首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
成年哺乳动物的中枢神经系统(CNS)受损后,解剖学上的修复水平非常有限。因神经纤维再生明显受阻,往往造成神经损伤后永久性的功能缺陷。在成年CNS抑制轴突生长的因子中,有一类是髓磷脂蛋白(myelin),而Nogo是这类蛋白中的一种,由少突神经胶质细胞产生,抑制轴突的生长。通过不同的启动子和差别剪接,nogo基因会产生三种主要的转录产物Nogo-A、-B和-C。  相似文献   

2.
《遗传》2021,(8)
细胞自噬基因Atg6在细胞自噬过程中发挥重要作用,其功能缺陷影响神经发生。涡虫是研究中枢神经系统(central nervous system, CNS)再生的良好模型,其头部切除后1周就能再生出一个新的头部。因此,研究Atg6基因在涡虫CNS再生中的作用对探究自噬调控神经发生具有重要意义。本研究首次报道了日本三角涡虫(Dugesia japonica) Atg6基因(DjAtg6)的分子特征,并利用RNAi技术研究了其在涡虫CNS再生中作用。结果显示:DjAtg6 cDNA全长1366 bp,编码423个氨基酸。DjATG6含有ATG6/Beclin 1蛋白家族的Coil-Coil结构域和β折叠α螺旋自噬功能结构域。涡虫沿咽前咽后切割后,DjAtg6表达量显著增加,其转录本主要在新再生的脑神经节表达。RNAi-DjAtg6引起涡虫头部再生迟缓、脑神经结构偏小,并下调神经相关基因的表达。此外,本研究还发现,RNAi-DjAtg6不影响涡虫干细胞的增殖,但下调细胞迁移相关基因mmp1和mmp2的表达,且干扰mmp1和mmp2的表达影响涡虫头再生。因此,本研究结果表明,DjAtg6在涡虫CNS再生的组织重构中发挥重要作用,干扰DjAtg6影响涡虫CNS再生可能与细胞迁移有关,其详细的分子机制尚需进行深入研究。  相似文献   

3.
小胶质细胞最初被del Rio-Hortega定义。作为中枢神经系统的巨噬细胞,小胶质细胞的正常功能对于清除凋亡细胞、修剪突触、抵御病原微生物、维持神经系统稳态及促进神经组织的修复再生等起着不可或缺的重要作用,也在多种神经系统疾病,如神经退行性疾病等的发生发展中扮演重要角色。因此,一直以来科研工作者都努力探析关于小胶质细胞发育的多个重要问题,如它们的来源、向CNS迁移与定植的路径、分化与成熟的形态功能改变和微环境调控机理、不同亚类的分布和与神经细胞相互作用的角色机制等。该篇综述将回顾关于小胶质细胞发育研究的历史,总结近来关于小胶质细胞的起源、向CNS的定植、分化与成熟的分子机制及其对CNS重要功能等的研究进展,并讨论今后的重点关注方向。  相似文献   

4.
音猬因子(sonic hedgehog,SHH)是一种分泌蛋白质,可在发育过程中控制神经祖细胞、神经元和神经胶质细胞的形成。研究发现,海马是学习和记忆中至关重要的大脑区域,SHH在海马神经元回路的形成和可塑性中发挥重要作用,可介导海马神经的发生和突触的可塑性调节。海马神经元树突中SHH受体的激活是跨神经元信号通路的组成部分,该信号通路可加速轴突的生长并增强谷氨酸从突触前末端的释放。SHH信号通路转导受损可导致中枢神经系统损伤和相关疾病(如自闭症、抑郁症和神经退行性疾病等)发生。因此,控制SHH信号通路转导,如使用SHH通路抑制剂或激动剂可能有助于相关疾病的治疗。综述了SHH信号通路的海马神经可塑性及其在中枢神经系统发育和相关疾病中的影响,以期为阐明SHH信号转导受损导致的海马神经受损和中枢神经系统相关疾病的机制奠定一定的理论依据。  相似文献   

5.
Yang P 《生理科学进展》2010,41(4):313-316
成年哺乳动物中枢神经系统(CNS)神经元内在再生能力低下是其损伤后不能自发性再生的主要原因之一。目前,针对成年CNS神经元内在生长能力的降低提出了一个全新的理论,即某些控制发育完成后细胞过度生长的肿瘤抑制基因在成熟神经元中高表达,与CNS损伤后再生抑制有关。其中,10号染色体缺失的磷酸酯酶和张力蛋白同源物基因(PTEN)在成年CNS神经元内高表达主要与神经元内在再生能力降低有关,抑制PTEN可通过多条途径保护受损神经元并促进其再生。本文综述了以PTEN为靶点促进CNS损伤修复的研究进展。  相似文献   

6.
过去认为神经元受损伤后难以再生.近年发现神经干细胞(neuralstemcells,NSC)主要存在于胚胎和成熟个体的中枢神经系统(CNS)中,具有增殖和分化的潜能.NSC成为神经学科的热点课题,是神经发育和疾病研究的重要平台,作为新生神经细胞的“种子”,它为治疗缺血缺氧性脑病提供了新策略,尤其是中枢神经细胞的治疗性再生和基因治疗.对NSC的发育、组织学特点、增殖分化的调控及治疗前景进行了阐述.  相似文献   

7.
正在一项新的研究中,来自英国伦敦大学学院的研究人员以小鼠为研究对象,揭示出血管在神经干细胞增殖中发挥着至关重要的作用从而使得大脑在子宫中生长和发育。这项研究表明血管能够增加一种活的有机体中的神经干细胞数量。这可能在设计ー种旨在再生神经系统中患病的或受损的部分的干细胞疗法中发挥着重要作用。相关研究结果:在线发表在PNAS期刊上。  相似文献   

8.
Nogo-A及其受体在成年哺乳动物的中枢神经系统(CNS)中,尤其是在中枢神经系统损伤及修复过程中的作用及机制已经被广泛而深入的研究,但是它们在CNS发育中的扮演的角色却了解甚少。新近研究表明,Nogo-A在CNS发育过程中神经前体细胞分化及迁移,轴突的生长及可塑性的变化以及少突胶质细胞前体细胞分化和成髓鞘化等过程中发挥着重要的作用。  相似文献   

9.
Nogo-A及其受体在成年哺乳动物的中枢神经系统(CNS)中,尤其是在中枢神经系统损伤及修复过程中的作用及机制已经被广泛而深入的研究,但是它们在CNS发育中的扮演的角色却了解甚少.新近研究表明,Nogo-A在CNS发育过程中神经前体细胞分化及迁移,轴突的生长及可塑性的变化以及少突胶质细胞前体细胞分化和成髓鞘化等过程中发挥着重要的作用.  相似文献   

10.
斑马鱼作为一种新兴的模式动物,被广泛应用于神经、心血管、消化、造血等各生理系统的发育及相关疾病的研究。中枢神经系统(central nervous system,CNS)疾病是困扰人类健康的重大疾病之一。神经损伤后不易再生和修复等特点,导致了临床上诸多CNS疾病迄今仍无有效疗法。斑马鱼作为脊椎动物,因其与哺乳动物在遗传及生理上有很高的同源性和功能保守性,近年来成为研究CNS疾病的理想动物模型。基于斑马鱼构建的许多疾病研究模型对深入揭示CNS疾病的治病分子机制及对应疾病的靶向治疗等具有重要的启示作用。本文将综述近年来斑马鱼作为模式动物在CNS疾病研究中的应用进展。  相似文献   

11.
Microglia, the brain's innate immune cell type, are cells of mesodermal origin that populate the central nervous system (CNS) during development. Undifferentiated microglia, also called ameboid microglia, have the ability to proliferate, phagocytose apoptotic cells and migrate long distances toward their final destinations throughout all CNS regions, where they acquire a mature ramified morphological phenotype. Recent studies indicate that ameboid microglial cells not only have a scavenger role during development but can also promote the death of some neuronal populations. In the mature CNS, adult microglia have highly motile processes to scan their territorial domains, and they display a panoply of effects on neurons that range from sustaining their survival and differentiation contributing to their elimination. Hence, the fine tuning of these effects results in protection of the nervous tissue, whereas perturbations in the microglial response, such as the exacerbation of microglial activation or lack of microglial response, generate adverse situations for the organization and function of the CNS. This review discusses some aspects of the relationship between microglial cells and neuronal death/survival both during normal development and during the response to injury in adulthood.  相似文献   

12.
Inhibitors of neuronal regeneration: mediators and signaling mechanisms   总被引:14,自引:0,他引:14  
Neuritogenesis and its inhibition are opposite and balancing processes during development as well as pathological states of adult neuron. In particular, the inability of adult central nervous system (CNS) neurons to regenerate upon injury has been attributed to both a lack of neuritogenic ability and the presence of neuronal growth inhibitors in the CNS environment. I review here recent progress in our understanding of neuritogenic inhibitors, with particular emphasis on those with a role in the inhibition of neuronal regeneration in the CNS, their signaling cascades and signal mediators. Neurotrophines acting through the tropomyosin-related kinase (Trk) family and p75 receptors promote neuritogenesis, which appears to require sustained activation of the mitogen activated protein (MAP) kinase pathway, and/or the activation of phosphotidylinositol 3-kinase (PI3 kinase). During development, a plethora of guidance factors and their receptors navigate the growing axon. However, much remained to be learned about the signaling receptors and pathways that mediate the activity of inhibitors of CNS regeneration. There is growing evidence that neuronal guidance molecules, particularly semaphorins, may also have a role as inhibitors of CNS regeneration. Although direct links have not yet been established in many cases, signals from these agents may ultimately converge upon the modulators and effectors of the Rho-family GTPases. Rho-family GTPases and their effectors modulate the activities of actin modifying molecules such as cofilin and profilin, resulting in cytoskeletal changes associated with growth cone extension or retraction.  相似文献   

13.
Perineuronal nets (PNNs) are reticular structures that surround the cell body of many neurones, and extend along their dendrites. They are considered to be a specialized extracellular matrix in the central nervous system (CNS). PNN formation is first detected relatively late in development, as the mature synaptic circuitry of the CNS is established and stabilized. Its unique distribution in different CNS regions, the timing of its establishment, and the changes it undergoes after injury all point toward diverse and important functions that it may be performing. The involvement of PNNs in neuronal plasticity has been extensively studied over recent years, with developmental, behavioural, and functional correlations. In this review, we will first briefly detail the structure and organization of PNNs, before focusing our discussion on their unique roles in neuronal development and plasticity. The PNN is an important regulator of CNS plasticity, both during development and into adulthood. Production of critical PNN components is often triggered by appropriate sensory experiences during early postnatal development. PNN deposition around neurones helps to stabilize the established neuronal connections, and to restrict the plastic changes due to future experiences within the CNS. Disruption of PNNs can reactivate plasticity in many CNSs, allowing activity-dependent changes to once again modify neuronal connections. The mechanisms through which PNNs restrict CNS plasticity remain unclear, although recent advances promise to shed additional light on this important subject.  相似文献   

14.
Epigenetic and regulatory elements provide an additional layer of complexity to the heterogeneity of anxiety disorders. MicroRNAs (miRNAs) are a class of small, noncoding RNAs that have recently drawn interest as epigenetic modulators of gene expression in psychiatric disorders. miRNAs elicit their effects by binding to target messenger RNAs (mRNAs) and hindering translation or accelerating degradation. Considering their role in neuronal differentiation and synaptic plasticity, miRNAs have opened up new investigative avenues in the aetiology and treatment of anxiety disorders. In this review, we provide a thorough analysis of miRNAs, their targets and their functions in the central nervous system (CNS), focusing on their role in anxiety disorders. The involvement of miRNAs in CNS functions (such as neurogenesis, neurite outgrowth, synaptogenesis and synaptic and neural plasticity) and their intricate regulatory role under stressful conditions strongly support their importance in the aetiology of anxiety disorders. Furthermore, miRNAs could provide new avenues for the development of therapeutic targets in anxiety disorders.  相似文献   

15.
Recent evidence suggests that blockade of normal excitation in the immature nervous system may have profound effects on neuronal survival during the period of natural cell death. Cell loss following depression of electrical activity in the central nervous system (CNS) may explain the neuropsychiatric deficits in humans exposed to alcohol or other CNS depressants during development. Thus, understanding the role of electrical activity in the survival of young neurons is an important goal of modern basic and clinical neuroscience. Here we review the evidence from in vivo and in vitro model systems that electrical activity participates in promoting neuronal survival. We discuss the potential role of moderate elevations of intracellular calcium in promoting survival, and we address the possible ways in which activity and conventional trophic factors may interact.  相似文献   

16.
Suzumura A  Sawada M 《Life sciences》1999,64(14):1197-1203
Tumor necrosis factor alpha (TNF alpha) is considered to play a critical role in the development of various pathological processes in the central nervous system (CNS), such as neuronal degeneration, demyelination and gliosis. In order to search for agents which suppress TNF alpha production in the CNS for future treatment of these pathological conditions, the effects of a synthetic oral inotropic agent, vesnarinone, on murine microglia were examined. Vesnarinone significantly suppressed TNF alpha production by microglia in a dose-dependent manner, without affecting their viability, enzyme activity or expression of the major histocompatibility complex. Since the reported maximum serum concentration is high enough to suppress TNF alpha production in vitro (about 20 microM) after oral administration of the therapeutic dose of vesnarinone, this drug will be useful to treat intractable neurological diseases such as neurodegenerative disorders, multiple sclerosis or HIV-related neurological disorders.  相似文献   

17.
Nerve growth factor and neuronal cell death   总被引:4,自引:0,他引:4  
The regulation of neuronal cell death by the neuronotrophic factor, nerve growth factor (NGF), has been described during neural development and following injury to the nervous system. Also, reduced NGF activity has been reported for the aged NGF-responsive neurons of the sympathetic nervous system and cholinergic regions of the central nervous system (CNS) in aged rodents and man. Although there is some knowledge of the molecular structure of the NGF and its receptor, less is known as to the mechanism of action of NGF. Here, a possible role for NGF in the regulation of oxidant--antioxidant balance is discussed as part of a molecular explanation for the known effects of NGF on neuronal survival during development, after injury, and in the aged CNS.  相似文献   

18.
神经元的迁移机制   总被引:3,自引:0,他引:3  
在脊椎动物的脑发育过程中,未成熟的神经元在时间和空间上的精确迁移到达最后行使功能的目的地,是中枢神经系统发育的一个重要阶段.最近的研究结果表明这一过程涉及到一系列分子事件,包括细胞表面分子的相互作用、离子通道的激活和细胞骨架的作用等.对这些事件的了解不但有助于了解神经元迁移的机制,而且对阐明由于神经元异常迁移而引起的脑紊乱失调等病理现象的机理都是必要的.  相似文献   

19.
Retinoic acid and development of the central nervous system.   总被引:5,自引:0,他引:5  
We consider the evidence that RA, the vitamin A metabolite, is involved in three fundamental aspects of the development of the CNS: 1) the stimulation of axon outgrowth in particular neuronal sub-types; 2) the migration of the neural crest; and 3) the specification of rostrocaudal position in the developing CNS (forebrain, midbrain, hindbrain, spinal cord). The evidence we discuss involves RA-induction of neurites in cell cultures and explants of neural tissue; the teratological effects of RA on the embryo's nervous system; the observation that RA can be detected endogenously in the spinal cord; and the fact that the receptors and binding proteins for RA are expressed in precise domains and neuronal cell types within the nervous system.  相似文献   

20.
Purpose of the review: The synchronic development of vascular and nervous systems is orchestrated by common molecules that regulate the communication between both systems. The identification of these common guiding cues and the developmental processes regulated by neurovascular communication are slowly emerging. In this review, we describe the molecules modulating the neurovascular development and their impact in processes such as angiogenesis, neurogenesis, neuronal migration, and brain homeostasis. Recent findings: Blood vessels not only are involved in nutrient and oxygen supply of the central nervous system (CNS) but also exert instrumental functions controlling developmental neurogenesis, CNS cytoarchitecture, and neuronal plasticity. Conversely, neurons modulate CNS vascularization and brain endothelial properties such as blood–brain barrier and vascular hyperemia. Summary: The integration of the active role of endothelial cells in the development and maintenance of neuronal function is important to obtain a more holistic view of the CNS complexity and also to understand how the vasculature is involved in neuropathological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号