首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Summary Within a physiologically integrated clone, the structure and functioning of an individual ramet is determined by: 1) the response of that ramet to its local environment and 2) its response to resource integration within the clone. In a multifactorial experiment, Hydrocotyle bonariensis ramets were grown in limiting resource environments with and without the benefit of basipetal resource movement from another branch of the clone. Ramets were analyzed for their morphological responses to variation in local light, water and nitrogen availability and to the superimposed effect of resource integration on these conditions. The expression of ramet morphology, from induction to development, was highly plastic in response to variable local resource availability. Resource integration changed a ramet's local response in a variety of ways depending on the resource(s) being translocated and the character involved. Among leaf characteristics (leaf weight, petiole height, blade area), resource translocation into the shade resulted in an enhancement of the local response. Similarly, the translocation of nitrogen and water generally increased clonal proliferation and sexual reproduction among ramets. In contrast, the translocation of water reversed the effect of local low water conditions on ramets by inhibiting root production. Some characters such as internode distance and leaf allometry were unaffected by integration. The maintenance of connections between ramets as a Hydrocotyle clone expands allows for resource sharing among widely separated ramets and can result in an integrated morpological response to a resource environment that is patchy in time and space.  相似文献   

2.
Clonal integration may be adaptive and enhance the genet performance of clonal plants. Degree of clonal integration may differ between different environments . Here, a container experiment was used to determine how clonal integration affected the performance of the stoloniferous herb Duchesnea indica at two sites with different altitude along the transitional zone between the Qinghai-Tibet plateau and the Sichuan basin of Southwest China. In the experiment, the stolon between partially shaded two ramets experienced severing and intact treatments.We predicted that clonal integration would increase performance of whole clonal fragments and their shaded clonal parts at both sites. In both arctic and alpine environments, clonal plants may form highly integrated plant units (group of ramets).We predicted again that the reduction due to stolon severing in performance of whole clonal fragments and their shaded clonal parts would be greater at the site with high altitude than one with low altitude. The results indicated that the benefit for the shaded clonal parts and whole clonal fragments due to clonal integration was only observed at the site with high altitude. The results suggest that the performance of Duchesnea indica tends to be more responsive to the stolon severing at the site with high altitude than one with low altitude and support the second prediction. In addition, the effects of conditions of the sites and clonal integration on local morphological traits of ramets may be adaptive, five morphological traits of ramet-level (length of petiole, mean stolon internode length, specific petiole weight, specific stolon internode weight and specific leaf area) were investigated. Altogether, the results suggest that clonal integration might help D. indica plants to successfully inhabit the high-altitude habitat of the Qinghai-Tibet plateau of Southwest China, providing new evidences for the notion that clonal integration is an adaptive trait in stressful environments.  相似文献   

3.
在深度遮光 (光照强度为高光条件的 6 .2 5% ,约为自然光照的 5.3% )或低养分条件下 ,金戴戴 (HalerpestesruthenicaOvcz.)生物量、初级分株叶面积、分株总数、匍匐茎总数和总长度均显著减小 ,而比节间长和比叶柄长显著增加。在低养分条件下 ,金戴戴匍匐茎平均节间长显著增加 ,而匍匐茎分枝强度和分株数显著减小。这些结果与克隆植物觅食模型相符合 ,表明当生长于异质性生境中 ,金戴戴可能通过以克隆生长和克隆形态的可塑性实现的觅养行为来增加对养分资源的摄取。在深度遮光条件下 ,金戴戴平均间隔子长度 (即平均节间长和平均叶柄长 )均显著减小。这一结果与以往实验中匍匐茎草本间隔子对中度和轻度遮光 (光照强度为高光条件的 1 3%~ 75% ,>1 0 %的自然光照 )的反应不同。这表明 ,在深度遮光条件下匍匐茎克隆植物可能不发生通过间隔子可塑性实现的觅光行为。光照强度和基质养分条件的交互作用对许多性状如总生物量、匍匐茎总数和总长度、二级和三级分株数、分株总数、初级分株叶面积以及分枝强度均有十分显著的效应。在高光条件下 ,基质养分对这些性状有十分显著的影响 ;而在低光条件下 ,基质养分条件对这些性状不产生影响或影响较小。这表明 ,光照强度影响金戴戴对基质养分的可塑性反应。在深度遮光  相似文献   

4.
在深度遮光(光照强度为高光条件的6.25%,约为自然光照的5.3%)或低养分条件下,金戴戴(Halerpestes ruthenica Ovcz.)生物量、初级分株叶面积、分株总数、匍匐茎总数和总长度均显著减小,而比节间长和比叶柄长显著增加.在低养分条件下,金戴戴匍匐茎平均节间长显著增加,而匍匐茎分枝强度和分株数显著减小.这些结果与克隆植物觅食模型相符合,表明当生长于异质性生境中,金戴戴可能通过以克隆生长和克隆形态的可塑性实现的觅养行为来增加对养分资源的摄取.在深度遮光条件下,金戴戴平均间隔子长度(即平均节间长和平均叶柄长)均显著减小.这一结果与以往实验中匍匐茎草本间隔子对中度和轻度遮光(光照强度为高光条件的13%~75%,>10%的自然光照)的反应不同.这表明,在深度遮光条件下匍匐茎克隆植物可能不发生通过间隔子可塑性实现的觅光行为.光照强度和基质养分条件的交互作用对许多性状如总生物量、匍匐茎总数和总长度、二级和三级分株数、分株总数、初级分株叶面积以及分枝强度均有十分显著的效应.在高光条件下,基质养分对这些性状有十分显著的影响;而在低光条件下,基质养分条件对这些性状不产生影响或影响较小.这表明,光照强度影响金戴戴对基质养分的可塑性反应.在深度遮光或低养分条件下,金戴戴可能通过减小匍匐茎节间粗度(增加比节间长)来增加或维持其相对长度,从而更有机会逃离资源丰度低的斑块.  相似文献   

5.
Ramet-pairs of Potentilla reptans L. var.sericophylla Franch from forest gap and forest understory were subjected to unshading, shading and partial shading treatments in a pot experiment. The genet biomass, total length of stolons, number of ramets, specific stolon weight, petiole length and specific petiole weight of the plant species under the shaded condition were smaller than those under the unshaded condition. The stolon internode length did not respond to the various treatments. In the plants from the forest gap, the petiloes of ramet grown in the shaded patch were longer as connected to plant part in the unshaded patch than as connected to plant part under the same shaded condition. Such modification of local response of ramet petiole to shading due to physiological integration was not observed in the plants from the understory. There was no effect of connection to ramets in shaded patches on the local response of the rest ramet characters to the partial unshading.  相似文献   

6.
匍匐茎草本绢毛匍匐委陵菜对局部遮荫的克隆可塑性   总被引:1,自引:0,他引:1  
采自林窗和林内生境的绢毛匍匐委陵菜 (PotentillareptansL .var.sericophyllaFranch)“分株对”(即由一匍匐茎节间相连着的两个分株 ,其一为“目标分株” ,另一为“相连分株”)在一户外实验中经历了全不遮荫、全部遮荫和局部遮荫处理。该植物的基株生物量、匍匐茎总长度、分株数、匍匐茎比节间重、叶柄长、比叶柄重在遮荫条件下较小。匍匐茎节间长度没有对遮荫处理发生反应。在局部遮荫处理 ,遮荫斑块的分株的叶柄长度由于连着未遮荫斑块中分株而变得更长。这种克隆整合对克隆形态可塑性的修饰作用只在林窗生境来源的实验植物中观察到。其他克隆生长和克隆形态特征的可塑性在不同生境来源的实验植物间没有差异。  相似文献   

7.
匍匐茎草本金戴戴对盐分梯度的表型可塑性   总被引:14,自引:2,他引:12       下载免费PDF全文
 研究了匍匐茎型克隆草本金戴戴(Halerpestes ruthenica) 4种基株(基因型)对不同盐分处理(0,85.5, 171.0, 256.5和342.0 mM NaCl)的表型可塑性。随着盐分浓度的增加,实验植物与生长相关的性状指标 (如植株干重、总叶面积、分株数和总匍匐茎长度) 显著减小。植株干重、总叶面积和总匍匐茎长度具有显著的基株间差异。实验植物与形态相关的性状指标 (如平均叶柄长和根冠比) 对盐分梯度具有可塑性并具有显著的基株间差异;而其它形态指标 (如平均节间长、比节间长和比叶柄长)  相似文献   

8.
Disturbance is common in nature and disturbance-caused fragmentation of clones happens frequently in stoloniferous plants. After fragmentation storage in stolon internodes and leaves may enhance survival and growth of stoloniferous plants. We hypothesize that (1) increasing length of the internode attached to the ramet and (2) presence of leaves will increase ramet survival and growth, and that (3) internode positions (before or after the ramet or both) will also play a role. We tested these hypotheses with the stoloniferous, invasive herb Alternanthera philoxeroides. In one experiment, we measured survival and growth of the ramets either without stolon internode (0 cm in length) or attached with internodes of 2, 4, 6 and 8 cm and either with or without leaves. In the other experiment, we measured survival and growth of the ramets attached with a proximal internode (before the ramet), a distal internode (after the ramet) or both. Increasing internode length and presence of leaves significantly increased the survival rate and growth (biomass, leaf area, number of ramets, stolon length and number of leaves) of the A. philoxeroides plants. All growth measures of A. philoxeroides at harvest were larger when the ramets were attached with a distal internode than when they were attached with a proximal internode, but the survival rate was lower. These results support the hypotheses and suggest that storage in stolons and leaves may be of great significance for clonal plants in frequently disturbed habitats and may contribute greatly to the invasiveness of A. philoxeroides.  相似文献   

9.
  • One benefit of clonal integration is that resource translocation between connected ramets enhances the growth of the ramets grown under stressful conditions, but whether such resource translocation reduces the performance of the ramets grown under favourable conditions has not produced consistent results. In this study, we tested the hypothesis that resource translocation to recipient ramets may reduce the performance of donor ramets when resources are limiting but not when resources are abundant.
  • We grew Mikania micrantha stolon fragments (each consisting of two ramets, either connected or not connected) under spatially heterogeneous competition conditions such that the developmentally younger, distal ramets were grown in competition with a plant community and the developmentally older, proximal ramets were grown without competition. For half of the stolon fragments, slow‐release fertiliser pellets were applied to both the distal and proximal ramets.
  • Under both the low and increased soil nutrient conditions, the biomass, leaf number and stolon length of the distal ramets were higher, and those of the proximal ramets were lower when the stolon internode was intact than when it was severed. For the whole clone, the biomass, leaf number and stolon length did not differ between the two connection treatments. Connection did not change the biomass of the plant communities competing with distal ramets of M. micrantha.
  • Although clonal integration may promote the invasion of M. micrantha into plant communities, resource translocation to recipient ramets of M. micrantha will induce a cost to the donor ramets, even when resources are relatively abundant.
  相似文献   

10.

Background and aims

In contrast to seeds, high sensitivity of vegetative fragments to unfavourable environments may limit the expansion of clonal invasive plants. However, clonal integration promotes the establishment of propagules in less suitable habitats and may facilitate the expansion of clonal invaders into intact native communities. Here, we examine the influence of clonal integration on the morphology and growth of ramets in two invasive plants, Alternanthera philoxeroides and Phyla canescens, under varying light conditions.

Methods

In a greenhouse experiment, branches, connected ramets and severed ramets of the same mother plant were exposed under full sun and 85% shade and their morphological and growth responses were assessed.

Key results

The influence of clonal integration on the light reaction norm (connection×light interaction) of daughter ramets was species-specific. For A. philoxeroides, clonal integration evened out the light response (total biomass, leaf mass per area, and stem number, diameter and length) displayed in severed ramets, but these connection×light interactions were largely absent for P. canescens. Nevertheless, for both species, clonal integration overwhelmed light effect in promoting the growth of juvenile ramets during early development. Also, vertical growth, as an apparent shade acclimation response, was more prevalent in severed ramets than in connected ramets. Finally, unrooted branches displayed smaller organ size and slower growth than connected ramets, but the pattern of light reaction was similar, suggesting mother plants invest in daughter ramets prior to their own branches.

Conclusions

Clonal integration modifies light reaction norms of morphological and growth traits in a species-specific manner for A. philoxeroides and P. canescens, but it improves the establishment of juvenile ramets of both species in light-limiting environments by promoting their growth during early development. This factor may be partially responsible for their ability to successfully colonize native plant communities.  相似文献   

11.
Huber  Heidrun  Wiggerman  Lars 《Plant Ecology》1997,130(1):53-62
In herbaceous canopies light availability can show high degrees of spatial variability in a vertical and also in a horizontal direction. Stoloniferous plants are hence likely to encounter differences in light availability during their ontogenetic development. Different mechanisms, such as petiole elongation, plasticity in internode length and branching, and an enhanced allocation to sexual reproduction have been suggested to represent viable shade-avoidance mechanisms for clonal plants.In a field experiment we tested the response of the stoloniferous herb Trifolium fragiferum L. to experimentally manipulated vegetation heights. Naturally occurring clonal fragments were exposed to four different vegetation heights ranging from 0 cm (high light availability created by clipping the surrounding natural vegetation at ground level) to 20 cm (natural shading in closed canopy). The growth and development of individual clones was followed for two months. At the end of the experiment above-ground plant parts were harvested. Growth-related and morphological parameters (e.g., petiole and internode length) as well as patterns of meristem utilization (i.e., flowering, branching) were recorded.Neither primary stolon growth and biomass accumulation nor branching and flowering were significantly affected by treatments. However, increased vegetation height resulted in a reduced number of secondary ramets and also had strong positive effects on petiole length, leading to marked changes in the architecture of plants growing in canopies of different heights. In addition, the average weight of individual ramets on the primary stolon was markedly higher in plants exposed to taller vegetation as compared to shorter vegetation.The results of this study suggest the occurrence of a trade-off between clonal expansion (i.e., secondary ramet production) and the average size of clonal offspring. If grown under higher vegetation plants invested more into the size of individual ramets, especially into elongating petioles, and less into the growth and development of lateral branches. Placing leaf laminae higher up in the canopy results in an enhanced light interception which has apparently buffered negative effects of increased vegetation height on whole-clone biomass. Plants grown under shorter vegetation invested more into lateral spread by producing more, but smaller ramets.  相似文献   

12.
This paper examines morphological plasticity of clonal plants of contrasting habitats and of contrasting architectures in response to nutrient supply. The hypotheses were tested that plants from rich habitats possess greater plasticity in response to variation in resource supply than species from poor habitats, and that rhizomatous species are less plastic in their response than stoloniferous species. Two sympodial rhizomatous herbs (Carex flacca, C. hirta) and two monopodial stoloniferous herbs (Trifolium fragiferum, T. repens) were subjected to four levels of nutrient supply in a garden experiment. One of the two species of each genus (C. hirta, T. repens) is from fertile and the other from infertile habitats. We measured 1) whole plant characters: total plant dry weight, number of modules (product of a single apical meristem) and number of ramets; 2) ramet characters: ramet leaf area and ramet height; and 3) spacer characters: branches per module, length per module and length per module internode.All measured characters in the Trifolium species significantly responded to treatment: the values for all measured characters increased with higher levels of fertilization. The differences in plant characters between fertilization levels were larger in Trifolium repens than in T. fragiferum in terms of whole plant characters, ramet characters and stolon internode length. The two Carex species did not differ in their responses to treatment in terms of most characters measured. In ramet characters and in some whole plant characters the species from fertile habitats were more plastic than those from infertile habitats. In spacer characters this pattern was not found. Foraging could not be demonstrated unequivocally.Morphological plasticity in the stoloniferous (Trifolium) species was much larger than in the rhizomatous (Carex) species. This seems in accordance with a foremost storage function of rhizomes, as against a foremost explorative function of stolons.  相似文献   

13.
The effects of the availability of light (high, medium and low) and soil water (wet and dry) on morphological and physiological traits responsible for whole plant carbon gain and ramet biomass accumulation were examined in a splitter-type clonal herbaceous species Primula sieboldii, a spring plant inhabiting broad range of light environments including open grassland and oak forest understory. Growth experiments were conducted for three genets originated from natural microhabitats differing in light and soil water availability. Ramets of a genet from high light and wet microhabitat, which were grown in low light (relative photon flux density: R-PPFD of 5%) showed 41% less light-saturated photosynthetic rate, 50% less dark respiration rate and earlier defoliation than the ramets in high light (R-PPFD of 61%). The estimation of daily photosynthesis revealed that the light acclimation response in leaf gas exchange contributes to efficient carbon gain of whole plants, irrespective of experimental light conditions. Water stress increased root weight ratio, decreased ramet leaf area, petiole length and photosynthetic capacity. These morphological effects of water stress were larger in high and medium light regimes than in low light regime. The consequence of the above responses was recognized in the relative growth rate of the ramets. The relative growth rate of the ramets in high light with wet regime was four-fold of that in low light plus wet regime, and was 1.5-fold of that in high light plus dry regime. However, even in low light and/or dry regimes, ramets kept positive relative growth rates and produced gemma successfully. We could not detect significant variation in growth responses among genets. The high photosynthetic plasticity revealed in the present study should enable Primula sieboldii to inhabit in a broad range of light and soil water availability.  相似文献   

14.
We evaluated in common-garden experiments the morphological plasticity to shading of three Convolvulus species that occur in Chile and differ in ecological breadth. Convolvulus arvensis L. is a world weed distributed along the country, and is found in open as well as in shaded habitats. Convolvulus chilensis Pers. is a Chilean endemic species typical of coastal habitats, and is found in open to partially open sites. C. demissus choisy occurs only on slopes of the Andes of Chile and Argentina, habitats with high incidence of solar radiation. We hypothesized that the magnitude of phenotypic plasticity to shading of these species would correlate with their ecological breadth. Shading had a significant effect on internode length, petiole length, stem diameter, stem length, number of branches, leaf area, leaf shape, leaf biomass, and specific leaf area. Species differed in all the morphological traits except leaf biomass. A significant Shading × Species interaction in the two-way ANOVA, i.e. differential plasticity to shading of Convolvulus species, was found for petiole length, stem length, number of branches, leaf shape, and specific leaf area. Contrary to our hypothesis, tests of parallelism showed that, in general, the plasticity to shading of C. chilensis (the species of intermediate ecological breadth) was the greatest, and that of C. arvensis (the weed) and C. demissus (the species of narrow distribution) was similar. Issues of ecotype differentiation, in the case of C. arvensis, and the role of life history traits are raised to explain the observed lack of association between ecological breadth and magnitude of phenotypic plasticity.  相似文献   

15.
Two experiments were conducted to investigate the effects of competition on growth and performance of Nymphoides peltata (Gmel.) O. Kuntze in microcosm. Part of the research on growth and biomass allocation of N. peltata in response to competition had been reported early (Wu, Z. & D. Yu, 2004, Hydrobiologia 527: 241–250). This paper focuses on the morphological variations of N. peltata under competitive pressure. First, competition between N. peltata and Zizania latifolia (Griseb.) Turcz. ex Stapf. was assigned with the densities of N. peltata to Z. latifolia ratios of 4:0, 4:2, 4:4 and 4:8. Water surface coverage, surface area per leaf blade and number of leaves per plant of N. peltata all declined significantly with increasing density of competitor. Similar results were also found for petiole length and density of branching. However, the variations of planting density did not significantly affect the number of ramets per plant and the stolon length of N. peltata. Second, competitions between N. peltata and emerged Z. latifolia, floating-leaved Trapa bispinosa Roxb. and submerged Myriophyllum spicatum L. were also studied simultaneously. The results showed that significant difference was only found for the water surface coverage of N. peltata. No other significant differences were found for the number of ramets per plant, number of leaves per plant, density of branching, surface area per leaf blade, petiole length, and stolon length of N. peltata. Our studies indicate that N. peltata presents morphological variations when it is growing with Z. latifolia, such that the growth of above-ground parts decrease (i.e., leaf number, petiole length, branching density) and the growth of below-ground parts remains stable (i.e., stolons length). However, N. peltata does not show apparent differences in morphology when it is growing with T. bispinosa or M. spicatum. Accordingly, we conclude that the growth of N. peltata may be apparently inhibited by the presence of Z. latifolia, while T. bispinosa and M. spicatum may have little impact on the growth and performance of N. peltata.  相似文献   

16.
林下和林窗内绢毛匍匐委陵菜的克隆生长和克隆形态   总被引:13,自引:1,他引:12       下载免费PDF全文
 为了验证绢毛匍匐委陵菜(Potentilla reptans var. sericophylla)林窗和林下种群间的行为差异是完全由表型可塑性引起,还是局部分化的结果,将生长在北京东灵山油松(Pinus tabulaeformis)林林窗和林下的绢毛匍匐委陵菜,进行生境间的交互移植-重植野外生态实验。研究结果表明,实验植物的叶片长度、叶片宽度、叶柄长度和匍匐茎节间长度等克隆形态特征在两生境间无差异。两个来源的植株,其基株生物量、基株分株数和基株匍匐茎总长度等克隆生长特征在林下生境中都比在林窗生境中小,表现出显著的可塑性。所研究的克隆形态特征和克隆生长特征及其可塑性在不同生境来源的实验植物间没有差异。绢毛匍匐委陵菜克隆形态特征和克隆生长特征及其可塑性在林下和林窗生境间没有发生局部分化,林窗为其较适生境,克隆生长特征的可塑性对绢毛匍匐委陵菜利用生境异质性可能具有重要意义  相似文献   

17.
Plant species from open habitats often show pronounced responses to shading. Apart from a reduction in growth, shading can lead to marked changes in morphology and architecture, and it may affect the rate of plant development. Natural shade comprises two basically different features, a reduction in light quantity (amount of radiation) and changes in the spectral light quality. The first aspect represents changes in resource availability, while the latter acts as a source of information for plants and can prompt morphogenetic responses. A greenhouse experiment was carried out to study the effects of changes in light quality and quantity on the growth, morphology and development of two stoloniferous Potentilla species. Individual plants were subjected to three light treatments: (1) full daylight (control); and two shade treatments, in which (2) light quantity (photon flux density) and (3) light spectral quality (red/far-red ratio) were changed independently. Plant development was followed throughout the study. Morphological parameters, biomass and clonal offspring production were measured at the end of the experiment. Morphological traits such as petiole length, leaf blade characteristics and investment patterns into spacers showed high degrees of shade-induced plasticity in both species. With a few exceptions, light quality mainly affected morphological variables, while production parameters were most responsive to changes in light quantity. Potentilla anserina allocated resources preferentially to established rosettes at the cost of stolon growth and branching, while in P. reptans, all parameters related to development and allocation were slowed down to the same extent by light limitation. Light quality changes also positively affected biomass production via changes in leaf allocation. Changes in the spectral light quality had major effects on the size of modular structures (leaves, ramets), whereas changes in light quantity mainly affected their numbers. Received: 12 December 1997 / Accepted: 8 July 1998  相似文献   

18.
The response of overwintered stolons of nine contrasting white clover populations to temperature, photoperiod and natural conditions was studied in six environments during the spring. Rate of leaf appearance, leaflet length, petiole length, stolon internode length, dry matter distribution within the plant and total dry weight were measured on 15 plants of each population/environment combination. Most characters, except leaf size and proportion of dry matter allocated to leaf, responded positively to temperature in the range 10 – 20°C. A positive effect of photoperiod extension was also found for all characters except rate of leaf appearance, internode length and distribution of dry matter to leaf. Population differences in response to environment were found which were related to both leaf size classification and origin. Stolon dry weight was positively correlated with leaf length, petiole length and stolon internode length in most environments. The relationships between the eight characters were often complex and canonical variate analysis provided a convenient way to discriminate between the populations based on all eight characters.  相似文献   

19.
Stolon internode lengths were measured on plants of the clonal herbRanunculus repens growing in a hay meadow which was subject to disturbance by mole (Talpa europaea) activity. Within the site three habitat types were recognized: closed grassland, the open ground of fresh molehills and the grass-molehill boundary. The lengths of stolon internodes ofR. repens differed significantly in each of the three habitats. The shortest internodes occurred on stolons on the open molchills. The longest occurred in the closed grassland habitat. The type of habitat in which parent ramets were rooted did not significantly influence the length of internodes on their daughter stolons. The length of a stolon internode was determined by its immediate surrounding habitat type. Consecutive internode lengths on a given stolon showed considerable plasticity, shortening significantly as stolons spread onto molehills from surrounding habitats, and increasing significantly as stolons advanced from a molehill into the surrounding closed grassland habitat. These results are consistent with the proposition that under favorable conditions (on the molehills, where resources are expected to be more abundant, and competition absent) internode lengths shorten and the plant forages intensively, whereas under conditions of low resource availability (in the closed grassland, where competition occurs) internode lengths increase, allowingR. repens to forage extensively. Such morphological plasticity may promote more efficient exploitation of resource-rich sites and more rapid vacation of resource-poor sites.  相似文献   

20.
Rhizophora mangle L., the predominant neotropical mangrove species, occupies a gradient from low intertidal swamp margins with high insolation, to shaded sites at highest high water. Across a light gradient, R. mangle shows properties of both “light-demanding” and “shade-tolerant” species, and defies designation according to existing successional paradigms for rain forest trees. The mode and magnitude of its adaptability to light also change through ontogeny as it grows into the canopy. We characterized and compared phenotypic flexibility of R. mangle seedlings, saplings, and tree modules across changing light environments, from the level of leaf anatomy and photosynthesis, through stem and whole-plant architecture. We also examined growth and mortality differences among sun and shade populations of seedlings over 3 yr. Sun and shade seedling populations diverged in terms of four of six leaf anatomy traits (relative thickness of tissue layers and stomatal density), as well as leaf size and shape, specific leaf area (SLA), leaf internode distances, disparity in blade–petiole angles, canopy spread: height ratios, standing leaf numbers, summer (July) photosynthetic light curve shapes, and growth rates. Saplings showed significant sun/shade differences in fewer characters: leaf thickness, SLA, leaf overlap, disparity in bladepetiole angles, standing leaf numbers, stem volume and branching angle (first-order branches only), and summer photosynthesis. In trees, leaf anatomy was insensitive to light environment, but leaf length, width, and SLA, disparities in bladepetiole angles, and summer maximal photosynthetic rates varied among sun and shade leaf populations. Seedling and sapling photosynthetic rates were significantly depressed in winter (December), while photosynthetic rates in tree leaves did not differ in winter and summer. Seasonal and ontogenetic changes in response to light environment are apparent at several levels of biological organization in R. mangle, within constraints of its architectural baiiplan. Such variation has implications for models of stand carbon gain, and suggest that response flexibility may change with plant age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号