首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
Whether climate change will turn cold biomes from large long-term carbon sinks into sources is hotly debated because of the great potential for ecosystem-mediated feedbacks to global climate. Critical are the direction, magnitude and generality of climate responses of plant litter decomposition. Here, we present the first quantitative analysis of the major climate-change-related drivers of litter decomposition rates in cold northern biomes worldwide. Leaf litters collected from the predominant species in 33 global change manipulation experiments in circum-arctic-alpine ecosystems were incubated simultaneously in two contrasting arctic life zones. We demonstrate that longer-term, large-scale changes to leaf litter decomposition will be driven primarily by both direct warming effects and concomitant shifts in plant growth form composition, with a much smaller role for changes in litter quality within species. Specifically, the ongoing warming-induced expansion of shrubs with recalcitrant leaf litter across cold biomes would constitute a negative feedback to global warming. Depending on the strength of other (previously reported) positive feedbacks of shrub expansion on soil carbon turnover, this may partly counteract direct warming enhancement of litter decomposition.  相似文献   

2.
陆地生态系统凋落物分解对全球气候变暖的响应   总被引:7,自引:0,他引:7       下载免费PDF全文
陆地生态系统凋落物分解是全球碳收支的一个重要组成部分, 主要受气候、凋落物质量和土壤生物群落的综合控制。科学家们普遍认为全球气候变化将对陆地生态系统凋落物分解产生复杂而深远的影响。该文结合凋落物分解试验的常用方法——缩微试验、原位模拟实验和自然环境梯度实验, 归纳现有研究结果, 意在揭示全球气候变化对陆地生态系统凋落物分解的直接影响(温度对凋落物分解速率的影响)和间接影响(温度对凋落物质量、土壤微生物群落及植被型的影响)的普遍规律。各种研究方法都表明: 在水分条件理想的情况下, 温度升高往往能加快凋落物的分解速率; 原位模拟实验中, 凋落物分解速率因物种、增温方法和地理方位而异; 全球气候变化能改变凋落物质量, 但可能不会在短期内影响凋落物的分解速率; 凋落物质量和可分解性的种间差异远大于增温所引发的表型响应差异, 那么, 气候变化所引发的植物群落结构和物种组成的变化将对陆地生态系统凋落物分解产生更强烈的影响; 土壤生物群落如何响应全球气候变化, 进而怎样影响凋落物分解过程, 这些都还存在着极大的不确定性。  相似文献   

3.
全球气候变暖对凋落物分解的影响   总被引:6,自引:0,他引:6  
宋飘  张乃莉  马克平  郭继勋 《生态学报》2014,34(6):1327-1339
凋落物分解作为生态系统核心过程,参与生态系统碳的周转与循环,影响生态系统碳的收支平衡,调控生态系统对全球气候变暖的反馈结果。全球气候变暖通过环境因素、凋落物数量和质量以及分解者3个方面,直接或间接地作用于凋落物分解过程,并进一步影响土壤养分周转和碳库动态。气候变暖可通过升高温度和改变实际蒸散量等环境因素直接作用于凋落物分解。气候变暖可引起植物物种短期内碳、氮和木质素等化学性质的改变以及群落中物种组成的长期变化从而改变凋落物质量。在凋落物分解过程中,土壤分解者亚系统作为主要生命组分(土壤动物和微生物)彼此相互作用、相互协调共同参与调节凋落物的分解过程。凋落物分解可以通过改变土壤微生物量、微生物活动和群落结构来加快微生物养分的固定或矿化,以形成新的养分利用模式来改变土壤有机质从而对气候变化做出响应。未来凋落物分解的研究方向应基于大尺度跨区域分解实验和长期实验,关注多个因子交互影响下,分解过程中碳、氮养分释放、地上/地下凋落物分解生物学过程与联系、分解者亚系统营养级联效应等方面。  相似文献   

4.
One of the major concerns about global warming is the potential for an increase in decomposition and soil respiration rates, increasing CO2 emissions and creating a positive feedback between global warming and soil respiration. This is particularly important in ecosystems with large belowground biomass, such as grasslands where over 90% of the carbon is allocated belowground. A better understanding of the relative influence of climate and litter quality on litter decomposition is needed to predict these changes accurately in grasslands. The Long‐Term Intersite Decomposition Experiment Team (LIDET) dataset was used to evaluate the influence of climatic variables (temperature, precipitation, actual evapotranspiration, and climate decomposition index), and litter quality (lignin content, carbon : nitrogen, and lignin : nitrogen ratios) on leaf and root decomposition in the US Great Plains. Wooden dowels were used to provide a homogeneous litter quality to evaluate the relative importance of above and belowground environments on decomposition. Contrary to expectations, temperature did not explain variation in root and leaf decomposition, whereas precipitation partially explained variation in root decomposition. Percent lignin was the best predictor of leaf and root decomposition. It also explained most variation in root decomposition in models which combined litter quality and climatic variables. Despite the lack of relationship between temperature and root decomposition, temperature could indirectly affect root decomposition through decreased litter quality and increased water deficits. These results suggest that carbon flux from root decomposition in grasslands would increase, as result of increasing temperature, only if precipitation is not limiting. However, where precipitation is limiting, increased temperature would decrease root decomposition, thus likely increasing carbon storage in grasslands. Under homogeneous litter quality, belowground decomposition was faster than aboveground and was best predicted by mean annual precipitation, which also suggests that the high moisture in soil accelerates decomposition belowground.  相似文献   

5.
Wildfires are a pervasive disturbance in boreal forests, and the frequency and intensity of boreal wildfires is expected to increase with climate warming. Boreal forests store a large fraction of global soil organic carbon (C), but relatively few studies have documented how wildfires affect soil microbial communities and soil C dynamics. We used a fire chronosequence in upland boreal forests of interior Alaska with sites that were 1, 7, 12, 24, 55, ~90, and ~100 years post-fire to examine the short- and long-term responses of fungal community composition, fungal abundance, extracellular enzyme activity, and litter decomposition to wildfires. We hypothesized that post-fire changes in fungal abundance and community composition would constrain decomposition following fires. We found that wildfires altered the composition of soil fungal communities. The relative abundance of ascomycetes significantly increased following fire whereas basidiomycetes decreased. Post-fire decreases in basidiomycete fungi were likely attributable to declines in ectomycorrhizal fungi. Fungal hyphal lengths in the organic horizon significantly declined in response to wildfire, and they required at least 24 years to return to pre-fire levels. Post-fire reductions in fungal hyphal length were associated with decreased activities of hydrolytic extracellular enzymes. In support of our hypothesis, the decomposition rate of aspen and black spruce litter significantly increased as forests recovered from fire. Our results indicate that post-fire reductions in soil fungal abundance and activity likely inhibit litter decomposition following boreal wildfires. Slower rates of litter decay may lead to decreased heterotrophic respiration from soil following fires and contribute to a negative feedback to climate warming.  相似文献   

6.
Widespread global changes, including rising atmospheric CO2 concentrations, climate warming and loss of biodiversity, are predicted for this century; all of these will affect terrestrial ecosystem processes like plant litter decomposition. Conversely, increased plant litter decomposition can have potential carbon‐cycle feedbacks on atmospheric CO2 levels, climate warming and biodiversity. But predicting litter decomposition is difficult because of many interacting factors related to the chemical, physical and biological properties of soil, as well as to climate and agricultural management practices. We applied 13C‐labelled plant litter to soil at ten sites spanning a 3500‐km transect across the agricultural regions of Canada and measured its decomposition over five years. Despite large differences in soil type and climatic conditions, we found that the kinetics of litter decomposition were similar once the effect of temperature had been removed, indicating no measurable effect of soil properties. A two‐pool exponential decay model expressing undecomposed carbon simply as a function of thermal time accurately described kinetics of decomposition. (R2 = 0.94; RMSE = 0.0508). Soil properties such as texture, cation exchange capacity, pH and moisture, although very different among sites, had minimal discernible influence on decomposition kinetics. Using this kinetic model under different climate change scenarios, we projected that the time required to decompose 50% of the litter (i.e. the labile fractions) would be reduced by 1–4 months, whereas time required to decompose 90% of the litter (including recalcitrant fractions) would be reduced by 1 year in cooler sites to as much as 2 years in warmer sites. These findings confirm quantitatively the sensitivity of litter decomposition to temperature increases and demonstrate how climate change may constrain future soil carbon storage, an effect apparently not influenced by soil properties.  相似文献   

7.
Sjögersten  Sofie  Wookey  Philip A. 《Plant and Soil》2004,262(1-2):215-227
Litter decomposition is a key process in terrestrial ecosystems, releasing nutrients, returning CO2 to the atmosphere, and contributing to the formation of humus. Litter decomposition is strongly controlled both by climate and by litter quality: global warming scenarios involving shifts in vegetation communities are therefore of particular interest in this context. The objective of the present study was to quantify the role of climatic environment and underlying substrate chemistry for the decomposition of standard mountain birch (Betula pubescens Ehrh. spp. czerepanovii) leaf litter at four sites, spanning the forest-tundra ecotone, in the Fennoscandian mountain range. Litter quality effects were thus held constant, but the study incorporated systematic changes in (i) latitude/altitude, (ii) `continentality', and (iii) vegetation community at each site, together with (iv) experimental manipulation of temperature using passive warming systems. The study was undertaken during a 3 year period, and forms part of a broader investigation of forest-tundra ecotone dynamics in the Fennoscandian mountains. Our results showed (1) higher decomposition rates in forest sites compared to tundra, (2) that the difference between the two vegetation communities was most pronounced at the more maritime sites, and (3) that chemistry of litter remaining after the three years experiment varied according to site and vegetation community (e.g. at the most southerly site, more lignin had decomposed at tundra communities compared with the forest). (4) Surface temperature explained 58% of the variation in mass loss at forest sites; at tundra sites, however, we hypothesise that litter moisture content was the more important factor. (5) Experimental warming lent weight to this hypothesis by reducing rates of mass loss: this reduction was likely the result of surface soil drying, an artefact of the warming treatment. We conclude that a replacement of tundra by forest would likely accelerate litter decomposition both via changes in surface and near-surface temperature and moisture regimes, although the strength of this response will vary between maritime and continental parts of the mountain range.  相似文献   

8.
Litter decomposition, climate and liter quality   总被引:3,自引:0,他引:3  
Litter decomposition is controlled by three main factors: climate, litter quality and the nature and abundance of the decomposing organisms. Climate is the dominant factor in areas subjected to unfavourable weather conditions, whereas litter quality largely prevails as the regulator under favourable conditions. Litter quality remains important until the late decomposition stages through its effects on humus formation. Interest in the role of litter decomposition in the global carbon cycle has increased recently since (1) increased atmospheric carbon dioxide will probably affect the chemical quality of litter (especially nitrogen content), and (2) global warming may enhance decomposition rates.  相似文献   

9.
Intraspecific variation in genotypically determined traits can influence ecosystem processes. Therefore, the impact of climate change on ecosystems may depend, in part, on the distribution of plant genotypes. Here we experimentally assess effects of climate warming and excess nitrogen supply on litter decomposition using 12 genotypes of a cosmopolitan foundation species collected across a 2100 km latitudinal gradient and grown in a common garden. Genotypically determined litter‐chemistry traits varied substantially within and among geographic regions, which strongly affected decomposition and the magnitude of warming effects, as warming accelerated litter mass loss of high‐nutrient, but not low‐nutrient, genotypes. Although increased nitrogen supply alone had no effect on decomposition, it strongly accelerated litter mass loss of all genotypes when combined with warming. Rates of microbial respiration associated with the leaf litter showed nearly identical responses as litter mass loss. These results highlight the importance of interactive effects of environmental factors and suggest that loss or gain of genetic variation associated with key phenotypic traits can buffer, or exacerbate, the impact of global change on ecosystem process rates in the future.  相似文献   

10.
湿地枯落物分解及其对全球变化的响应   总被引:7,自引:0,他引:7  
孙志高  刘景双 《生态学报》2007,27(4):1606-1618
综述了当前湿地枯落物分解及其对全球变化响应的研究动态。湿地枯落物分解研究已随研究方法的改进而不断深化;当前湿地枯落物分解过程研究主要集中在有机质组分和元素含量变化特征的探讨上;湿地枯落物分解同时受生物因素(即枯落物性质以及参与分解的异养微生物和土壤动物的种类、数量和活性等)和非生物因素(即枯落物分解过程的外部环境条件,包括气候条件、水分条件、酸碱度与盐分条件以及湿地沉积的行为与特征等)的制约;模型已成为湿地枯落物分解研究的重要手段,对其研究也在不断深化。还讨论了湿地枯落物分解对于全球变化的响应,指出全球变暖、大气CO2浓度上升、干湿沉降及其化学组成改变可能对枯落物分解产生的直接、间接和综合影响。最后,指出了当前该领域研究尚存在的问题以及今后亟需加强的几个研究方面。  相似文献   

11.
Increased decomposition rates in boreal peatlands with global warming might increase the release of atmospheric greenhouse gases, thereby producing a positive feedback to global warming. How temperature influences microbial decomposers is unclear. We measured in vitro rates of decomposition of senesced sedge leaves and rhizomes (Carex aquatilis), from a fen, and peat moss (Sphagnum fuscum), from a bog, at 14 and 20 degrees C by the three most frequently isolated fungi and bacteria from these materials. Decomposition rates of the bog litter decreased (5- to 17-fold) with elevated temperatures, and decomposition of the sedge litters was either enhanced (2- to 30-fold) or remained unaffected by elevated temperatures. The increased temperature regime always favoured fungal over bacterial decomposition rates (2- to 3-fold). Different physiological characteristics of these microbes suggest that fungi using polyphenolic polymers as a carbon source cause greater mass losses of these litters. Litter quality exerted a stronger influence on decomposition at elevated temperatures, as litter rich in nutrients decomposed more quickly than litter poorer in nutrients at higher temperatures (8.0%-25.7% for the sedge litters vs. 0.2% for the bryophyte litter). We conclude that not all peatlands may provide a positive feedback to global warming. Cautious extrapolation of our data to the ecosystem level suggests that decomposition rates in fens may increase and those in bogs may decrease under a global warming scenario.  相似文献   

12.
Many Arctic regions are currently experiencing substantial summer and winter climate changes. Litter decomposition is a fundamental component of ecosystem carbon and nutrient cycles, with fungi being among the primary decomposers. To assess the impacts of seasonal climatic changes on litter fungal communities and their functioning, Betula glandulosa leaf litter was surface‐incubated in two adjacent low Arctic sites with contrasting soil moisture regimes: dry shrub heath and wet sedge tundra at Disko Island, Greenland. At both sites, we investigated the impacts of factorial combinations of enhanced summer warming (using open‐top chambers; OTCs) and deepened snow (using snow fences) on surface litter mass loss, chemistry and fungal decomposer communities after approximately 1 year. Enhanced summer warming significantly restricted litter mass loss by 32% in the dry and 17% in the wet site. Litter moisture content was significantly reduced by summer warming in the dry, but not in the wet site. Likewise, fungal total abundance and diversity were reduced by OTC warming at the dry site, while comparatively modest warming effects were observed in the wet site. These results suggest that increased evapotranspiration in the OTC plots lowered litter moisture content to the point where fungal decomposition activities became inhibited. In contrast, snow addition enhanced fungal abundance in both sites but did not significantly affect litter mass loss rates. Across sites, control plots only shared 15% of their fungal phylotypes, suggesting strong local controls on fungal decomposer community composition. Nevertheless, fungal community functioning (litter decomposition) was negatively affected by warming in both sites. We conclude that although buried soil organic matter decomposition is widely expected to increase with future summer warming, surface litter decay and nutrient turnover rates in both xeric and relatively moist tundra are likely to be significantly restricted by the evaporative drying associated with warmer air temperatures.  相似文献   

13.
Climate and litter quality have been identified as major drivers of litter decomposition at large spatial scales. However, the role played by soil fauna remains largely unknown, despite its importance for litter fragmentation and microbial activity. We synthesised litterbag studies to quantify the effect sizes of soil fauna on litter decomposition rates at the global and biome scales, and to assess how climate, litter quality and soil fauna interact to determine such rates. Soil fauna consistently enhanced litter decomposition at both global and biome scales (average increment ~ 27%). However, climate and litter quality differently modulated the effects of soil fauna on decomposition rates between biomes, from climate‐driven biomes to those where climate effects were mediated by changes in litter quality. Our results advocate for the inclusion of biome‐specific soil fauna effects on litter decomposition as a mean to reduce the unexplained variation in large‐scale decomposition models.  相似文献   

14.
The equilibrium carbon storage capacity of the terrestrial biosphere has been investigated by running the Lund–Potsdam–Jena Dynamic Global Vegetation Model to equilibrium for a range of CO2 concentrations and idealized climate states. Local climate is defined by the combination of an observation-based climatology and perturbation patterns derived from a 4 × CO2 warming simulations, which are linearly scaled to global mean temperature deviations, Δ T glob. Global carbon storage remains close to its optimum for Δ T glob in the range of ±3°C in simulations with constant atmospheric CO2. The magnitude of the carbon loss to the atmosphere per unit change in global average surface temperature shows a pronounced nonlinear threshold behavior. About twice as much carbon is lost per degree warming for Δ T glob above 3°C than for present climate. Tropical, temperate, and boreal trees spread poleward with global warming. Vegetation dynamics govern the distribution of soil carbon storage and turnover in the climate space. For cold climate conditions, the global average decomposition rate of litter and soil decreases with warming, despite local increases in turnover rates. This result is not compatible with the assumption, commonly made in global box models, that soil turnover increases exponentially with global average surface temperature, over a wide temperature range.  相似文献   

15.
? High-latitude ecosystems are important carbon accumulators, mainly as a result of low decomposition rates of litter and soil organic matter. We investigated whether global change impacts on litter decomposition rates are constrained by litter stoichiometry. ? Thereto, we investigated the interspecific natural variation in litter stoichiometric traits (LSTs) in high-latitude ecosystems, and compared it with climate change-induced LST variation measured in the Meeting of Litters (MOL) experiment. This experiment includes leaf litters originating from 33 circumpolar and high-altitude global change experiments. Two-year decomposition rates of litters from these experiments were measured earlier in two common litter beds in sub-Arctic Sweden. ? Response ratios of LSTs in plants of high-latitude ecosystems in the global change treatments showed a three-fold variation, and this was in the same range as the natural variation among species. However, response ratios of decomposition were about an order of magnitude lower than those of litter carbon/nitrogen ratios. ? This implies that litter stoichiometry does not constrain the response of plant litter decomposition to global change. We suggest that responsiveness is rather constrained by the less responsive traits of the Plant Economics Spectrum of litter decomposability, such as lignin and dry matter content and specific leaf area.  相似文献   

16.
Although climate warming has been widely demonstrated to induce shifts in the timing of many biological events, the phenological consequences of other prominent global change drivers remain largely unknown. Here, we investigated the effects of biological invasions on the seasonality of leaf litter decomposition, a crucial freshwater ecosystem function. Decomposition rates were quantified in 18 temperate shallow lakes distributed along a gradient of crayfish invasion and a temperature‐based model was constructed to predict yearly patterns of decomposition. We found that, through direct detritus consumption, omnivorous invasive crayfish accelerated decomposition rates up to fivefold in spring, enhancing temperature dependence of the process and shortening the period of major detritus availability in the ecosystem by up to 39 days (95% CI: 15–61). The fact that our estimates are an order of magnitude higher than any previously reported climate‐driven phenological shifts indicates that some powerful drivers of phenological change have been largely overlooked.  相似文献   

17.
季节性雪被变化对森林凋落物分解及土壤氮动态的影响   总被引:2,自引:0,他引:2  
全球气候变化引发的雪被格局变化将深刻影响植被的凋落物分解、陆地生态系统的土壤养分循环等过程.森林是陆地生态系统的主体,在全球生物地球化学循环中起着不可替代的作用.本研究综述了季节性雪被变化对森林凋落物分解及土壤氮动态的影响.全球气候变化情景下季节性雪被表现出因地域而异的增加或减少的变化格局,一方面通过改变环境温湿度、凋落物质量、分解者动态等直接影响分解过程,另一方面通过改变森林群落结构、植被物候、土壤养分等间接地作用于凋落物分解.同时,季节性雪被通过影响氮富集作用、雪被下土壤温湿度、冻融循环、森林群落、雪下动物和微生物等相关因子而改变森林土壤氮循环.本领域未来应开展的研究是: 1) 全面考虑全球气候变化情景下季节性雪被格局的变异性,开展不同季节性雪被格局变化的模拟研究;2) 开展季节性雪被融雪水淋溶作用对森林凋落物分解和土壤氮动态的影响研究;3) 阐明不同生态系统和气候带中季节性雪被格局变化对森林凋落物分解过程和土壤氮动态的驱动机制研究;4) 量化季节性雪被变化对森林凋落物分解和土壤氮动态在雪被覆盖期的瞬时影响和无雪期的延续影响,为阐明和模型预测陆地生态系统生物地球化学循环对全球气候变化的响应提供理论基础和数据支持.  相似文献   

18.
The Arctic climate is projected to change during the coming century, with expected higher air temperatures and increased winter snowfall. These climatic changes might alter litter decomposition rates, which in turn could affect carbon (C) and nitrogen (N) cycling rates in tundra ecosystems. However, little is known of seasonal climate change effects on plant litter decomposition rates and N dynamics, hampering predictions of future arctic vegetation composition and the tundra C balance. We tested the effects of snow addition (snow fences), warming (open top chambers), and shrub removal (clipping), using a full-factorial experiment, on mass loss and N dynamics of two shrub tissue types with contrasting quality: deciduous shrub leaf litter (Salix glauca) and evergreen shrub shoots (Cassiope tetragona). We performed a 10.5-month decomposition experiment in a low-arctic shrub tundra heath in West-Greenland. Field incubations started in late fall, with harvests made after 249, 273, and 319 days of field incubation during early spring, summer and fall of the next year, respectively. We observed a positive effect of deeper snow on winter mass loss which is considered a result of observed higher soil winter temperatures and corresponding increased winter microbial litter decomposition in deep-snow plots. In contrast, warming reduced litter mass loss during spring, possibly because the dry spring conditions might have dried out the litter layer and thereby limited microbial litter decomposition. Shrub removal had a small positive effect on litter mass loss for C. tetragona during summer, but not for S. glauca. Nitrogen dynamics in decomposing leaves and shoots were not affected by the treatments but did show differences in temporal patterns between tissue types: there was a net immobilization of N by C. tetragona shoots after the winter incubation, while S. glauca leaf N-pools were unaltered over time. Our results support the widely hypothesized positive linkage between winter snow depth and litter decomposition rates in tundra ecosystems, but our results do not reveal changes in N dynamics during initial decomposition stages. Our study also shows contrasting impacts of spring warming and snow addition on shrub decomposition rates that might have important consequences for plant community composition and vegetation-climate feedbacks in rapidly changing tundra ecosystems.  相似文献   

19.
Litter decomposition represents one of the largest annual fluxes of carbon (C) from terrestrial ecosystems, particularly for tropical forests, which are generally characterized by high net primary productivity and litter turnover. We used data from the Long-Term Intersite Decomposition Experiment (LIDET) to (1) determine the relative importance of climate and litter quality as predictors of decomposition rates, (2) compare patterns in root and leaf litter decomposition, (3) identify controls on net nitrogen (N) release during decay, and (4) compare LIDET rates with native species studies across five bioclimatically diverse neotropical forests. Leaf and root litter decomposed fastest in the lower montane rain and moist forests and slowest in the seasonally dry forest. The single best predictor of leaf litter decomposition was the climate decomposition index (CDI), explaining 51% of the variability across all sites. The strongest models for predicting leaf decomposition combined climate and litter chemistry, and included CDI and lignin ( R 2=0.69), or CDI, N and nonpolar extractives ( R 2=0.69). While we found no significant differences in decomposition rates between leaf and root litter, drivers of decomposition differed for the two tissue types. Initial stages of decomposition, determined as the time to 50% mass remaining, were driven primarily by precipitation for leaf litter ( R 2=0.93) and by temperature for root litter ( R 2=0.86). The rate of N release from leaf litter was positively correlated with initial N concentrations; net N immobilization increased with decreasing initial N concentrations. This study demonstrates that decomposition is sensitive to climate within and across tropical forests. Our results suggest that climate change and increasing N deposition in tropical forests are likely to result in significant changes to decomposition rates in this biome.  相似文献   

20.
Forests in northeastern North America are influenced by varying climatic and biotic factors; however, there is concern that rapid changes in these factors may lead to important changes in ecosystem processes such as decomposition. Climate change (especially warming) is predicted to increase rates of decomposition in northern latitudes. Warming in winter may result in complex effects including decreased levels of snow cover and an increased incidence of soil freezing that will effect decomposition. Along with these changes in climate, moose densities have also been increasing in this region, likely affecting nutrient dynamics. We measured decomposition and N release from 15N‐labeled sugar maple leaf litter and moose feces over 20 months in reference and snow removal treatment (to induce soil freezing) plots in two separate experiments at the Hubbard Brook Experimental Forest in New Hampshire, USA. Snow removal/soil freezing decreased decomposition of maple litter, but stimulated N transfer to soil and microbial biomass. Feces decomposed more rapidly than maple litter, and feces N moved into the mineral soil more than N derived from litter, likely due to the lower C : N ratio of feces. Feces decomposition was not affected by the snow removal treatment. Total microbial biomass (measured as microbial N and C) was not significantly affected by the treatments in either the litter or feces plots. These results suggest that increases in soil freezing and/or large herbivore populations, increase the transfer rate of N from plant detritus or digested plants into the mineral soil. Such changes suggest that altering the spatial and temporal patterns of soil freezing and moose density have important implications for ecosystem N cycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号