the trans-dominant inhibitory activity of LHDAg. Deletion of amino acids 2 to 21 and 142 to 165 did not affect the trans activation activity of SHDAg. This result suggested that a functional domain which is important for the trans-dominant inhibitory activity of LHDAg exists in the amino terminus of HDAg.  相似文献   

7.
Hepatitis delta antigen (HDAg) consists of two species, large (LHDAg) and small (SHDAg), which are identical in sequence except that the large form contains 19 extra amino acids at the C terminus. The large form is prenylated on the Cxxx motif. The small form can trans activate HDV RNA replication, while the large form inhibits it. To determine the molecular basis for their differential functions, we examined the effects of prenylation on the conformation and function of HDAg. We show that the presence of prenylates masks a conformational epitope which is present in SHDAg but hidden in wild-type LHDAg; this epitope becomes exposed in all of the nonprenylated mutant LHDAgs. Prenylation also plays a major role in conferring the trans-dominant negative inhibitory activity of LHDAg, since the loss of prenylation in LHDAg reduced its inhibitory activity. The primary amino acids of the C-terminal sequence also contributed to the maintenance of the HDAg protein conformation; a prenylated LHDAg mutant with a five-amino-acid deletion had an exposed C-terminal epitope. By examining LHDAg mutants which have deletions of various extents of C-terminal sequence, with or without the prenylation motif, we have further shown that all of the prenylated mutants have much higher levels of trans-dominant suppressor activities than do the corresponding nonprenylated mutants. Surprisingly, a few nonprenylated LHDAg mutants were able to trans activate HDV RNA replication, while all of the prenylated ones lost this function. These results suggest that isoprenylates cause the masking of a conformational epitope of HDAg and that conformational differences between the large and small HDAgs account for the differences in their trans-activating and trans-dominant inhibitory biological activities.  相似文献   

8.
Human immunodeficiency virus, type 1 (HIV-1) Vif protein plays an essential role in the regulation of the infectivity of HIV-1 virion. Vif functions to counteract an anti-HIV-1 cellular factor in non-permissive cells, CEM15/Apobec-3G, which shares a cytidine deaminase motif. CEM15/Apobec-3G deaminates dC to dU in the minus strand DNA of HIV-1, resulting in G to A hypermutation in the plus strand DNA. In this study, we have done the mutagenesis analysis on two cytidine deaminase motifs in CEM15/Apobec-3G and examined their antiviral functions as well as the DNA editing activity. Point mutations in the C-terminal active site such as E259Q and C291A almost completely abrogated the antiviral function, while those in the N-terminal active site such as E67Q and C100A retained this activity to a lesser extent as compared with that of the wild type. The DNA editing activities of E67Q and E259Q mutants were both retained but impaired to the same extent. This indicates that the enzymatic activity of this protein is essential but not a sole determinant of the antiviral activity. Furthermore, all the deletion mutants tested in this study lost the antiviral activity because of the loss of the activity for dimerization, suggesting that the entire protein structure is necessary for the antiviral function.  相似文献   

9.
Xiong C  O'Keefe BR  Byrd RA  McMahon JB 《Peptides》2006,27(7):1668-1675
Scytovirin (SVN) is a novel anti-HIV protein isolated from aqueous extracts of the cultured cyanobacterium Scytonema varium. SVN contains two apparent domains, one comprising amino acids 1-48 and the second stretching from amino acids 49 to 95. These two domains display significant homology to each other and a similar pattern of disulfide bonds. Two DNA constructs encoding scytovirin 1-48 (Cys7Ser) (SD1) and 49-95 (Cys55Ser) (SD2) were constructed, and expressed in E. coli, with thioredoxin fused to their N-terminus. Purified recombinant products were tested for binding activities with the HIV surface envelope glycoproteins gp120 and gp41. Whole cell anti-HIV data showed that SD1 had similar anti-HIV activity to the full-length SVN, whereas SD2 had significantly less anti-HIV activity. Further deletion mutants of the SD1 domain (SVN(3-45)Cys7Ser, SVN(6-45)Cys7Ser, SVN(11-45)Cys7Ser) showed that the N-terminal residues are necessary for full anti-HIV activity of SD1 and that an eight amino acid deletion from the C-terminus (SVN(1-40)Cys7Ser) had a significant effect, decreasing the anti-HIV activity of SD1 by approximately five-fold.  相似文献   

10.
Seo JK  Kim HK  Lee TY  Hahm KS  Kim KL  Lee MK 《Peptides》2005,26(11):2175-2181
C34-LAI containing amino acids 118 to 151 of the HIV-1(LAI) gp41 ectodomain exhibits potent anti-HIV-1 activity. However, the N-terminal halves of C34 peptides vary more according to the HIV-1 strain than the C-terminal halves. Therefore, an analysis was conducted on the anti-HIV-1 activities of the C34 peptides derived from various HIV-1 strains. C34-89.6 exhibited the strongest anti-HIV-1 activity among the C34 peptides tested. Interestingly, its N-terminal half was more acidic than those of the other C34 peptides, whereas its C-terminal half was more basic. Since the C-peptides derived from the HIV-1(LAI) strain are used extensively, the anti-HIV-1 activities of these peptides were compared between the HIV-1 strains 89.6 and LAI. When using chimeric peptides, it was found that the C-terminal basic region of C34-89.6 was more critical than its N-terminal basic region. The anti-HIV-1 activity of T20-89.6 and C28-89.6 was also stronger than that of T20-LAI and C28-LAI, respectively. The anti-HIV-1 activity of C28-89.6 was weakened when the C-terminal basic residues were changed to the corresponding residues of C28-LAI. However, no conformational differences were found among the C28 peptides. Accordingly, these results imply that introducing the C-terminal basic residues of the HIV-1 89.6 C-peptide may be useful for developing potent anti-HIV-1 drugs.  相似文献   

11.
Trichosanthin (TCS) is a type I ribosome-inactivating protein (RIP) that can selectively kill some types of cells at low concentration (0.1-1 nM). The pH-dependent membrane insertion ability of TCS makes it possible that the internalized toxin avoids degradation in lysosomes and further undergoes transportation into the cytosol by some still unidentified mechanism. Here, we show that deletion of C-terminal residues affects interactions of modified TCS (C7-TCS) with lipids and reduces its pH-dependent membrane insertion ability. Fluorescence measurements indicate that at low pH C7-TCS undergoes profound conformational changes that causes exposure of a hydrophobic region and leads to oligomerization of the C7-TCS molecules. The results suggest that the membrane insertion of TCS at low pH might be important for translocation of TCS into the cytosol, which is important for exertion of the RIP activity of TCS. Deletion of the last seven C-terminal residues of TCS would reduce both its RIP activity in vitro and cytotoxicity in vivo, with the degree of decrease being more significant for the cytotoxicity in vivo.  相似文献   

12.
Interactor/inhibitor 1 of Cdc2 kinase (ICK1) from Arabidopsis thaliana is the first plant cyclin-dependent kinase (CDK) inhibitor, and overexpression of ICK1 inhibits CDK activity, cell division and plant growth in transgenic plants. In this study, ICK1 and deletion mutants were expressed either alone or as green fluorescent protein (GFP) fusion proteins in transgenic Arabidopsis plants. Deletion of the C-terminal 15 or 29 amino acids greatly reduced or completely abolished the effects of ICK1 on the transgenic plants, and recombinant proteins lacking the C-terminal residues lost the ability to bind to CDK complex and the kinase inhibition activity, demonstrating the role of the conserved C-terminal domain in in vivo kinase inhibition. In contrast, the mutant ICK1DeltaN108 with the N-terminal 108 residues deleted had much stronger effects on plants than the full-length ICK1. Analyses demonstrated that this effect was not because of an enhanced ability of ICK1DeltaN108 protein to inhibit CDK activity, but a result of a much higher level of ICK1DeltaN108 protein in the plants, indicating that the N-terminal domain contains a sequence or element increasing protein instability in vivo. Furthermore, GFP-ICK1 protein was restricted to the nuclei in roots of transgenic plants, even with the C-terminal or the N-terminal domain deleted, suggesting that a sequence in the central domain of ICK1 is responsible for nuclear localization. These results provide mechanistic understanding about the function and regulation of this cell cycle regulator in plants.  相似文献   

13.
Trichosanthin (TCS) possesses many biological and pharmaceutical activities, but its strong immunogenicity limits its clinical application. To reduce the immunogenicity of TCS, we modified the reported method for the prediction of antigenic site and identified two crucial amino acid residues (Y55 and D78) for a new epitope. We mutated these two residues into glycine and serine, respectively, and obtained three mutants, Y55G, D78S, and Y55G/D78S. These mutants induced less amount of Ig and IgG antibodies in C57BL/6J mice than wild-type TCS (wTCS) (p<0.01) and almost lost the ability to induce IgE antibody production. The mutants stimulated fewer TCS-specific B cells in C57BL/6J mice than wTCS (p<0.01). Compared with wTCS, Y55G, D78S, and Y55G/D78S lost 26.9%, 17.9%, and 98.7% specific binding ability to anti-TCS monoclonal antibody TCS4E9, respectively. These mutants still retained RNA N-glycosidase activity. In conclusion, Y55 and D78 are two crucial amino acid residues of a new IgE epitope on TCS, and their mutation reduces the immunogenicity of TCS, but still retained the enzymatic activity.  相似文献   

14.
Protein structure is composed of regular secondary structural elements (α-helix and β-strand) and non-regular region. Unlike the helix and strand, the non-regular region consists of an amino acid defined as a disordered residue (DR). When compared with the effect of the helix and strand, the effect of the DR on enzyme structure and function is elusive. An Aspergillus niger GH10 xylanase (Xyn) was selected as a model molecule of (β/α)(8) because the general structure consists of ~10% enzymes. The Xyn has five N-terminal DRs and one C-terminal DR, respectively, which were deleted to construct three mutants, XynΔN, XynΔC, and XynΔNC. Each mutant was ~2-, 3-, or 4-fold more thermostable and 7-, 4-, or 4-fold more active than the Xyn. The N-terminal deletion decreased the xylanase temperature optimum for activity (T(opt)) 6 °C, but the C-terminal deletion increased its T(opt) 6 °C. The N- and C-terminal deletions had opposing effects on the enzyme T(opt) but had additive effects on its thermostability. The five N-terminal DR deletions had more effect on the enzyme kinetics but less effect on its thermo property than the one C-terminal DR deletion. CD data showed that the terminal DR deletions increased regular secondary structural contents, and hence, led to slow decreased Gibbs free energy changes (ΔG(0)) in the thermal denaturation process, which ultimately enhanced enzyme thermostabilities.  相似文献   

15.
Hyper-IgM syndrome type 2 stems from mutations in activation-induced deoxycytidine deaminase (AID) that abolish immunoglobulin class-switch recombination, causing an accumulation of IgM and absence of IgG, IgA, and IgE isotypes. Although hyper-IgM syndrome type 2 is rare, the 23 missense mutations identified in humans span almost the entire gene for AID resulting in a recessive phenotype. Using high resolution x-ray structures for Apo3G-CD2 as a surrogate for AID, we identify three classes of missense mutants as follows: catalysis (class I), substrate interaction (class II), and structural integrity (class III). Each mutant was expressed and purified from insect cells and compared biochemically to wild type (WT) AID. Four point mutants retained catalytic activity at 1/3rd to 1/200th the level of WT AID. These "active" point mutants mimic the behavior of WT AID for motif recognition specificity, deamination spectra, and high deamination processivity. We constructed a series of C-terminal deletion mutants (class IV) that retain catalytic activity and processivity for deletions ≤18 amino acids, with ΔC(10) and ΔC(15) having 2-3-fold higher specific activities than WT AID. Deleting 19 C-terminal amino acids inactivates AID. WT AID and active and inactive point mutants bind cooperatively to single-stranded DNA (Hill coefficients ~1.7-3.2) with microscopic dissociation constant values (K(A)) ranging between 10 and 250 nm. Active C-terminal deletion mutants bind single-stranded DNA noncooperatively with K(A) values similar to wild type AID. A structural analysis is presented that shows how localized defects in different regions of AID can contribute to loss of catalytic function.  相似文献   

16.
Rat brain phospholipase D1 (rPLD1) has two highly conserved motifs (HXKX(4)D), denoted HKD, located in the N- and C-terminal halves, which are required for phospholipase D activity. The two halves of rPLD1 can associate in vivo, and the association is essential for catalytic activity and Ser/Thr phosphorylation of the enzyme. In this study, we found that this association is also required for palmitoylation of rPLD1, which occurs on cysteines 240 and 241. In addition, palmitoylation of rPLD1 requires the N-terminal sequence but not the conserved C-terminal sequence, since rPLD1 that lacks the first 168 amino acids is not palmitoylated in vivo, while the inactive C-terminal deletion mutant is. Palmitoylation of rPLD1 is not necessary for catalytic activity, since N-terminal truncation mutants lacking the first 168 or 319 amino acids exhibit high basal activity although they cannot be stimulated by protein kinase C (PKC). The lack of response to PKC is not due to the lack of palmitoylation, since mutation of both Cys(240) and Cys(241) to alanine in full-length rPLD1 abolishes palmitoylation, but the mutant still retains basal activity and responds to PKC. Palmitoylation-deficient rPLD1 can associate with crude membranes; however, the association is weakened. Wild type rPLD1 remains membrane-associated when extracted with 1 m NaCl or Na(2)CO(3) (pH 11), while rPLD1 mutants that lack palmitoylation are partially released. In addition, we found that palmitoylation-deficient mutants are much less modified by Ser/Thr phosphorylation compared with wild type rPLD1. Characterization of the other cysteine mutations of rPLD1 showed that mutation of cysteine 310 or 612 to alanine increased basal phospholipase D activity 2- and 4-fold, respectively. In summary, palmitoylation of rPLD1 requires interdomain association and the presence of the N-terminal 168 amino acids. Mutations of cysteines 240 and 241 to alanine abolish the extensive Ser/Thr phosphorylation of the enzyme and weaken its association with membranes.  相似文献   

17.
Trichosanthin (TCS) is an antiviral plant defense protein, classified as a type-I ribosome-inactivating protein, found in the root tuber and leaves of the medicinal plant Trichosanthes kirilowii. It is processed from a larger precursor protein, containing a 23 amino acid amino (N)-terminal sequence (pre sequence) and a 19 amino acid carboxy (C)-terminal extension (pro sequence). Various constructs of the TCS gene were expressed in transgenic tobacco plants to determine the effects of the amino- and carboxy-coding gene sequences on TCS expression and host toxicity in plants. The maximum TCS expression levels of 2.7% of total soluble protein (0.05% of total dry weight) were obtained in transgenic tobacco plants carrying the complete prepro-TCS gene sequence under the Cauliflower mosaic virus 35S RNA promoter. The N-terminal sequence matched the native TCS sequence indicating that the T. kirilowii signal sequence was properly processed in tobacco and the protein translation inhibitory activity of purified rTCS was similar to native TCS. One hundred-fold lower expression levels and phenotypic aberrations were evident in plants expressing the gene constructs without the C-terminal coding sequence. Transgenic tobacco plants expressing recombinant TCS exhibited delayed symptoms of systemic infection following exposure to Cucumber mosaic virus and Tobacco mosaic virus (TMV). Local lesion assays using extracts from the infected transgenic plants indicated reduced levels of TMV compared with nontransgenic controls.  相似文献   

18.
Fujinami sarcoma virus (FSV) genome codes for the gag-fps fusion protein FSV-P130. The amino acid sequence of the 3' one-third portion in v-fps is partially homologous to the 3' half of pp60src, or the kinase domain, but the sequence of the 5' portion is unique to v-fps. To identify a possible domain structure in the v-fps sequence responsible for cell transformation, we constructed various deletion mutants of FSV with molecularly cloned viral DNA. Their transforming activities were assayed by measuring focus formation on chicken embryo fibroblasts and rat 3Y1 cells and tumor formation in chickens. The mutants carrying a deletion at the 3' portion in v-fps, the kinase domain, lost transforming activity. The mutants carrying an approximately 1-kilobase deletion within the 5' portion of the v-fps sequence retained focus-forming activity and tumorigenicity in the chicken system, but the efficiency of focus formation was about 10 times lower than that of the wild type. The morphology of these transformed cells was distinct from that observed in cells infected with wild-type FSV. Furthermore, these mutants could not transform rat 3Y1 cells, although wild-type FSV DNA transformed rat 3Y1 cells at a high frequency. The mutants carrying a larger deletion in the 5' portion of fps completely lacked the transforming activity. These results suggest that the 3' portion of the v-fps sequence is necessary but not sufficient for cell transformation and that the 5' portion of v-fps has a role in the transforming activity.  相似文献   

19.
The C-terminal region of mitogen-activated protein kinase kinase-1 and 2 (MKK1 and MKK2) may function in regulating interactions with upstream kinases or the magnitude and duration of ERK mitogen-activated protein kinase activity. The MKK C-terminal region contains a proline-rich region that reportedly functions in regulating interactions with the Raf-1 kinase and ERK activity. In addition, phosphorylation sites in the C terminus of MKK1 have been suggested to either sustain or attenuate MKK1 activity. To further understand how phosphorylation at the C terminus of MKK1 and protein interactions regulate MKK1 function, we have generated several MKK1 C-terminal deletion mutants and examined their function in regulating MKK1 localization, ERK protein activation, and cell growth. A deletion of C-terminal amino acids encompassing two putative alpha-helices between residues 330 and 379 caused a re-distribution of mutant MKK1 proteins to membrane compartments. Immunofluorescence analysis of MKK1 mutants revealed a loss of homogenous cytosolic distribution that is typically observed with MKK1 wild type, suggesting this region regulates MKK1 cellular localization. In contrast, MKK1 C-terminal deletion mutants localized to various sized punctate regions that overlapped with lysosome compartments. ERK activation in response to constitutively active Raf-1 or growth factor stimulus was attenuated in cells expressing MKK1 C-terminal deletion mutants. This could be partly explained by the inability of Raf-1 to phosphorylate MKK1 C-terminal deletion mutants even though the phosphorylation sites were intact in these mutants. Finally, we show that cells expressing MKK1 C-terminal deletion mutants displayed characteristic patterns of apoptotic cell death and reduced cell proliferation. These findings identify a novel C-terminal region between amino acid residues 330 and 379 on MKK1 that is necessary for regulating the cytoplasmic distribution and subsequent ERK protein activation necessary for cell survival and viability.  相似文献   

20.
We have previously shown that the first generation human immunodeficiency virus (HIV) fusion inhibitor T20 (Fuzeon) contains a critical lipid-binding domain (LBD), whereas C34, another anti-HIV peptide derived from the gp41 C-terminal heptad repeat, consists of an important pocket-binding domain (PBD), and both share a common 4-3 heptad repeat (HR) sequence (Liu, S., Jing, W., Cheung, B., Lu, H., Sun, J., Yan, X., Niu, J., Farmar, J., Wu, S., and Jiang, S. (2007) J. Biol. Chem. 282, 9612-9620). T1249, the second generation HIV fusion inhibitor, has both LBD and PBD but a different HR sequence, suggesting that these three anti-HIV peptides may have distinct mechanisms of action. Here we rationally designed a set of peptides that contain multiple copies of a predicted HR sequence (5HR) or the HR sequence plus either LBD (4HR-LBD) or PBD (PBD-4HR) or both (PBD-3HR-LBD), and we compared their anti-HIV-1 activity and biophysical properties. We found that the peptide 5HR exhibited low-to-moderate inhibitory activity on HIV-1-mediated cell-cell fusion, whereas addition of LBD and/or PBD to the HR sequence resulted in a significant increase of the anti-HIV-1 activity. The peptides containing PBD, including PBD-4HR and PBD-3HR-LBD, could form a stable six-helix bundle with the N-peptide N46 and effectively blocked the gp41 core formation, whereas the peptides containing LBD, e.g. 4HR-LBD and PBD-3HR-LBD, could interact with the lipid vehicles. These results suggest that the HR sequence in these anti-HIV peptides acts as a structure domain and is responsible for its interaction with the HR sequence in N-terminal heptad repeat, whereas PBD and LBD are critical for interactions with their corresponding targets. T20, C34, and T1249 may function like 4HR-LBD, PBD-4HR, and PBD-3HR-LBD, respectively, to interact with different target sites for inhibiting HIV fusion and entry. Therefore, this study provides important information for understanding the mechanisms of action of the peptic HIV-1 fusion inhibitors and for rational design of novel antiviral peptides against HIV and other viruses with class I fusion proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号