首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil moisture and nitrogen (N) are two of the most important factors affecting the production of medicinal plants. So, the management strategy of these factors is critical and to be identified. In order to study the application of zeolite (Z) (0 and 10 ton ha?1) in S. officinalis culture medium under different irrigation regimes (30 % depletion of available soil water (ASW)) and 60 % depletion of ASW) and N (0, 75 and 150 kg N ha?1) a split-factorial experiment was carried out with three replicates in 2018. The highest fresh and dry weight were achieved at irrigation after 30 % depletion of ASW while using 150 kg N ha?1 and 10 ton Z ha?1. Maximum water use efficiency (WUE) (22.10 g.L-1) was obtained after 60 % depletion of ASW and 150 kg N ha?1 and 10 ton Z ha?1. Besides, the maximum nitrogen use efficiency (NUE) was obtained after 60 % depletion of ASW and 75 kg N ha?1 and 10 ton Z ha?1 (14.25 kg.kg-1N). Maximum essential oil (EO) content (1.06%) and cis-Thujone were obtained from plants subjected to 60 % depletion of ASW and, application of 75 kg N ha?1 and 10 ton Z ha?1. Applying Z with N, in different irrigation regimes did improve soil conditions for achieving higher, WUE and NUE, increased the EO content and yield while decreasing the negative effects from water-deficit stress and has provided a direction towards a stable system.  相似文献   

2.
Effah  Zechariah  Li  Lingling  Xie  Junhong  Liu  Chang  Xu  Aixia  Karikari  Benjamin  Anwar  Sumera  Zeng  Min 《Journal of Plant Growth Regulation》2023,42(2):1120-1133

It is critical for spring wheat (Triticum aestivum L.) production in the semi-arid Loess Plateau to understand the impact of nitrogen (N) fertilizer on changes in N metabolism, photosynthetic parameters, and their relationship with grain yield and quality. The photosynthetic capacity of flag leaves, dry matter accumulation, and N metabolite enzyme activities from anthesis to maturity were studied on a long-term fertilization trial under different N rates [0 kg ha?1(N1), 52.5 kg ha?1 (N2), 105 kg ha?1 (N3), 157.5 kg ha?1 (N4), and 210 kg ha?1 (N5)]. It was observed that N3 produced optimum total dry matter (5407 kg ha?1), 1000 grain weight (39.7 g), grain yield (2.64 t ha?1), and protein content (13.97%). Our results showed that N fertilization significantly increased photosynthetic parameters and N metabolite enzymes at all growth stages. Nitrogen harvest index, partial productivity factor, agronomic recovery efficiency, and nitrogen agronomic efficiency were decreased with increased N. Higher N rates (N3–N5) maintained higher photosynthetic capacity and dry matter accumulation and lower intercellular CO2 content. The N supply influenced NUE by improving photosynthetic properties. The N3 produced highest chlorophyll content, photosynthetic rate, stomatal conductance and transpiration rate, grain yield, grain protein, dry matter, grains weight, and N metabolite enzyme activities compared to the other rates (N1, N2, N4, and N5). Therefore, increasing N rates beyond the optimum quantity only promotes vegetative development and results in lower yields.

  相似文献   

3.
Zhang  Heping  Oweis  Theib Y.  Garabet  Sonia  Pala  Mustafa 《Plant and Soil》1998,201(2):295-305
Growth and water use were measured in wheat (Triticum aestivum L.) grown in northern Syria in a typical Mediterranean climate over five seasons 1991/92–1995/96. Water use was partitioned into transpiration (T) and soil evaporation (Es) using Ritchie's model, and water-use efficiency (WUE) and transpiration efficiency (TE) were calculated. The aim of the study was to examine the influence of irrigation and nitrogen on water use, WUE and TE. By addition of 100 kg N ha-1, Es was reduced from 120 mm to 101 mm under rain-fed conditions and from 143 mm to 110 mm under irrigated conditions, and T was increased from 153 mm to 193 mm under rain-fed conditions and from 215 mm to 310 mm under irrigated conditions. Under rain-fed conditions, about 35% of evapotranspiration (ET) may be lost from the soil surface for the fertilized crops and 44% of ET for the unfertilized crops. Transpiration accounted for 65% of ET for the fertilized crops and 56% for the unfertilized crops under rain-fed. As a result of this, WUE was increased by 44% for dry matter and 29% for grain yield under rain-fed conditions, and by 60% for dry matter and 57% for grain yield under irrigated conditions. Transpiration efficiency for the fertilized crops was 43.8 kg ha-1 mm-1 for dry matter and 15 kg ha-1 mm-1 for grain yield, while TE for the unfertilized crops was 33.6 kg ha-1 mm-1 and 12.2 kg ha-1 mm-1 for dry matter and grain yield, respectively. Supplemental irrigation significantly increased post-anthesis water use, transpiration, dry matter and grain yield. Water-use efficiency for grain yield was increased from 9.7 to 11.0 kg ha-1 mm-1 by supplemental irrigation, although WUE for dry matter was not affected by it. Irrigation did not affect transpiration efficiency for grain yield, but decreased transpiration efficiency for dry matter by 16%. This was associated with higher harvest index as a result of good water supply in the post-anthesis period and increased transpiration under irrigated conditions.  相似文献   

4.
Maize grain yield varies highly with water availability as well as with fertilization and relevant agricultural management practices. With a 311-A optimized saturation design, field experiments were conducted between 2006 and 2009 to examine the yield response of spring maize (Zhengdan 958, Zea mays L) to irrigation (I), nitrogen fertilization (total nitrogen, urea-46% nitrogen,) and phosphorus fertilization (P2O5, calcium superphosphate-13% P2O5) in a semi-arid area environment of Northeast China. According to our estimated yield function, the results showed that N is the dominant factor in determining maize grain yield followed by I, while P plays a relatively minor role. The strength of interaction effects among I, N and P on maize grain yield follows the sequence N+I >P+I>N+P. Individually, the interaction effects of N+I and N+P on maize grain yield are positive, whereas that of P+I is negative. To achieve maximum grain yield (10506.0 kg·ha−1) for spring maize in the study area, the optimum application rates of I, N and P are 930.4 m3·ha−1, 304.9 kg·ha−1 and 133.2 kg·ha−1 respectively that leads to a possible economic profit (EP) of 10548.4 CNY·ha−1 (CNY, Chinese Yuan). Alternately, to obtain the best EP (10827.3 CNY·ha−1), the optimum application rates of I, N and P are 682.4 m3·ha−1, 241.0 kg·ha−1 and 111.7 kg·ha−1 respectively that produces a potential grain yield of 10289.5 kg·ha−1.  相似文献   

5.
Ali  Izhar  Zhao  Quan  Wu  Ke  Ullah  Saif  Iqbal  Anas  Liang  He  Zhang  Jing  Muhammad  Ihsan  Amanullah  Khan  Abdullah  Khan  Asad Ali  Jiang  Ligeng 《Journal of Plant Growth Regulation》2022,41(6):2406-2420

The over use of synthetic nitrogen (N) fertilizers is the major anthropogenic cause of low N-use efficiency and environmental damage in wetland rice production. Biochar (B) addition to soil is suggested as a climate change mitigation tool that supports carbon sequestration and reduces N losses and greenhouse gas emissions from the soil. Therefore, this study assessed the effect of four levels of B (0, 10, 20 and 30 t ha?1) combined with two levels of N (135 and 180 kg ha?1) on soil health, roots dynamics, physiological attributes, and yield components of rice. The addition of B at 30 t ha?1 combined with 135 N kg ha?1 increased chlorophyll content, net photosynthetic rate, biomass, and grain yield by 104%, 64%, 12%, and 30%, respectively, over control. Further, root traits such as total root length (TRL), total root volume (TRV), total root surface area (TRSA), and total average root diameter (TARD) were improved under 30 t ha?1 combined with 135 N kg ha?1 by 20%, 13%, 13%, and 25%, respectively, than non-biochar treatment under lower N application. Improvements in these traits resulted from higher N uptake due to improved soil physiochemical properties and soil microbial biomass combined with biochar. Interestingly, enhanced N metabolizing enzyme activities, including nitrate reductase (NR), glutamine synthetase (GS), and glutamine oxoglutarate aminotransferase (GOGAT) in biochar-treated plots, further supported the increases in these traits. Our results revealed that the integration of 30 t B ha?1 with 135 kg N ha?1 is a favorable option for enhancing soil health and rice grain yield.

  相似文献   

6.
The present study was undertaken to assess the benefit and compare the functioning of AM fungi on wheat grown conventionally and on beds. Ten treatment combinations were used, treatments 1 and 2: no fertilizers with and without arbuscular mycorrhizal (AM) fungi (In vitro produced Glomus intraradices); 3:100% of recommended NPK: (120 kg ha−1 N; 60 kg ha−1 P; 50 kg ha−1 K), and 4 and 5: 75% of recommended NPK dose with and without AM inoculation in a 5 × 2 split-plot design on wheat using conventional/flat system and elevated/raised bed system. The maximum grain yield (3.84 t ha−1) was obtained in AM fungi inoculated plots of raised bed system applied with 75% NPK and was found higher (although non- significant) than the conventional (3.73 t ha−1) system. The AM inoculation at 75% fertilizer application can save 8.47, 5.38 kg P and 16.95, 10.75 kg N ha−1, respectively, in bed and conventional system. While comparing the yield response with 100% fertilizer application alone, AM inoculation was found to save 20.30, 15.79 kg P and 40.60, 31.59 kg N ha−1, respectively, in beds and conventional system. Mycorrhizal inoculation at 75% NPK application particularly in raised bed system seems to be more efficient in saving fertilizer inputs and utilizing P for producing higher yield and growth unlike non-mycorrhizal plants of 100% P. Besides the yield, mycorrhizal plants grown on beds had higher AM root colonization, soil dehydrogenases activity, and P-uptake. The present study indicates that the inoculation of AM fungi to wheat under raised beds is better response (although non-significantly higher) to conventional system and could be adopted for achieving higher yield of wheat at reduced fertilizer inputs after field validation.  相似文献   

7.
Pakistan ranks third among the chickpea growing countries of the world. Chickpea need less water that is why it is preferred by the farmers of the arid and semi- arid zone. The chickpea crop is severely infested by many weeds which reduce its yield and also deteriorate the quality of the grains. The un-availability of high competitive cultivars also had impact on the annual yield production of chickpea crop. The focus of the study was to evaluate sound, feasible and economic weed management strategies to uplift the yield of chickpea crop. The Southern districts of Khyber Pakhtunkhwa are the major producer of chickpea crop. Therefore keeping in view the importance of the crop and as well as the problems associated with the crops, the experiments were conducted at Ahmad Wala Research Station Karak during years 201112 and 2012–13 with Randomized Complete Block design with split split arrangement having four replications. Sowing was done on October 16th during both the studied years. To evaluate the potential of irrigation verses rainfed conditions five cultivars i.e. Karak-1, Karak-2, Sheenghar, Lawaghar and KC-98 and ten weed management techniques i.e. Stomp 330 EC (Pendimethalin), Stomp 330 EC + Hand Weeding (HW) at 60 DAS, Dual Gold 960 EC (S-Metolachlor), Dual Gold 960 EC + HW at 60 DAS, HW one time at (30 DAS), HW two times at (30 and 60 DAS), HW three times at (30, 60 and 90 DAS), White plastic mulch, Black plastic mulch and weedy check were tested. The data was recorded on the below mentioned parameters i.e. weed density m?2 at 60 DAS, number of productive branches plant?1, number of pods plant?1, number of grain pods?1, number of nodules plant?1, grain yield (kg ha?1) and Cost-benefit ratio (CBR). Results of the two years study revealed that with the exception of number of grains pods?1, and cost benefit ratio, all the vegetative and yield parameters were significantly different during both the studied years. Comparing the effect of irrigation regimes versus rainfed conditions significantly (p < .05) difference was recorded in all parameters while the maximum values were in irrigated plots as compared to rainfed conditions. Significant (p < .05) difference was recorded in weeds density at 60 DAS (64.13 m?2) found in irrigated plots as compared to rainfed conditions. The year wise comparison of the varieties was significant (p < .05) in number of pods plant?1, grain yield (kg ha?1). The varieties were also found with significant difference. After 60 days the minimum weed density (60.68 m?2) was found in Karak-2 and the maximum weed density at 60 DAS (62.42 m?2) was recorded in Sheenghar. Among the varieties the maximum values were found number of productive branches plant?1 (15.89), number of pods plant?1 (45.52), was found in Karak-1.The maximum number of grains pod?1 (l.93) was found in Karak-2. The maximum number of nodules plant?1 (28.54) in Sheenghar and grain yield (1484.1 kg ha?1) and cost benefit ratio (3.32) was recorded in Lawaghar. The year wise comparison of weed management parameters was also significant in different parameters. However among the treatments after 60 DAS the minimum weed density (51.15 m?2) was recorded in black and white plastic and the maximum weed density (99.54 m?2) was recorded in the weedy check. Among the applied treatments for weed management the maximum number of productive branches plant?1 (16.83), number of pods plant?1 (52.46), number of grains pod?1 (2.16) and grain yield (1659.75 kg ha?1) was recorded in HW three times treatments while on the other hand maximum number of nodules plant?1 (29.96) was recorded in both black and white plastic mulches. The maximum cost benefit ratio (3.39) was recorded in Stomp 330 EC. The minimum number of nodules plant?1 (25.35) was found in Dual Gold EC 960 treated plots. The minimum number of productive branches plant?1 (13.32), number of pods plant?1 (31.47), number of grains pod?1 (l.68) and grain yield (1148.4 kg ha?1) was found in weedy check. The minimum cost benefit ratio (2.54) was found in black plastic mulches treated plots. From the above findings it is concluded that chickpea variety Lawaghar grown in the arid zone need subsequent irrigation. HW, black and white plastic mulches were found efficient for weed management but costly. However, the herbicide Stomp 330 EC was found efficient in weed control and gained maximum CBR in the experimental trial at Southern districts of Khyber Pakhtunkhwa province of Pakistan.  相似文献   

8.
以我国北方12个冬小麦(Triticum aestivum)品种(系)和美国德克萨斯州3个冬小麦品种(系)为供试材料, 在甘肃陇东黄土高原旱作和拔节期有限补灌条件下, 比较研究了不同基因型冬小麦之间产量、水分利用效率(WUE)和灌浆期旗叶稳定碳同位素比值(δ13C)的差异, 以及δ13C值与产量和WUE的关系。旨在通过分析δ13C值与产量和WUE的关系, 明确δ13C值在评价植物WUE方面的可靠性, 为抗旱节水品种的筛选提供理论依据。结果表明: 不论旱作还是有限补灌, 不同基因型冬小麦之间产量、WUE、旗叶δ13C值存在显著差异, 随着灌浆过程的进行, 旗叶δ13C值呈缓慢增大的趋势, 而且旗叶δ13C值旱作高于有限补灌。不论旱作还是补灌条件, 旗叶δ13C值在4个测定时期的平均值与籽粒产量、WUE呈显著正相关关系(R2= 0.527 3-0.691 3)。小麦拔节期补灌100 mm水分后, 不同基因型小麦表现出明显的水分超补偿效应。说明冬小麦灌浆期旗叶δ13C值在旱作条件下和在补灌条件下均可较好地评价WUE, 可将冬小麦灌浆期旗叶δ13C值作为筛选高效用水品种的参考指标之一。  相似文献   

9.
冬小麦光合特征及叶绿素含量对保水剂和氮肥的响应   总被引:9,自引:0,他引:9  
以不施保水剂和氮(N)肥为对照,测定了保水剂(60 kg·hm-2)与不同N肥水平(0、225、450 kg·hm-2)及其配施条件下大田小麦的光合特征、叶绿素含量和水分利用效率等指标,研究了冬小麦拔节期和灌浆期光合生理特征、叶绿素含量及水分利用对保水剂和N肥的响应.结果表明:灌浆期各处理的光合速率、气孔导度、胞间CO2浓度、叶片水分利用效率及叶绿素含量均大于拔节期.在拔节期,单施N肥条件下,随施N量的增加,单叶水分利用效率提高,光合速率、气孔导度、胞间CO2浓度及蒸腾速率均先增后减;225 kg·hm-2 N肥处理的叶绿素含量最高.施用保水剂后,随施N量的增加,胞间CO2浓度降低,而光合速率等均提高;单施保水剂及其与N肥配施提高了叶绿素含量,而过多N肥效果不显著在灌浆期,单施N肥显著提高了小麦的光合速率及水分利用效率,降低了气孔导度、胞间CO2浓度及蒸腾速率;叶绿素含量随N肥用量的增加而增加.施用保水剂后,随N肥用量的增加,光合速率和叶片水分利用效率均先增后减,而胞间CO2浓度和蒸腾速率先减后增,但均低于对照,气孔导度随施N量的增加而提高.单施保水剂的叶绿素含量显著提高,但其与N肥配施叶绿素含量有所降低.保水剂与N肥配合施用显著提高了小麦的千粒重、产量及水分生产效率.其中,保水剂与225 kg·hm-2N肥配施处理的产量及水分生产效率均最高.  相似文献   

10.
Agricultural crops especially fruit trees are constrained by edaphic stresses in shallow soils with low water retention and poor fertility. Therefore, interventions of shifting to trench planting for better root anchorage and replacing the filling soil were evaluated for 8 years in dragon fruit (Hylocereus undatus) cultivated in Deccan Plateau of peninsular India. When averaged for last 5-years, 44 % higher fruit yield (18.2 ± 1.0 Mg ha?1) was harvested from trees planted in trenches filled with 1:1 mixture (T-mixed) of native soil (loamy sand with 26.7 % stones (>2mm), field capacity, FC 0.20 cm3 cm?3; organic carbon, OC 0.17 %; Av-N 54.6 kg ha?1) and a black soil (clay 54.4 %; FC 0.42 cm3 cm?3; OC 0.70 %; Av-N 157.1 kg ha?1) than the recommended pit planting (12.4 ± 1.2 Mg ha?1). Improvements in fruit yields with trenches filled with black (T-black) and native (T-native) soil were 32 and 13 %, respectively. Yield losses (total– marketable yield) were reduced by 40, 20 and 18 % over pit method with T-mixed, T-black and T-native soil, respectively. Marketable quality attributes like fruit weight, fruit size metrics and pulp/peel content were further improved under T-mixed soil. Accumulation of total soluble solids (TSS), sugar content, phenolic and flavonoid compounds were higher in fruits from T-native soil. During storage, fruits from T-native soil and pit planting exhibited minimum physiological weight loss and retained more firmness, TSS, sugars, titratable acidity, phenolic-flavonoids contents, FARP and DPPH activities. T-mixed soil provided better hydrozone and nutrients for resilience of fruit plants while protecting from aeration problems envisaged in poorly drained black soils. With B:C ratio (1.85) and lower payback period (4-years), T-mixed soil showed superior economic viability. Therefore, soil management module of planting in trenches filled-in with mixture of native and black soils can be recommended to boost productivity of fruits from shallow soils under water scarce degraded regions without penalising agro-ecosystem.  相似文献   

11.
Gui  Runfei  Mo  Zhaowen  Zeng  Shan  Wen  Zhiqiang  Long  Weisi 《Journal of Plant Growth Regulation》2023,42(3):1604-1613

Compared with the standard method of manual fertilizer broadcasting (MFB), mechanized hill-drilling direct-seeding with deep application of slow-release nitrogen fertilizer (MHDDF) is an efficient method to integrate both fertilization and seeding. However, there are few studies that combine the use of slow-release fertilizer with MHDDF. We sought to explore the combined effect of MHDDF with slow-release fertilizer on rice yield and nitrogen, phosphorus, and potassium utilization, compared to MFB. We compared three different MHDDF methods (D30: 450 kg ha?1, D40: 600 kg ha?1, D50: 750 kg ha?1), with one MFB method (B50: 750 kg ha?1), and one control (CK: 0 kg ha?1). We found that the yield of all MHDDF method was higher than that of both the MFB method. Yield was the highest in the D50 treatment and was 14.14–46.03% higher than that in B50 treatment. Biomass accumulation, nutrient accumulation, and nutrient use efficiency were similarly higher in MHDDF method than both MFB and CK. Compared to B50, the D50 treatment increased nitrogen recovery efficiency by 170.53–231.50%, phosphorus recovery efficiency by 480.00–724.25%, and potassium recovery efficiency by 201.55–169.59%. Overall, we found that combining MHDDF with slow-release fertilizer was an effective method to increase rice yield and nutrient use efficiency compared with MFB.

  相似文献   

12.
Improving nitrogen (N) use efficiency (NUE) in crop plants is important to reduce the negative impact of excessive N on the environment. Although biochar-blended fertilizer had been increasingly tested in crop production, the fate of fertilized N in soil and plant had not been elucidated in field conditions. In this study, a novel biochar-blended urea (BU) was prepared by pelleting maize straw biochar, bentonite, sepiolite, carboxymethylcellulose sodium, and chitosan with urea (commercial urea without biochar [CU]). N fertilization in a winter wheat field was treated with BU and CU at both 265 kg N ha?1 (HL) and 186 kg N ha?1 (LN). Within a treatment plot, a microplot was fertilized with 15N-labeled urea at a relevant N level. We investigated the influence of fertilizer management on biomass, grain yield, bioaccumulation of nutrient, soil properties, 15N isotopic abundance, and greenhouse gas emissions. Microscopic and spectroscopic analysis showed that micro/nanonetwork of biochar could bind N to form a loss control agglomerated particle, and organo-mineral coatings on BU may protect N from quick release. Compared with CU, BU significantly increased grain yield by 13% and 38%, and grain N allocation by 19% and 55%, respectively, at HN and LN level. The total recovery of urea 15N in wheat plant (15N based NUE) was 32.8% under CU regardless of N rates but increased to 41.7% (HN rate) and 56.3% (LN rate) under BU. Whereas, the soil proportion (soil residual 15N) was 20.1% and 13.4% under CU but 32.5% and 18.8% under BU, in 0-20cm topsoil, respectively, at HN and LN rate. Compared with the CU, BU had no effect on CO2 and CH4 emissions but significantly reduced the total N2O emission by 23%–28%. These important findings suggested that BU can be beneficial to uplift plant NUE to reduce reactive N loading but boost crop production.  相似文献   

13.
Effects of inoculation of wheat (Triticum aestivum L.) with the rhizobacterium Pseudomonas chlororaphis subsp. aurantiaca strain SR1 (termed SR1) were studied at an experimental field site in Río Cuarto, Argentina. Treatments involved SR1 inoculation with or without nitrogen/phosphorus fertilization. Inoculation produced a significant increase in plant height and root length in early growth stages. Inoculation plus fertilization with 40 kg ha−1 urea/30 kg ha−1 diamonic phosphate (“50% dose”) gave a yield increase of 636 kg ha−1 relative to control, and an increase of 472 kg ha−1 relative to fertilization with 80 kg ha−1 urea/60 kg ha−1 phosphate without inoculation. SR1 inoculation without fertilization, compared to control, produced increases of 6% in weight of 1,000 grains, 13% in number of spikes per plant, and 30% in number of grains per spike. Inoculation plus 50% dose fertilization also improved these parameters. Results of the study indicate that inoculation of wheat with SR1 improves various growth and yield parameters, and allows reduced dosage of nitrogen/phosphorus fertilizers in the field.  相似文献   

14.
Avoidable or inappropriate nitrogen (N) fertilizer rates harmfully affect the yield production and ecological value. Therefore, the aims of this study were to optimize the rate and timings of N fertilizer to maximize yield components and photosynthetic parameter of soybean. This field experiment consists of five fertilizer N rates: 0, 75, 150, 225 and 300 kg N ha−1 arranged in main plots and four N fertilization timings: V5 (trifoliate leaf), R2 (full flowering stage) and R4 (full poding stage), and R6 (full seeding stage) growth stages organized as subplots. Results revealed that 225 kg N ha−1 significantly enhanced grain yield components, total chlorophyll (Chl), photosynthetic rate (PN), and total dry biomass and N accumulation by 20%, 16%, 28%, 7% and 12% at R4 stage of soybean. However, stomatal conductance (gs), leaf area index (LAI), intercellular CO2 concentration (Ci) and transpiration rate (E) were increased by 12%, 88%, 10%, 18% at R6 stage under 225 kg N ha−1. Grain yield was significantly associated with photosynthetic characteristics of soybean. In conclusion, the amount of nitrogen 225 kg ha−1 at R4 and R6 stages effectively promoted the yield components and photosynthetic characteristics of soybean.  相似文献   

15.

This study assessed the interactive effect of selenium (Se) and farmyard manure (FYM) on soil microbial activities, growth, yield, and Se accumulation by wheat grains. Preliminarily, the effect of Se (0–250 µg kg?1 soil) and FYM (0–12.5 g kg?1 soil) was assessed on soil microflora. Selenium exhibited an adverse impact on soil microflora; respiration was decreased at?≥?10 µg kg?1 soil while dehydrogenase and urease activities were decreased at?≥?125 µg kg?1 soil. At 250 µg Se kg?1 soil, respiration, dehydrogenase and urease activities were decreased by 81, 40 and 35%, respectively, on unamended soil, and by 9, 47 and 22%, respectively, on FYM-amended soil. The subsequent plant experiments were conducted with same Se and FYM rates; one was harvested 42 days after sowing and other at crop maturity. The application of 125 µg Se kg?1 and 12.5 g FYM kg?1 soil improved seedling biomass by 12.6 and 22%, respectively, while their combined use lacked synergistic effect. Similarly, at maturity Se and FYM increased grain yield while their combined effect was not synergistic. The Se-induced suppression in microbial activities was not related to yield which was improved (11% at the highest rate in unamended soil) by Se application. Selenium application increased grain Se content in a rate-dependent manner, it increased from 0 to 1025 µg kg?1 by applying 250 µg Se kg?1 soil. Moreover, FYM application decreased Se accumulation in grains. It is concluded that FYM application increased soil microbial activities and yield but reduced grain Se accumulation in wheat on Se-applied soil.

  相似文献   

16.
《农业工程》2022,42(4):289-295
A field experiment was conducted in 2019 (minor season) and 2020 (major season) to study soil properties and net income response to inorganic NPK fertilizer and biochar application for maize production. The experiment was made up of 2 × 3 factorial combinations of biochar (0 kg ha?1, 2000 kg ha?1) and inorganic NPK fertilizer (0:0:0 kg NPK ha?1, recommended rate; 90:60:60 kg N: P:K ha?1, half of recommended rate; 45:30:30 kg N:P:K ha?1). In both seasons, biochar and inorganic NPK fertilizer applied separately or in combination improved soil properties (dehydrogenase activity, CEC, organic carbon, bacterial and fungal population, microbial biomass carbon and basal respiration rates) and yield significantly. In 2019, however, mineral N and available P did not increase in biochar amended plots. Significant interaction effect was observed between biochar and NPK fertilizer application which could be related to positive soil conditioning of biochar and biochar surface charges which enhanced retention and steady release of nutrient supplied by NPK fertilizer for maize use. Maize grain yield and profit in both crop seasons increased significantly and followed an increasing order of control < sole biochar < NPK (half rate) < NPK (full rate) < combined biochar + NPK (full rate) = combined biochar + NPK (half rate). Farmers in this agro ecological zone are encouraged to apply biochar + inorganic NPK fertilizer (45:30:30) due to its low total production cost, improved maize grain yield and high net income compared to the full rate (90:60:60) or full rate + biochar.  相似文献   

17.
This study was designed to evaluate the litter produced by Mediterranean shrub legumes subjected to two conditions of aridity. Seasonal litterfall patterns and litter chemistry showed no significant variation with soil aridity. The effects of aridity on the amount of litter produced were related to the plant species. A higher availability of water led to a 110% increase in litter production by Colutea arborescens (3191 vs. 1516 kg ha–1) and to a 24% increase for Medicago strasseri (5288 vs. 4258 kg ha–1). The litter provided by Colutea cilicica failed to significantly increase (1651 vs. 1825 kg ha–1) in less arid conditions. In our experimental conditions, Dorycnium hirsutum showed high mortality and scarce persistence. In general, the litter supplied by these shrub legumes was low in lignin and showed high levels of easily degradable organic-C. Its N content, in the range 18 to 26.5 g kg–1, was similar to that described by others for multipurpose tropical legumes. Under the semi-arid conditions of central Spain, C. arborescens and C. cilicica gave rise to potential yearly returns of 662 and 693 kg ha–1 organic-C, and 35 and 44 kg ha–1 N, respectively. M. strasseri provided a yearly organic-C return (1742 kg ha–1) similar to that of a mature Mediterranean wood, and to a potential N return (78 kg ha–1) that substantially exceeded this reference. Compared to the sclerophyllous species typical of the Mediterranean environment, shrub legumes show a much greater potential for enhancing N and organic-C levels, and consequently, for improving the biological activity of degraded soils. This feature is thought to be associated with the rapid and constant renewal of their leaves and their ability to provide the soil with other easily degraded materials.  相似文献   

18.
This study, comprising three independent experiments, was conducted to optimize the zinc (Zn) application through seed coating for improving the productivity and grain biofortification of wheat. Experiment 1 was conducted in petri plates, while experiment 2 was conducted in sand-filled pots to optimize the Zn seed coating using two sources (ZnSO4, ZnCl2) of Zn. In the first two experiments, seeds of two wheat cultivars Lasani-2008 and Faisalabad-2008 were coated with 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75 and 2.00 g Zn kg?1 seed using ZnSO4 and ZnCl2 as Zn sources. The results of experiment I revealed that seed coating with 1.25 and 1.50 g Zn kg?1 seed using both sources of Zn improved the seedling emergence. However, seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 was better regarding improvement in seedling growth and seedling dry weight. The results of the second experiment indicated that seed coated with 1.25 and 1.50 g Zn kg?1 seed using ZnSO4 improved the seedling emergence and seedling growth of tested wheat cultivars. However, seed coating beyond 1.5 g Zn kg?1 seed using either Zn source suppressed the seedling emergence. Third experiment was carried out in glass house in soil-filled earthen pots. Seeds of both wheat cultivars were coated with pre-optimized treatments (1.25, 1.50 g Zn kg?1 seed) using both Zn sources. Seed coating with all treatments of ZnSO4 and seed coating with 1.25 g Zn kg?1 seed using ZnCl2 improved the seedling emergence and yield-related traits of wheat cultivars. Seed coating with 1.25 g Zn kg?1 seed also improved the chlorophyll a and b contents. Maximum straw Zn contents, before and after anthesis, were recorded from seed coated with 1.5 g Zn kg?1 seed using either Zn source. Increase in grain yield from seed coating followed the sequence 1.25 g Zn kg?1 seed (ZnSO4) >1.25 g Zn kg?1 seed (ZnCl2) >1.5 g Zn kg?1 seed (ZnSO4). However, increase in grain Zn contents from seed coated was 1.5 g Zn kg?1 seed (ZnCl2) >1.25 and 1.5 g Zn kg?1 seed (ZnCl2, ZnSO4) >1.25 g Zn kg?1 seed (ZnSO4). Seed coating with Zn increased the grain Zn contents from 21 to 35 %, while 33–55 % improvement in grain yield was recorded. In conclusion, wheat seeds may be coated with 1.25 g Zn kg?1 seed using either source of Zn for improving the grain yield and grain Zn biofortification.  相似文献   

19.
Spinach (Spinacia oleracea L.) is considered a nitrogen (N) intensive plant with high nitrate (NO3?) accumulation in its leaves. The current study via a two-year field trial introduced an approach by combining N fertilization from different sources (e.g., ammonium nitrate; 33.5 % N, and urea; 48 % N) at different rates (180, and 360 kg N ha?1) with the foliar spraying of molybdenum (Mo) as sodium molybdate, and/or manganese (Mn) as manganese sulphate at rates of 50 and 100 mgL?1 of each or with a mixture of Mo and Mn at rates of 50 and 50 mg L?1, respectively on growth, chemical constituents, and NO3? accumulation in spinach leaves. Our findings revealed that the highest rate of N fertilization (360 kg N ha?1) significantly increased most of the measured parameters e.g., plant length, fresh and dry weight plant?1, number of leaves plant?1, leaf area plant?1, leaf pigments (chlorophyll a, b and carotenoids), nutrients (N, P, K, Fe, Mn, Zn), total soluble carbohydrates, protein content, net assimilation rate, and NO3? accumulation, but decreased leaf area ratio and relative growth rate. Moreover, plants received urea-N fertilizer gave the highest values of all previous attributes when compared with ammonium nitrate –N fertilizers, and the lowest values of NO3? accumulation. The co-fertilization of N-Mo-Mn gave the highest values in all studied attributes and the lowest NO3? accumulation. The best treatment was recorded under the treatment of 360 kg N-urea ha?1 in parallel with the combined foliar application of Mo and Mn (50 + 50 mg L?1). Our findings proposed that the co-fertilization of N-Mo-Mn could enhance spinach yield and its quality, while reducing NO3? accumulation in leaves, resulting agronomical, environmental and economic benefits.  相似文献   

20.
Reducing the number of tillers per plant using a t iller in hibition (tin) gene has been considered as an important trait for wheat production in dryland environments. We used a spatial analysis approach with a daily time‐step coupled radiation and transpiration efficiency model to simulate the impact of the reduced‐tillering trait on wheat yield under different climate change scenarios across Australia's arable land. Our results show a small but consistent yield advantage of the reduced‐tillering trait in the most water‐limited environments both under current and likely future conditions. Our climate scenarios show that whilst elevated [CO2] (e[CO2]) alone might limit the area where the reduced‐tillering trait is advantageous, the most likely climate scenario of e[CO2] combined with increased temperature and reduced rainfall consistently increased the area where restricted tillering has an advantage. Whilst long‐term average yield advantages were small (ranged from 31 to 51 kg ha?1 year?1), across large dryland areas the value is large (potential cost‐benefits ranged from Australian dollar 23 to 60 MIL/year). It seems therefore worthwhile to further explore this reduced‐tillering trait in relation to a range of different environments and climates, because its benefits are likely to grow in future dry environments where wheat is grown around the world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号