首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Group I introns are widespread in eukaryotic organelles and nuclear- encoded ribosomal DNAs (rDNAs). The green algae are particularly rich in rDNA group I introns. To better understand the origins and phylogenetic relationships of green algal nuclear-encoded small subunit rDNA group I introns, a secondary structure-based alignment was constructed with available intron sequences and 11 new subgroup ICI and three new subgroup IB3 intron sequences determined from members of the Trebouxiophyceae (common phycobiont components of lichen) and the Ulvophyceae. Phylogenetic analyses using a weighted maximum-parsimony method showed that most group I introns form distinct lineages defined by insertion sites within the SSU rDNA. The comparison of topologies defining the phylogenetic relationships of 12 members of the 1512 group I intron insertion site lineage (position relative to the E. coli SSU rDNA coding region) with that of the host cells (i.e., SSU rDNAs) that contain these introns provided insights into the possible origin, stability, loss, and lateral transfer of ICI group I introns. The phylogenetic data were consistent with a viral origin of the 1512 group I intron in the green algae. This intron appears to have originated, minimally, within the SSU rDNA of the common ancestor of the trebouxiophytes and has subsequently been vertically inherited within this algal lineage with loss of the intron in some taxa. The phylogenetic analyses also suggested that the 1512 intron was laterally transferred among later-diverging trebouxiophytes; these algal taxa may have coexisted in a developing lichen thallus, thus facilitating cell- to-cell contact and the lateral transfer. Comparison of available group I intron sequences from the nuclear-encoded SSU rDNA of phycobiont and mycobiont components of lichens demonstrated that these sequences have independent origins and are not the result of lateral transfer from one component to the other.   相似文献   

2.
Ericoid mycorrhizal fungi form symbioses with the roots of members of the Ericales. Although only two genera have been identified in culture, the taxonomic diversity of ericoid symbionts is certainly wider. Genetic variation among 40 ericoid fungal isolates was investigated in this study. PCR amplification of the nuclear small-subunit ribosomal DNA (SSU rDNA) and of the internal transcribed spacer (ITS), followed by sequencing, led to the discovery of DNA insertions of various sizes in the SSU rDNA of most isolates. They reached sizes of almost 1,800 bp and occurred in up to five different insertion sites. Their positions and sizes were generally correlated with morphological and ITS-RFLP grouping of the isolates, although some insertions were found to be optional among isolates of the same species, and insertions were not always present in all SSU rDNA repeats within an isolate. Most insertions were identified as typical group I introns, possessing the conserved motifs characteristic of this group. However, other insertions lack these motifs and form a distinct group that includes other fungal ribosomal introns. Alignments with almost 70 additional sequences from fungal nuclear SSU rDNA introns indicate that introns inserted at the same site along the rDNA gene are generally homologous, but they also suggest the possibility of some horizontal transfers. Two of the ericoid fungal introns showed strong homology with a conserved motif found in endonuclease genes from nuclear rDNA introns.  相似文献   

3.
A large number of group I introns were discovered in coding regions of small and large subunits of nuclear ribosomal RNA genes (SSU rDNA and LSU rDNA) in ascomycetous fungi of the genus CORDYCEPS: From 28 representatives of the genus, we identified in total 69 group I introns which were inserted at any of four specific sites in SSU rDNA and four specific sites in LSU rDNA. These group I introns reached sizes of up to 510 bp, occurred in up to eight sites in the same organism, and belonged to either subgroup IB3 or subgroup IC1 based on their sequence and structure. Introns inserted at the same site were closely related to each other among Cordyceps fungi, whereas introns inserted at different sites were phylogenetically distinct even in the same species. Mapped on the host phylogeny, the group I introns were generally not restricted to a particular lineage, but, rather, widely and sporadically distributed among distinct lineages. When the phylogenetic relationships of introns inserted at the same site were compared with the phylogeny of their hosts, the topologies were generally significantly congruent to each other. From these results, the evolutionary dynamics of multiple group I introns in Cordyceps fungi was inferred as follows: (1) most of the group I introns were already present at the eight sites in SSU and LSU rDNAs of the ancestor of the genus Cordyceps; (2) the introns have principally been immobile and vertically transmitted throughout speciation and diversification of Cordyceps fungi, which resulted in the phylogenetic congruence between the introns at the same site and their hosts; (3) in the course of vertical transmission, the introns have repeatedly been lost in a number of lineages independently, which has led to the present sporadic phylogenetic distribution of the introns; and (4) a few acquisitions of new introns, presumably through horizontal transmission, were identified in the evolutionary history of the genus Cordyceps, while no transpositions were detected. Losses of group I introns in SSU rDNA have occurred at least 27 times in the evolutionary course of the 28 Cordyceps members.  相似文献   

4.
During a recent phylogenetic study, group I introns were noted that interrupt the nuclear small subunit ribosomal RNA (SSU rDNA) gene in species of Ceratocystiopsis. Group I introns were found to be inserted at the following rDNA positions: S943, S989, and S1199. The introns have been characterized and phylogenetic analysis of the host gene and the corresponding intron data suggest that for S943 vertical transfer and frequent loss appear to be the most parsimonious explanation for the distribution of nuclear SSU rDNA introns among species of Ceratocystiopsis. The SSU rDNA data do suggest that a recent proposal of segregating the genus Ophiostoma sensu lato into Ophiostoma sensu stricto, Grosmannia, and Ceratocystiopsis has some merit but may need further amendments, as the SSU rDNA suggests that Ophiostoma s. str. may now represent a paraphyletic grouping.  相似文献   

5.
The wide but sporadic distribution of group I introns in protists, plants, and fungi, as well as in eubacteria, likely resulted from extensive lateral transfer followed by differential loss. The extent of horizontal transfer of group I introns can potentially be determined by examining closely related species or genera. We used a phylogenetic approach with a large data set (including 62 novel large subunit [LSU] rRNA group I introns) to study intron movement within the monophyletic lichen family Physciaceae. Our results show five cases of horizontal transfer into homologous sites between species but do not support transposition into ectopic sites. This is in contrast to previous work with Physciaceae small subunit (SSU) rDNA group I introns where strong support was found for multiple ectopic transpositions. This difference in the apparent number of ectopic intron movements between SSU and LSU rDNA genes may in part be explained by a larger number of positions in the SSU rRNA, which can support the insertion and/or retention of group I introns. In contrast, we suggest that the LSU rRNA may have fewer acceptable positions and therefore intron spread is limited in this gene. Reviewing Editor: Dr. W. Ford Doolittle  相似文献   

6.
7.
The length of the small subunit ribosomal DNA (SSU rDNA) differs significantly among individuals from natural populations of the ascomycetous lichen complex Cladonia chlorophaea. The sequence of the 3' region of the SSU rDNA from two individuals, chosen to represent the shortest and longest sequences, revealed multiple insertions within a region that otherwise aligned with a 520-nucleotide sequence of the SSU rDNA in Saccharomyces cerevisiae. The high degree of variability in SSU rDNA size can be accounted for by different numbers of insertions; one individual had two group I introns and the second had five introns, two of which were clearly related to introns at identical positions in the other individual. Yet, introns in different positions, whether within an individual or between individuals, were not similar in sequence. The distribution of introns at three of the positions is consistent with either intron loss or acquisition, and clearly indicates the dynamic variability in this region of the nuclear genome. All seven insertions, which ranged in size from 210 to 228 nucleotides, had the conserved sequence and secondary structural elements of group I introns. The variation in distribution and sequence of group I introns within a short highly conserved region of rDNA presents a unique opportunity for examining the molecular evolution and mobility of group I introns within a systematics framework.  相似文献   

8.
Busse I  Preisfeld A 《Protist》2003,154(1):57-69
The gene coding for the small ribosomal subunit RNA of Ploeotia costata contains an actively splicing group I intron (Pco.S516) which is unique among euglenozoans. Secondary structure predictions indicate that paired segments P1-P10 as well as several conserved elements typical of group I introns and of subclass IC1 in particular are present. Phylogenetic analyses of SSU rDNA sequences demonstrate a well-supported placement of Ploeotia costata within the Euglenozoa; whereas, analyses of intron data sets uncover a close phylogenetic relation of Pco.S516 to S-516 introns from Acanthamoeba, Aureoumbra lagunensis (Stramenopila) and red algae of the order Bangiales. Discrepancies between SSU rDNA and intron phylogenies suggest horizontal spread of the group I intron. Monophyly of IC1 516 introns from Ploeotia costata, A. lagunensis and rhodophytes is supported by a unique secondary structure element: helix P5b possesses an insertion of 19 nt length with a highly conserved tetraloop which is supposed to take part in tertiary interactions. Neither functional nor degenerated ORFs coding for homing endonucleases can be identified in Pco.S516. Nevertheless, degenerated ORFs with His-Cys box motifs in closely related intron sequences indicate that homing may have occurred during evolution of the investigated intron group.  相似文献   

9.
Group I introns are commonly reported within nuclear SSU ribosomal DNA of eukaryotic micro-organisms, especially in lichen-forming fungi. We have studied the primary and secondary structure of 70 new nuclear SSU rDNA group I introns of Parmeliaceae (Ascomycota: Lecanorales) and compared them with those available in databases, covering more than 60 species. The analyzed samples of Parmeliaceae fell into two groups, one having an intron at the 1506 site and another lacking this one but having another at the 1516 or 1521 position. Introns at the 1521 position seem to be transposed from 1516 sites. Introns at the 1516 position were similar in structure to ones previously reported at this site and known from other lecanoralean fungi, while those at the 1506 position showed structural differences and no similar introns are known from related fungi. The study of the distribution of group I introns within a large monophyletic ensemble of fungi has revealed an unexpected correlation between intron types and ecological and geographical parameters. The introns at the 1516 position occurred in mainly arctic, boreal, and temperate lichens, while those at position 1506 were present in mainly tropical and subtropical to oceanic mild-temperate taxa. Further, the 1516 introns occurred in genera with few distributed species that could represent older taxa, while the 1506 ones were mainly in species-rich genera that could be of recent speciation, as many species have wide distribution areas. The transition between two different environments has been accompanied by a change in introns gained and lost. [Reviewing Editor: Dr. Debashish Bhattacharya]  相似文献   

10.
Positions of multiple insertions in SSU rDNA of lichen-forming fungi   总被引:11,自引:3,他引:8  
Lichen-forming fungi, in symbiotic associations with algae, frequently have nuclear small subunit ribosomal DNA (SSU rDNA) longer than the 1,800 nucleotides typical for eukaryotes. The lichen-forming ascomycetous fungus Lecanora dispersa contains insertions at eight distinct positions of its SSU rDNA; the lichen-forming fungi Calicium tricolor and Porpidia crustulata each contain one insertion. Insertions are not limited to fungi that form lichens; the lichen ally Mycocalicium albonigrum also contains two insertions. Of the 11 insertion positions now reported for lichen-forming fungi and this ally, 6 positions are known only from lichen-forming fungi. Including the 4 newly reported in this study, insertions are now known from at least 17 positions among all reported SSU rDNA sequences. Insertions, most of which are Group I introns, are reported in fungal and protistan lineages and occur at corresponding positions in genomes as phylogenetically distant as the nuclei of fungi, green algae, and red algae. Many of these positions are exposed in the mature rRNA tertiary structure and may be subject to independent insertion of introns. Insertion of introns, accompanied by their sporadic loss, accounts for the scattered distribution of insertions observed within the SSU rDNA of these diverse organisms.   相似文献   

11.
Phylogenetic relationships and levels of geographic differentiation of two closely related bipolar taxa, Cladonia arbuscula and Cladonia mitis, were cladistically examined with ITS regions, SSU rDNA introns, partial beta-tubulin, and partial glyceraldehyde 3-phosphate dehydrogenase (GAPDH) genes. In the combined analysis of the four genes, C. arbuscula was paraphyletic, while C. mitis, nested within C. arbuscula, formed a strongly supported monophyletic group. C. arbuscula samples were divided into three separate clades: "arbuscula I," appearing as basal to the other ingroup taxa, "arbuscula II," and "arbuscula III" (the latter represented by only one specimen), which were not correlated with any morphological trait. Only C. mitis specimens formed a morphologically and chemically distinct group. None of the main clades was correlated with geographic origin. The separate analyses were poorly resolved, and in most cases samples from "arbuscula I," "arbuscula II," and "arbuscula III" clades were intermixed. An incongruence test revealed conflict among the four gene regions in almost all cases. Only ITS regions and introns were not significantly incongruent, suggesting lack of recombination within the ribosomal DNA locus. Incomplete lineage sorting and recombination were considered to be the main reasons accounting for the incongruencies. The high proportion of shared polymorphisms between the "arbuscula I" and "arbuscula II" clades, especially found from the beta-tubulin gene and from the ITS regions, and the lack of corroborating morphological characters both indicate a short history of reproductive isolation among the groups. The lack of genetic differentiation among the northern and southern samples within the main clades indicates a relatively recent gene flow, which may have resulted from migrations during the Pleistocene glaciations or from more recent long-distance dispersal.  相似文献   

12.
Analyses of small subunit ribosomal RNA genes (SSU rDNAs) have significantly influenced our understanding of the composition of aquatic microbial assemblages. Unfortunately, SSU rDNA sequences often do not have sufficient resolving power to differentiate closely related species. To address this general problem for uncultivated bacterioplankton taxa, we analysed and compared sequences of polymerase chain reaction (PCR)-generated and bacterial artificial chromosome (BAC)-derived clones that contained most of the SSU rDNAs, the internal transcribed spacer (ITS) and the large subunit ribosomal RNA gene (LSU rDNA). The phylogenetic representation in the rRNA operon PCR library was similar to that reported previously in coastal bacterioplankton SSU rDNA libraries. We observed good concordance between the phylogenetic relationships among coastal bacterioplankton inferred from SSU or LSU rDNA sequences. ITS sequences confirmed the close intragroup relationships among members of the SAR11, SAR116 and SAR86 clades that were predicted by SSU and LSU rDNA sequence analyses. We also found strong support for homologous recombination between the ITS regions of operons from the SAR11 clade.  相似文献   

13.
Group I introns were discovered inserted at the same position in the nuclear small-subunit ribosomal DNA (nuc-ssu-rDNA) in several species of homobasidiomycetes (mushroom-forming fungi). Based on conserved intron sequences, a pair of intron-specific primers was designed for PCR amplification and sequencing of intron-containing rDNA repeats. Using the intron-specific primers together with flanking rDNA primers, a PCR assay was conducted to determine presence or absence of introns in 39 species of homobasidiomycetes. Introns were confined to the genera Panellus, Clavicorona, and Lentinellus. Phylogenetic analyses of nuc-ssu-rDNA and mitochondrial ssu-rDNA sequences suggest that Clavicorona and Lentinellus are closely related, but that Panellus is not closely related to these. The simplest explanation for the distribution of the introns is that they have been twice independently gained via horizontal transmission, once on the lineage leading to Panellus, and once on the lineage leading to Lentinellus and Clavicorona. BLAST searches using the introns from Panellus and Lentinellus as query sequences retrieved 16 other similar group I introns of nuc-ssu-rDNA and nuclear large-subunit rDNA (nuc-lsu-rDNA) from fungal and green algal hosts. Phylogenetic analyses of intron sequences suggest that the mushroom introns are monophyletic, and are nested within a clade that contains four other introns that insert at the same position as the mushroom introns, two from different groups of fungi and two from green algae. The distribution of host lineages and insertion sites among the introns suggests that horizontal and vertical transmission, homing, and transposition have been factors in intron evolution. As distinctive, heritable features of nuclear rDNAs in certain lineages, group I introns have promise as phylogenetic markers. Nevertheless, the possibility of horizontal transmission and homing also suggest that their use poses certain pitfalls.   相似文献   

14.
Abstract:Primers for amplification and sequencing of partial glyceraldehyde-3-phosphate dehydrogenase (gpd) gene were designed for lichenized fungi. The 5′ gpd primer is most probably fungal specific, since a BLAST search in GenBank found identical sequences only from ascomycetous taxa, whereas the 3′ gpd primer was more universal. Utility of the gpd primers and previously designed beta-tubulin primers was tested in nine lichen taxa. Both the gpd and beta-tubulin primer pairs amplified in most of the taxa examined: the gpd primers generated a c. 1100 nucleotide fragment, whereas the PCR product obtained from the beta-tubulin primers was c. 900 nucleotides long. The gpd amplification products of Cladonia arbuscula and C. rangiferina were sequenced and both were found to contain three introns, the length of which varied between 49 to 83 nucleotides. To examine the applicability of gpd sequences in resolving relationships within Ascomycota, trees were calculated from 22 fungal gpd sequences obtained from GenBank together with the twoCladonia sequences using parsimony jackknifing. The gpd tree was compared with the SSU rDNA tree of the respective species (or genera). A similar analysis of the beta-tubulin gene was not performed, because only a few beta-tublin sequences from the same taxa were available in GenBank. The gpd tree was well resolved but in conflict with the SSU rDNA tree. In contrast to the SSU rDNA tree, the gpd tree did not support the monophyly of the Ascomycota. Analysis of the combined data set produced a tree very similar to that of the SSU rDNA data. However, the relationship of Lecanorales to the other orders remained unresolved. Even though gpd and beta-tubulin are highly conserved proteins, the third codon positions and introns are variable and both genes have the potential for inferring phylogenetic relationships at the lower taxonomic levels in the lichenized fungi. The two genes may be useful even below species level, depending on the species investigated.  相似文献   

15.
The origins of fungal group I introns within nuclear small-subunit (nSSU) rDNA are enigmatic. This is partly because they have never been reported in basal fungal phyla (Zygomycota and Chytridiomycota), which are hypothesized to be ancestral to derived phyla (Ascomycota and Basidiomycota). Here we report group I introns from the nSSU rDNA of two zygomycete fungi, Zoophagus insidians (Zoopagales) and Coemansia mojavensis (Kickxellales). Secondary structure analyses predicted that both introns belong to the IC1 subgroup and that they are distantly related to each other, which is also suggested by different insertion sites. Molecular phylogenetic analyses indicated that the IC1 intron of Z. insidians is closely related to the IC1 intron inserted in the LSU rDNA of the basidiomycete fungus Clavicorona taxophila, which strongly suggests interphylum horizontal transfer. The IC1 intron of C. mojavensis has a low phylogenetic affinity to other fungal IC1 introns inserted into site 943 of nSSU rDNA (relative to E. coli 16S rDNA). It is noteworthy that this intron contains a putative ORF containing a His–Cys box motif in the antisense strand, a hallmark for nuclear-encoded homing endonucleases. Overall, molecular phylogenetic analyses do not support the placement of these two introns in basal fungal IC1 intron lineages. This result leads to the suggestion that fungal IC1 introns might have invaded or been transferred laterally after the divergence of the four major fungal phyla. Received: 8 February 2001 / Accepted: 1 November 2001  相似文献   

16.
Although the examination of large subunit ribosomal RNA genes (LSU rDNA) is advanced in phylogenetic studies, no corresponding sequence data from trebouxiophytes have been published, with the exception of ‘Chlorellaellipsoidea Gerneck. We determined the LSU rDNA sequence of Chlorella vulgaris Beijerinck and of the symbiotic alga of green paramecium, Chlorella sp. NC64A. A total of 59 nucleotide substitutions were found in the LSU rDNA of the two species, which are disproportionately distributed. Primarily, 65% of the substitutions were encountered in the first 800 bp of the alignment. This segment apparently has evolved eight times faster than the complete SSU rDNA sequence, making it a good candidate for a phylogenetic marker and giving a resolution level intermediate between small subunit (SSU) rDNA and internal transcribed spacers. Green algae are known as a group I intron‐rich group along with rhodophytes and fungi. NC64A is particularly rich in the introns; five introns were newly identified from the LSU rDNA sequence, which we named Cnc.L200, Cnc.L1688, Cnc.L1926, Cnc.L2184 and Cnc.L2437, following the insertion positions. In the present study we analyzed these introns with three others (Cnc.S943, Cnc.S1367 and Cnc.S1512) that had already been found in NC64A SSU rDNA. Secondary structure modeling placed these introns in the group I intron family, with four introns belonging to subgroup C1 and the other four introns belonging to subgroup E. Five of the intron insertion positions are unique to the paramecian symbiont, which may indicate relatively recent events of intron infections that includes transpositions. Intron phylogeny showed unprecedented relationships; four Cnc. IC1 introns made a clade with some green algal introns with insertions at nine different positions, whereas four Cnc. IE introns made a clade with the S651 intron (Chlorella sp. AN 1–3), which lay as a sister to the S516 insertion position subfamily.  相似文献   

17.
以蜈蚣衣属、黑蜈蚣衣属地衣样品为材料,结合GenBank中相关数据,对地衣型真菌核糖体小亚基 DNA上的I型内含子分布模式进行归纳,并探讨了其在地衣型真菌系统发育研究中的应用。结果表明在地衣型真菌核糖体小亚基 DNA上存在多个I型内含子插入位点,通过二级结构分析给出了天然状态下I型内含子发生转座的证据。分析显示,I型内含子作为分子标记,只适合用于种下单位的系统发育研究中。  相似文献   

18.
The molecular phylogeny of red algal actin genes, with emphasis on the paraphyletic “Bangiophyceae,” was examined and compared to the rhodophyte SSU rDNA phylogeny. Nineteen new genomic actin sequences and seven SSU rDNA sequences were obtained and subjected to diverse phylogenetic analyses (maximum likelihood, distance/neighbor-joining, maximum parsimony, Bayesian analyses, and, with respect to protein sequences, also quartet puzzling). The actin trees confirmed most of the major clades found in the SSU rDNA phylogenies, although with a lower resolution. An actin gene duplication in the florideophycean lineage is reported, presumably related to an increased complexity of sexual reproduction. In addition, the distribution and characteristics of spliceosomal introns found in some of the actin sequences were examined. Introns were found in almost all florideophycean actin genes, whereas only two bangiophyte sequences contained introns. One intron in the florideophycean actin genes was also found in metazoan, and, shifted by one or two nucleotides, in a glaucocystophyte, a cryptophyte, and two fungal actin genes, and thus may be an ancient intron.[Reviewing Editor: Dr. Yves Van de Peer]  相似文献   

19.
The number of nuclear group I introns from myxomycetes is rapidly increasing in GenBank as more rDNA sequences from these organisms are being sequenced. They represent an interesting and complex group of intervening sequences because several introns are mobile (or inferred to be mobile) and many contain large and unusual insertions in peripheral loops. Here we describe related group I introns at position 1389 in the small subunit rDNA of representatives from the myxomycete family Didymiaceae. Phylogenetic analyses support a common origin and mainly vertical inheritance of the intron. All S1389 introns from the Didymiaceae belong to the IC1 subclass of nuclear group I introns. The central catalytic core region of about 100 nt appears divergent in sequence composition even though the introns reside in closely related species. Furthermore, unlike the majority of group I introns from myxomycetes the S1389 introns do not self-splice as naked RNA in vitro under standard conditions, consistent with a dependence on host factors for folding or activity. Finally, the myxomycete S1389 introns are exclusively found within the family Didymiaceae, which suggests that this group I intron was acquired after the split between the families Didymiaceae and Physaraceae.  相似文献   

20.
In a recent study of the North American biogeography of the red algae genus Hildenbrandia , the presence of group I introns were noted in the nuclear SSU rRNA gene of the marine species H. rubra (Hildenbrandiales). Group I introns in the nuclear encoded rRNAs have been previously reported in the Hildenbrandiales as well as the Bangiales. All reported introns within the red algae have been identified as belonging to the IC1 subclass and occur at two insertion sites in the nuclear small subunit rRNA (516 and 1506). However, an unclassified intron was discovered at position 989 in the nuclear SSU rRNA gene of a collection of H. rubra from British Columbia, Canada. We have determined that the intron is a member of the IE subclass and this is the first report of an IE intron and an intron in position 989 in the red algae. Phylogenetic analyses of the intron sequences reveal a close relationship between this group IE intron and similar ascomycete and basidiomycete fungal IE introns in the nuclear SSU rRNA genes at positions 989 and 1199. In addition, a common unique helix (structural signature) in the P13 domain of the Hildenbrandia intron and those of the fungi at the 989 and 1199 IE positions in the nuclear SSU rRNA gene also indicates a close relationship. Hence, this study provides evidence for a possible lateral transfer of the IE intron in position 989 between fungal and red algal nuclear SSU rRNA genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号