首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peptides corresponding to excised alpha-helical segments of natural proteins can spontaneously form helices in solution. However, peptide helices are usually substantially less stable in solution than in the structural context of a folded protein, because of the additional interactions possible between helices in a protein. Such interactions can be thought of as coupling helix formation and tertiary contact formation. The relative energetic contributions of the two processes to the total energy of the folded state of a protein is a matter of current debate. To investigate this balance, an extended helix-coil model (XHC) that incorporates both effects has been constructed. The model treats helix formation with the Lifson-Roig formalism, which describes helix initiation and propagation through cooperative local interactions. The model postulates an additional parameter representing participation of a site in a tertiary contact. In the model, greater helix stability can be achieved through combinations of these short-range and long-range interactions. For instance, stronger tertiary contacts can compensate for helices with little intrinsic stability. By varying the strength of the nonlocal interactions, the model can exhibit behavior consistent with a variety of qualitative models describing the relative importance of secondary and tertiary structure. Moreover, the model is explicit in that it can be used to fit experimental data to individual peptide sequences, providing a means to quantify the two contributions on a common energetic basis.  相似文献   

2.
β-Hairpins are the simplest form of β-sheets which, due to the presence of long-range interactions, can be considered as tertiary structures. Molecular dynamics simulation is a powerful tool that can unravel whole pathways of protein folding/unfolding at atomic resolution. We have performed several molecular dynamics simulations, to a total of over 250 ns, of a β-hairpin peptide in water using GROMACS. We show that hydrophobic interactions are necessary for initiating the folding of the peptide. Once formed, the peptide is stabilized by hydrogen bonds and disruption of hydrophobic interactions in the folded peptide does not denature the structure. In the absence of hydrophobic interactions, the peptide fails to fold. However, the introduction of a salt-bridge compensates for the loss of hydrophobic interactions to a certain extent. Figure Model of b-hairpin folding: Folding is initiated by hydrophobic interactions (Brown circles). The folded structure, once formed, is stabilized by hydrogen bonds (red lines) and is unaffected by loss of hydrophobic contacts  相似文献   

3.
We discuss the construction of a simple, off-lattice model protein with a comparatively detailed representation of the protein backbone, and use it to address some general aspects of the folding kinetics of a small helical protein and two peptide fragments. The model makes use of an associative memory hamiltonian to smoothly interpolate between the limits of a native contact only, or Go, potential and a statistical pair potential derived from a database of known structures. We have observed qualitatively different behavior in these two limits. In the Go limit, we see apparently barrier-less folding. As we increase the roughness of the model energy landscape, we can observe the emergence of the characteristic activated temperature dependence previously seen in lattice studies and analytical theories. We are also able to study the dependence of the folding kinetics on local interactions such as hydrogen bonds, and we discuss the implications of these results for the formation of secondary structure at intermediate stages of the folding reaction.  相似文献   

4.
The sequence of events in the refolding pathway of barnase has been analysed to search for general principles in protein folding. There appears to be a correlation between burying hydrophobic surface area and early folding events. All the regions that fold early interact extensively with the beta-sheet. These interactions involve predominantly hydrophobic interactions and the burial of very extensive hydrophobic areas in which multiple, close, hydrophobic-hydrophobic contacts are established around a central group of aliphatic residues. There is no burial of hydrophilic residues in these regions; those that are partly screened from the solvent make hydrogen bonds. All the regions or interactions that are made late in the folding pathway do not make extensive contacts with the beta-sheet. Their buried hydrophobic regions lack a central hydrophobic residue or residues around which other hydrophobic residues pack. Further, in some of these regions there is an extensive burial of hydrophilic residues. The results are consistent with one of the earlier events in protein folding being the local formation of native-like secondary structure elements driven by local hydrophobic surface burial. A possible candidate for an initiation site is a beta-hairpin between beta-strands 3 and 4 that is conserved in the microbial ribonuclease family. A comparison of structures in this family shows that those regions that can be superimposed, or have sequence homology, correspond to elements of structure that are formed and interact with each other early in the folding pathway, suggesting that some of these residues could be involved in directing the folding process. The data on barnase combined with results from other laboratories suggest the following tentative conclusions for the refolding of small monomeric proteins. (1) The refolding pathway is, at least in part, sequential and of compulsory order. (2) Secondary structure formation is driven by local hydrophobic surface burial and precedes the formation of most tertiary interactions. These elements are then stabilized and sometimes elongated by tertiary interactions. It is plausible that there are stop signals encoded in the linear sequence that prevent the elongation of isolated secondary structure elements in solution to a larger extent than is found in the folded protein. (3) Many tertiary interactions are not very constrained in the intermediate but become more and more defined as the hydrophobic cores consolidate, loop structures form and the configuration of surface residues takes place. The interactions between different elements of secondary structure are the last ones to be consolidated while the interactions within the secondary structure elements are consolidated earlier.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
Uversky VN  Fink AL 《FEBS letters》2002,515(1-3):79-83
What is the first step in protein folding - hydrophobic collapse (compaction) or secondary structure formation? It is still not clear if the major driving force in protein folding is hydrogen bonding or hydrophobic interactions or both. We analyzed data on the conformational characteristics of 41 globular proteins in native and partially folded conformational states. Our analysis shows that a good correlation exists between relative decrease in hydrodynamic volume and increase in secondary structure content. No compact equilibrium intermediates lacking secondary structure, or highly ordered non-compact species, were found. This correlation provides experimental support for the hypothesis that hydrophobic collapse occurs simultaneously with formation of secondary structure in the early stages of the protein folding.  相似文献   

6.
In this paper, a simulation of the folding process, based on a random perturbations of the phi, psi, chi1 dihedral angles, is proposed to approach the formation at the atom level of both principal elements of protein secondary structure, the alpha-helix and the beta-hairpin structures. Expecting to understand what may happen in solution during the formation of such structures, the behaviour of large sets of random conformations that are generated for small oligopeptides was analysed. Different factors that may influence the folding (as conformational propensity, hydrophobic interactions and side-chain mobility) were investigated. The difference between the corresponding theoretical folding and the real conformational diversity that is observed in solution is appraised by a comparison between the calculated and observed NMR secondary chemical shifts. From this study it appears that hydrophobic interactions and mobility represent the principal factors that initiate folding and determine the observed hydrogen-bond pattern, which subsequently allows packing between the peptide side chains.  相似文献   

7.
Zhou Y  Linhananta A 《Proteins》2002,47(2):154-162
Predicting the folding mechanism of the second beta-hairpin fragment of the Ig-binding domain B of streptococcal protein G is unexpectedly challenging for simplified reduced models because the models developed so far indicated a different folding mechanism from what was suggested from high-temperature unfolding and equilibrium free-energy surface analysis based on established all-atom empirical force fields in explicit or implicit solvent. This happened despite the use of empirical residue-based interactions, multibody hydrophobic interactions, and inclusions of hydrogen bonding effects in the simplified models. This article employs a recently developed all-atom (except nonpolar hydrogens) model interacting with simple square-well potentials to fold the peptide fragment by molecular dynamics simulation methods. In this study, 193 out of 200 trajectories are folded at two reduced temperatures (3.5 and 3.7) close to the transition temperature T* approximately 4.0. Each simulation takes <7 h of CPU time on a Pentium 800-MHz PC. Folding of the new all-atom model is found to be initiated by collapse before the formation of main-chain hydrogen bonds. This verifies the mechanism proposed from previous all-atom unfolding and equilibrium simulations. The new model further predicts that the collapse is initiated by two nucleation contacts (a hydrophilic contact between D46 and T49 and a hydrophobic contact between Y45 and F52), in agreement with recent NMR measurements. The results suggest that atomic packing and native contact interactions play a dominant role in folding mechanism.  相似文献   

8.
Solvent accessibility, protein surfaces, and protein folding.   总被引:1,自引:0,他引:1       下载免费PDF全文
Studies of the native structures of proteins, together with measurements of the thermodynamic properties of the transition between unfolded and native states, have defined the major components of the forces that stabilize native protein structures. However, the nature of the intermediates in the folding process remains largely hypothetical. It is a fairly widespread and not implausible assumption that the intermediates in the folding of a monomeric protein contain the same kinds of secondary and tertiary structures that appear in the native conformation, and that, although unstable, their lifetimes are prolonged by forces similar to those that stabilize the native structure. We wished to examine what happens if, during the folding of a monomeric protein, regions of secondary structure come together to form an intermediate of reduced instability. We applied calculations of accessible surface area (a measure of hydrophobic stabilization) and parameterized nonbonded energy calculations (measuring the strengths of van der Waals forces) to identify the kinds of stabilizing interactions that might be available to such an intermediate. First, we analyzed the total buried surface area of two types of proteins into contributions from formation of secondary structure alone, interaction of pairs of secondary-structural elements, the formation of the structure alone, interaction of pairs of secondary-structural elements, the formation of the complete secondary structure without the turns, and the complete native structure. The formation of secondary structure alone, without tertiary-structural interactions, buries roughly half the surface that the complete structure does. We then analyzed in more detail the approach of two alpha-helices to form a complex, as an illustrative example of the nature of the interaction between compact structural units which remain fairly rigid during their interaction. Many features of the results are not limited to the interaction of alpha-helices. (The results therefore neither confirm nor refute the hypothesis that alpha-helices are intermediates in the folding proteins). We find that the first forces to be felt upon approach arise from solvent conditions on the relative position and orientation of the two helices as does the close packing which optimizes the van der Waals interactions at shorter distances apart. Therefore there appears to be a range of distances in which hydrophobic interactions could create a nonspecific complex between two helices in which the side chains might have sufficient time to seek the proper interdigitation observed in the native structure, where the two helices are in intimate contact. Indeed, we find that only in the final stages of approach is the native geometry the most stable; in the region in which solvent-exclusion forces predominate, the conformation with helix axes parallel is more stable than the native conformation, in the cases we examined...  相似文献   

9.
The folding process of sea hare myoglobin was simulated by the island model, which does not rely on sequence homologies or statistical inference from database of known structure. Sea hare myoglobin has low sequence homology (28%), but high structural similarity, with sperm whale myoglobin, which was already simulated by the island model. Their structural similarity is shown physiochemically from the distribution of hydrophobic-residue pairs, that is, the key pairs for packing of the secondary structures. Irrelevant to the sequence homology, the secondary structures can be packed into the tertiary structure through the hydrophobic interactions among the amino acid pairs responsible for the local structure formation. The results on the two species of myoglobins indicate that, in contrast to other prediction methods, the island model is applicable to any type of protein without extra information other than the distribution of hydrophobic-residue pairs and the positions of the secondary structures. Consequently the present results provide another verification of the validity of the island model for elucidating the mechanisms of protein folding and predicting protein structures.  相似文献   

10.
Anderson MW  Gorski J 《Biochemistry》2005,44(15):5617-5624
To generate an effective immune response, class II major histocompatibility complex molecules (MHCII) must present a diverse array of peptide ligands for recognition by T lymphocytes. Peptide/MHCII complexes are stabilized by hydrophobic anchoring of peptide side chains to pockets in the MHCII protein and the formation of hydrogen bonds to the peptide backbone. Many current models of peptide/MHCII association assume an additive and independent contribution of the interactions between major MHCII pockets and corresponding side chains in the peptide. However, significant conformational rearrangements occur in both the peptide and MHCII during binding. Therefore, we hypothesize that peptide binding to MHCII could be viewed as a folding process in which both molecules cooperate to produce the final conformation. To directly test this hypothesis, we adapt a serial mutagenesis strategy to study cooperativity in the interaction of the human MHCII HLA-DR1 and a peptide derived from influenza hemagglutinin. Substitutions in either the peptide or HLA-DR1 that are predicted to interfere with hydrogen bond formation show cooperative effects on complex stability and affinity. Substitution of a peptide side chain that provides a hydrophobic contact also contributes to the cooperative effect, suggesting a role for all energetic sources in the folding process. We propose that cooperativity throughout the peptide-binding groove reflects the folding of segments of the MHCII molecule into helices around the peptide with a concomitant folding of the peptide into a polyproline helix. The implications of cooperativity for peptide/MHCII structure and epitope selection are discussed.  相似文献   

11.
Key elements of β-structure folding include hydrophobic core collapse, turn formation, and assembly of backbone hydrogen bonds. In the present folding simulations of several β-hairpins and β-sheets (peptide 1, protein G B1 domain peptide, TRPZIP2, TRPZIP4, 20mer, and 20merDP6D), the folding free-energy landscape as a function of several reaction coordinates corresponding to the three key elements indicates apparent dependence on turn stability and side-chain hydrophobicity, which demonstrates different folding mechanisms of similar β-structures of varied sequences. Turn stability is found to be the key factor in determining the formation order of the three structural elements in the folding of β-structures. Moreover, turn stability and side-chain hydrophobicity both affect the stability of backbone hydrogen bonds. The three-stranded β-sheets fold through a three-state transition in which the formation of one hairpin always takes precedence over the other. The different stabilities of two anti-parallel hairpins in each three-stranded β-sheet are shown to correlate well with the different levels of their hydrophobic interactions.  相似文献   

12.
Covalently linked pairs of well-chosen peptides can be good model systems for protein folding studies because they can adopt stable secondary, side-chain, and tertiary structure under certain conditions. We demonstrate a method for characterizing the structure in such peptide pairs by hydrogen/deuterium exchange of individual amide groups analyzed by collision-induced dissociation tandem mass spectrometry, in concert with circular dichroism spectroscopy. We apply the method to two peptides (and their three possible pairs) from bovine pancreatic trypsin inhibitor to address specific hypotheses regarding the stabilization of local secondary structure by long-range interactions.  相似文献   

13.
We perform a statistical analysis of amino-acid contacts to investigate possible preferences of amino-acid interactions. We include in the analysis only tertiary contacts, because they are less constrained--compared to secondary contacts--by proteins' backbone rigidity. Using proteins from the protein data bank, our analysis reveals an unusually high frequency of cysteine pairings relative to that expected from random. To elucidate the possible effects of cysteine interactions in folding, we perform molecular simulations on three cysteine-rich proteins. In particular, we investigate the difference in folding dynamics between a Gō-like model (where attraction only occurs between amino acids forming a native contact) and a variant model (where attraction between any two cysteines is introduced to mimic the formation/dissociation of native/nonnative disulfide bonds). We find that when attraction among cysteines is nonspecific and comparable to a solvent-averaged interaction, they produce a target-focusing effect that expedites folding of cysteine-rich proteins as a result of a reduction of conformational search space. In addition, the target-focusing effect also helps reduce glassiness by lowering activation energy barriers and kinetic frustration in the system. The concept of target-focusing also provides a qualitative understanding of a correlation between the rates of protein folding and parameters such as contact order and total contact distance.  相似文献   

14.
J A Radding 《Biochemistry》1987,26(12):3530-3536
Model folding studies of sperm whale myoglobin have illustrated the presence of hydrophobic interfacial regions between elements of secondary structure. The specific oxidation of two tryptophan residues, in the A-H helix contact of sperm whale myoglobin, to the less hydrophobic oxindolylalanine residues is utilized to probe the contribution of hydrophobic packing density in this contact region. The acid denaturation of the modified protein is no longer a simple two-state process exhibiting the presence of stable intermediates. The relative stability of the intermediate is shown to be +5.3 kcal/mol less stable than native myoglobin. This value is consistent with the predicted relative stability, based upon electrostatic model calculations, of the docking of the A helix with a des-A helix myoglobin. The presence of stable intermediate structures in the denaturation pathway of the modified protein is consistent with the proposed role of hydrophobic interactions in damping structural fluctuations and statistical mechanical models of noncooperative protein unfolding. These results demonstrate the relationship between large-scale fluctuations and the frictional forces governing small-scale motions within the protein core.  相似文献   

15.
Although hydrophobic interaction is the main contributing factor to the stability of the protein fold, the specificity of the folding process depends on many directional interactions. An analysis has been carried out on the geometry of interaction between planar moieties of ten side chains (Phe, Tyr, Trp, His, Arg, Pro, Asp, Glu, Asn and Gln), the aromatic residues and the sulfide planes (of Met and cystine), and the aromatic residues and the peptide planes within the protein tertiary structures available in the Protein Data Bank. The occurrence of hydrogen bonds and other nonconventional interactions such as C-H...pi, C-H...O, electrophile-nucleophile interactions involving the planar moieties has been elucidated. The specific nature of the interactions constraints many of the residue pairs to occur with a fixed sequence difference, maintaining a sequential order, when located in secondary structural elements, such as alpha-helices and beta-turns. The importance of many of these interactions (for example, aromatic residues interacting with Pro or cystine sulfur atom) is revealed by the higher degree of conservation observed for them in protein structures and binding regions. The planar residues are well represented in the active sites, and the geometry of their interactions does not deviate from the general distribution. The geometrical relationship between interacting residues provides valuable insights into the process of protein folding and would be useful for the design of protein molecules and modulation of their binding properties.  相似文献   

16.
Kinetic and equilibrium studies of apomyoglobin folding pathways and intermediates have provided important insights into the mechanism of protein folding. To investigate the role of intrinsic helical propensities in the apomyoglobin folding process, a mutant has been prepared in which Asn132 and Glu136 have been substituted with glycine to destabilize the H helix. The structure and dynamics of the equilibrium molten globule state formed at pH 4.1 have been examined using NMR spectroscopy. Deviations of backbone (13)C(alpha) and (13)CO chemical shifts from random coil values reveal high populations of helical structure in the A and G helix regions and in part of the B helix. However, the H helix is significantly destabilized compared to the wild-type molten globule. Heteronuclear [(1)H]-(15)N NOEs show that, although the polypeptide backbone in the H helix region is more flexible than in the wild-type protein, its motions are restricted by transient hydrophobic interactions with the molten globule core. Quench flow hydrogen exchange measurements reveal stable helical structure in the A and G helices and part of the B helix in the burst phase kinetic intermediate and confirm that the H helix is largely unstructured. Stabilization of structure in the H helix occurs during the slow folding phases, in synchrony with the C and E helices and the CD region. The kinetic and equilibrium molten globule intermediates formed by N132G/E136G are similar in structure. Although both the wild-type apomyoglobin and the mutant fold via compact helical intermediates, the structures of the intermediates and consequently the detailed folding pathways differ. Apomyoglobin is therefore capable of compensating for mutations by using alternative folding pathways within a common basic framework. Tertiary hydrophobic interactions appear to play an important role in the formation and stabilization of secondary structure in the H helix of the N132G/E136G mutant. These studies provide important insights into the interplay between secondary and tertiary structure formation in protein folding.  相似文献   

17.
Protein folding and protein refolding.   总被引:7,自引:0,他引:7  
R Seckler  R Jaenicke 《FASEB journal》1992,6(8):2545-2552
The functional three-dimensional structure of proteins is determined solely by their amino acid sequences. Protein folding occurs spontaneously beginning with the formation of local secondary structure concomitant with a compaction of the molecule. Secondary structure elements subsequently interact to form subdomains and domains stabilized by tertiary interactions. Disulfide bond formation, and cis-trans isomerization of X-Pro peptide bonds, as the rate-limiting folding reactions, are enzymatically catalyzed during protein folding in the cell. Although folding of domains is fast enough to occur cotranslationally in vivo, such vectorial folding on the ribosome is not essential for attainment of the native structure of a protein. Slow steps on the pathway to the functional protein structure are docking reactions of domains, association of subunits, or reshuffling reactions at the oligomer level. Aggregation as a competing side reaction is prevented, and the kinetic partition between competing polypeptide folding and translocation reactions is regulated by chaperone proteins binding to incompletely folded polypeptides.  相似文献   

18.
The study of protein folding and unfolding pathways lends a fascinating dimension to protein biochemistry. Several models for protein folding have been postulated. Two powerful probes used in protein folding study are far UV-CD monitored stopped flow kinetics and pulse hydrogen exchange in conjunction with NMR. The formation of molten globule, which is an intermediate possessing secondary structure but not a well packed tertiary structure, is now emerging as a common feature on the folding pathway of many proteins. The molten globule is recognized by a class of molecules called chaperones which act as accelerators of protein folding. This article ends by elucidating why proteins are Nature's choice as catalysts.  相似文献   

19.
We accelerate protein folding in all-atom molecular dynamics simulations by introducing alternating hydrogen bond potentials as a supplement to the force field. The alternating hydrogen bond potentials result in accelerated hydrogen bond reordering, which leads to rapid formation of secondary structure elements. The method does not require knowledge of the native state but generates the potentials based on the development of the tertiary structure in the simulation. In protein folding, the formation of secondary structure elements, especially α-helix and β-sheet, is very important, and we show that our method can fold both efficiently and with great speed.  相似文献   

20.
It is well established that contact order and folding rates are correlated for small proteins. The folding rates of stefins A and B differ by nearly two orders of magnitude despite sharing an identical native fold and hence contact order. We break down the determinants of this behavior and demonstrate that the modulation of contact order effects can be accounted for by the combined contributions of a framework-like mechanism, characterized by intrinsic helix stabilities, together with nonnative helical backbone conformation and nonnative hydrophobic interactions within the folding transition state. These contributions result in the formation of nonnative interactions in the transition state as evidenced by the opposing effects on folding rate and stability of these proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号