首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   16篇
  2019年   2篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   9篇
  2013年   2篇
  2012年   8篇
  2011年   12篇
  2010年   4篇
  2009年   8篇
  2008年   8篇
  2007年   5篇
  2006年   7篇
  2005年   11篇
  2004年   9篇
  2003年   10篇
  2002年   10篇
  2001年   7篇
  2000年   14篇
  1999年   4篇
  1998年   6篇
  1997年   3篇
  1996年   7篇
  1995年   2篇
  1994年   4篇
  1992年   3篇
  1991年   6篇
  1990年   2篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   2篇
  1983年   4篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1966年   2篇
  1964年   1篇
  1963年   1篇
  1962年   1篇
  1961年   1篇
  1955年   1篇
  1952年   1篇
  1937年   1篇
  1930年   1篇
  1929年   1篇
  1922年   1篇
  1921年   1篇
排序方式: 共有219条查询结果,搜索用时 15 毫秒
1.
Fire effects on ecosystem nitrogen cycling in a Californian bishop pine forest   总被引:19,自引:0,他引:19  
Fire can cause severe nitrogen (N) losses from grassland, chaparral, and temperate and boreal forest ecosystems. Paradoxically, soil ammonium levels are markedly increased by fire, resulting in high rates of primary production in re-establishing plant communities. In a manipulative experiment, we examined the influence of wild-fire ash residues on soil, microbial and plant N pools in a recently burned Californian bishop pine (Pinus muricata D. Don) forest. Ash stimulated post-fire primary production and ecosystem N retention through direct N inputs from ash to soils, as well as indirect ash effects on soil N availability to plants. These results suggest that redistribution of surface ash after fire by wind or water may cause substantial heterogeneity in soil N availability to plants, and could be an important mechanism contributing to vegetation patchiness in fire-prone ecosystems. In addition, we investigated the impact of fire on ecosystem N cycling by comparing 15N natural abundance values from recently burned and nearby unburned P. muricata forest communities. At the burned site, 15N natural abundance in recolonising species was similar to that in bulk soil organic matter. By contrast, there was a marked 15N depletion in the same species relative to the total soil N pool at the unburned site. These results suggest that plant uptake of nitrate (which tends to be strongly depleted in 15N because of fractionation during nitrification) is low in recently burned forest communities but could be an important component of eco- system N cycling in mature conifer stands. Received: 29 June 1999 / Accepted: 24 October 1999  相似文献   
2.
Summary Plant carbon/nutrient balance has been implicated as an important factor in plant defensive chemistry and palatability to herbivores. We tested this hypothesis by fertilizing juvenile growth form Alaska paper birch and green alder with N, P and N-plus-P in a balanced 2x2 factorial experiment. Additionally, we shaded unfertilized plants of both species. Fertilization with N and N-plus-P increased growth of Alaska paper birch, reduced the concentration of papyriferic acid in internodes and increased the palatability of birch twigs to snowshoe hares. Shading decreased birch growth, decreased the concentration of papyriferic acid in internodes and increased twig palatability. These results indicate that the defensive chemistry and palatability of winter-dormant juvenile Alaska paper birch are sensitive to soil fertility and shade. Conversely the defensive chemistry and palatability of green alder twigs to snowshoe hares were not significantly affected by soil fertility or shade. The greater sensitivity of Alaska paper birch defensive chemistry and palatability to snowshoe hares in comparison to green alder is in agreement with the hypothesis that early successional woody plants that are adapted to high resource availability are more plastic in their chemical responses to the physical environment than are species from less favorable environments.  相似文献   
3.
Wildfire is the major natural agent of disturbance in interior Alaska. We examined the magnitude of human impact on fire by comparing fire regime between individual 1-km2 grid cells designated for fire suppression with lands where fires are allowed to burn naturally. Two-thirds of interior Alaska has an essentially natural fire regime, with few human ignitions, negligible suppression activity, and many large lightning-caused fires. In the 17% of land that is designated for fire suppression due to its proximity to communities and roads, there was a 50% reduction in the proportion of area burned from 1992–2001, relative to areas without suppression. The remaining 16% of land serves as a buffer, receives some suppression, and has an intermediate fire regime. Even though there were 50 times more fires and the fire season began two months earlier in lands designated for suppression, most of these fires were lit by people and remained small because fires tended to occur at times and places less favorable for fire spread and were more accessible to fire fighters compared to lands not designated for suppression. Even in the absence of fire suppression, human-caused fires were less likely to exceed 400 ha compared to lightning-caused fires. Fire suppression reduced area burned in all fuel types but was somewhat more effective in less flammable (non-forest) vegetation. Alaska’s fire policy of focusing suppression efforts on a small proportion of the fire-prone region maximizes the ecological and social benefits associated with fire-dependent ecosystem services, while minimizing the social and ecological costs of suppression. Application of this policy to other areas would require well-informed managers and stakeholders to make difficult decisions about the relative costs and benefits of fire across ecologically and culturally variable landscapes.  相似文献   
4.
Reconciling Carbon-cycle Concepts, Terminology, and Methods   总被引:5,自引:1,他引:4  
Recent projections of climatic change have focused a great deal of scientific and public attention on patterns of carbon (C) cycling as well as its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric carbon dioxide (CO2). Net ecosystem production (NEP), a central concept in C-cycling research, has been used by scientists to represent two different concepts. We propose that NEP be restricted to just one of its two original definitions—the imbalance between gross primary production (GPP) and ecosystem respiration (ER). We further propose that a new term—net ecosystem carbon balance (NECB)—be applied to the net rate of C accumulation in (or loss from [negative sign]) ecosystems. Net ecosystem carbon balance differs from NEP when C fluxes other than C fixation and respiration occur, or when inorganic C enters or leaves in dissolved form. These fluxes include the leaching loss or lateral transfer of C from the ecosystem; the emission of volatile organic C, methane, and carbon monoxide; and the release of soot and CO2 from fire. Carbon fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to the measurement of C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we can provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle.  相似文献   
5.
Publicly available remote sensing products have boosted science in many ways. The openness of these data sources suggests high reproducibility. However, as we show here, results may be specific to versions of the data products that can become unavailable as new versions are posted. We focus on remotely-sensed tree cover. Recent studies have used this public resource to detect multi-modality in tree cover in the tropical and boreal biomes. Such patterns suggest alternative stable states separated by critical tipping points. This has important implications for the potential response of these ecosystems to global climate change. For the boreal region, four distinct ecosystem states (i.e., treeless, sparse and dense woodland, and boreal forest) were previously identified by using the Collection 3 data of MODIS Vegetation Continuous Fields (VCF). Since then, the MODIS VCF product has been updated to Collection 5; and a Landsat VCF product of global tree cover at a fine spatial resolution of 30 meters has been developed. Here we compare these different remote-sensing products of tree cover to show that identification of alternative stable states in the boreal biome partly depends on the data source used. The updated MODIS data and the newer Landsat data consistently demonstrate three distinct modes around similar tree-cover values. Our analysis suggests that the boreal region has three modes: one sparsely vegetated state (treeless), one distinct ‘savanna-like’ state and one forest state, which could be alternative stable states. Our analysis illustrates that qualitative outcomes of studies may change fundamentally as new versions of remote sensing products are used. Scientific reproducibility thus requires that old versions remain publicly available.  相似文献   
6.
Root‐associated fungi, particularly ectomycorrhizal fungi (EMF), are critical symbionts of all boreal tree species. Although climatically driven increases in wildfire frequency and extent have been hypothesized to increase vegetation transitions from tundra to boreal forest, fire reduces mycorrhizal inoculum. Therefore, changes in mycobiont inoculum may potentially limit tree‐seedling establishment beyond current treeline. We investigated whether ectomycorrhizal shrubs that resprout after fire support similar fungal taxa to those that associate with tree seedlings that establish naturally after fire. We then assessed whether mycobiont identity correlates with the biomass or nutrient status of these tree seedlings. The majority of fungal taxa observed on shrub and seedling root systems were EMF, with some dark septate endophytes and ericoid mycorrhizal taxa. Seedlings and adjacent shrubs associated with similar arrays of fungal taxa, and there were strong correlations between the structure of seedling and shrub fungal communities. These results show that resprouting postfire shrubs support fungal taxa compatible with tree seedlings that establish after wildfire. Shrub taxon, distance to the nearest shrub and fire severity influenced the similarity between seedling and shrub fungal communities. Fungal composition was correlated with both foliar C:N ratio and seedling biomass and was one of the strongest explanatory variables predicting seedling biomass. While correlative, these results suggest that mycobionts are important to nutrient acquisition and biomass accrual of naturally establishing tree seedlings at treeline and that mycobiont taxa shared by resprouting postfire vegetation may be a significant source of inoculum for tree‐seedling establishment beyond current treeline.  相似文献   
7.
8.
9.
Because species affect ecosystem functioning, understanding migration processes is a key component of predicting future ecosystem responses to climate change. This study provides evidence of range expansion under current climatic conditions of an indigenous species with strong ecosystem effects. Surveys of stands along the northern distribution limit of lodgepole pine (Pinus contorta var. latifolia) in central Yukon Territory, Canada showed consistent increases in pine dominance following fire. These patterns differed strongly from those observed at sites where pine has been present for several thousand years. Differences in species thinning rates are unlikely to account for the observed increases in pine dominance. Rates of pine regeneration at its range limits were equivalent to those of spruce, indicating a capacity for rapid local population expansion. The study also found no evidence of strong climatic limitation of pine population growth at the northern distribution limit. We interpret these data as evidence of current pine expansion at its range limits and conclude that the northern distribution of lodgepole pine is not in equilibrium with current climate. This study has implications for our ability to predict vegetation response to climate change when populations may lag in their response to climate.  相似文献   
10.
Trait-based ecology predicts that evolution in high-resource agricultural environments should select for suites of traits that enable fast resource acquisition and rapid canopy closure. However, crop breeding targets specific agronomic attributes rather than broad trait syndromes. Breeding for specific traits, together with evolution in high-resource environments, might lead to reduced phenotypic integration, according to predictions from the ecological literature. We provide the first comprehensive test of these hypotheses, based on a trait-screening programme of 30 herbaceous crops and their wild progenitors. During crop evolution plants became larger, which enabled them to compete more effectively for light, but they had poorly integrated phenotypes. In a subset of six herbaceous crop species investigated in greater depth, competitiveness for light increased during early plant domestication, whereas diminished phenotypic integration occurred later during crop improvement. Mass-specific leaf and root traits relevant to resource-use strategies (e.g. specific leaf area or tissue density of fine roots) changed during crop evolution, but in diverse and contrasting directions and magnitudes, depending on the crop species. Reductions in phenotypic integration and overinvestment in traits involved in competition for light may affect the chances of upgrading modern herbaceous crops to face current climatic and food security challenges.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号