首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
We present a new method to produce tetraploid Crassostrea gigas by cytochalasin B inhibition of polar body 2 expulsion in diploid females crossed with tetraploid males. This offers a means of direct introgression of genetic characters from selected diploid to tetraploid lines, avoiding a triploid step. Offspring larval ploidy shifted over time and depended on size, with tetraploids more frequent among the smaller larvae and triploids among the large. Viable tetraploids were found at 4 and 6 months, indicating the technique was successful. The possibility that gynogenesis occurred was tested by microsatellite analysis to confirm the presence of paternally inherited alleles. These were present in all animals of the 2n × 4n + CB (female first) cross. However, a 4n × 2n + CB cross produced triploids, including some gynogens. Our method illustrates for the first time that diploid C. gigas eggs, if selected for large size, can give viable tetraploid offspring.  相似文献   

2.
Crosses between 21 triploid hybrid Cobitis females and 19 C. taenia (2n = 48) males led to viable progeny; whereas no embryonic development was observed in crosses with tetraploid males (4n = 98). The ploidy status of 491 progenies randomly selected with flow cytometry (316) or chromosome analysis (175) revealed an average of 55.2 % triploids and 44.8 % tetraploids, but the ratio of 3n versus 4n fish did change during development. In the first 2 days after hatching, approximately 65.1 % of tetraploid larvae were observed. Their number decreased significantly to 30.8 and 6.2 % on average during 2–5 and 10–15 months of life, respectively. The karyotype of tetraploid progeny (4n = 98) included 3n = 74 chromosomes of the parental female and n = 24 of C. taenia male. The number of tetraploid progeny indicated indirectly that about 66 % of eggs from 3n females were fertilized with C. taenia. The rest of the eggs developed clonally via gynogenesis or hemiclonally via hybridogenesis into triploids of the same karyotype structure as parental females. We have documented for the first time that (at least under experimental conditions) tetraploids are commonly formed, but are less viable than triploids, and a ratio similar to what is found under natural conditions is finally attained. The current explanation concerning the ploidy and karyotype structure of the progeny confirms that the eggs of 3n Cobitis females are not only capable of maintaining all chromosomes but are also capable of incorporating the sperm genome, thus creating the potential to produce tetraploids.  相似文献   

3.
Loaches (Misgurnus anguillicaudatus) were collected from 35 localities in Japan and assayed by flow cytometry to determine ploidy status. No tetraploids were found, with samples from 33 localities having no or few (1.2–3.2%) triploids. Samples collected from Ichinomiya Town, Aichi Prefecture, showed a relatively high rate of triploidy (7.7%). Samples collected from a fish farm in Hirokami Village, Niigata Prefecture, also showed high proportions of triploids (2.0–15.8%), these triploid males being sterile, but the females producing both large-sized triploid and small-sized haploid eggs. Such eggs developed bisexually rather than gynogenetically, giving rise to viable tetraploid and diploid offspring after normal fertilization. Of eight diploid females obtained from the same locality, one produced a high incidence of viable diploid gynogens (55%) after gynogenetic induction by fertilization with UV-irradiated spermatozoa. These observations indicated the presence of diploid fish which produced both diploid and haploid eggs. Thus, triploid and diploid individuals were also produced after fertilization with haploid spermatozoa. These results suggested that the occurrence of such unreduced eggs may be a cause of natural polyploidization in this species.  相似文献   

4.
Massive production of all-female diploids and triploids in the crucian carp   总被引:3,自引:0,他引:3  
In many species of aquaculture importance, all-female and sterile populations possess superior productivity due to faster growth and a relatively homogenous size of individuals. However, the production of all-female and sterile fish in a large scale for aquaculture is a challenge in practice, because treatments necessary for gynogenesis induction usually cause massive embryonic and larval mortality, and the number of induced gynogens is too small for their direct use in aquaculture. Here we report the massive production of all-female triploid crucian carp by combining artificial gynogenesis, sex reversal and diploid-tetraploid hybridization. Previously, we have obtained an allotetraploid carp population (4n = 200) by hybridization between red crucian carp (Carassius auratus red var; ♀) and common carp (Cyprinus carpio; ♂). We induced all-female diploid gynogens of the Japanese crucian carp (Carassius cuvieri; 2n = 100). We also generated male diploid gynogens of the same species treated gynogenetic fry with 17-α-methyltestosterone, leading to the production of sex-revered gynogenetic males. Finally, these males were used to cross with the female diploid Japanese crucian carp gynogens and the allotetraploid females, resulting in the production of fertile all-female diploid Japanese crucian carp (2n=100) and sterile all-female triploid hybrids (3n = 150), respectively. Therefore, diploid crucian carp gynogenetic females and sex-reversed male together with an allotetraploid line provide an opportunity to produce all-female triploid populations in a large scale to meet demands in aquaculture industry.  相似文献   

5.
Diploid gynogenesis was induced in ship sturgeon Acipenser nudiventris using UV-irradiated sperm from Siberian sturgeon Acipenser baerii. The optimal condition for the retention of the second polar body in ship sturgeon was determined to be 10 min after activation/fertilization in experiments. The temperature of cold shock and its duration were 2.5 °C and 30 min, respectively. A total of 30 gynogens of known parentage from experimental treatments were screened using microsatellite DNA analysis, and uniparental transmission in meiogens was confirmed. The results show that heterologous Siberian sturgeon sperm is applicable as UV-irradiated sperm for the induction of gynogenesis in ship sturgeon. This technique may recover the critically endangered sturgeon species that are becoming extinct.  相似文献   

6.
Fully inbred clonal lines of fish are likely to be of great value in research on immunology, sex determination, quantitative genetics, and toxicology. In this study on the Nile tilapia (Oreochromis niloticus), gynogenesis or androgenesis were used to produce a first generation of completely inbred fish, from which clonal lines were established using gynogenesis, androgenesis, hormonal sex reversal and intraline crosses. The clonal nature of these lines was verified by using multilocus DNA fingerprinting and the isozyme locus ADA*. Although these lines might be expected to be monosex in nature (all-female XX or all-male YY depending on the clone), one line did contain both sexes of fish. The presence of males in this gynogenetic clonal line and data from progeny testing of these males suggested that this line was homozygous for an allele or combination of alleles at an autosomal locus or loci which caused female to male sex reversal but with limited penetrance. Outbred clonal lines were also produced by crossing between different inbred clones. J. Exp. Zool. 284:675-685, 1999.  相似文献   

7.
Diploid gynogenesis was induced in muskellunge Esox masquinongy using UV-irradiated muskellunge sperm as the first step in producing monosex females. In this approach, we have to rely on negative controls as an indirect reference for sperm genetic material destruction. In the first experiment, equal proportions of gynogenetic females and males were produced. Negative controls, UV-irradiated sperm without heat shock, yielded some normal hatching larvae, described as spontaneous diploids. In the second experiment, muskellunge eggs were activated using sperm from yellow perch. Because hybrids between these species are not viable, we produced unambiguous gynogens. When UV-irradiated yellow perch sperm was used to inseminate muskellunge eggs, haploids resulted (22.5% +/- 2.8% survival to the eyed stage). To produce diploid gynogens, a heat shock of 31 degrees C was applied to inseminated eggs 20 min after activation for a duration of 6 min. This process yielded several hundreds of gynogens for rearing. Several treatments of masculinizing hormone, 17alpha-methyltestosterone (MT), were carried out. Fish were dissected and gonads examined histologically for sex determination. Gynogens produced using yellow-perch sperm confirmed the presence of males in the control group, whereas the MT bath treatment (400 microg/liter) resulted in the production of fish with ovotestis. These results provide evidence for male homogamety in muskellunge and imply that a change of strategy is needed to produce monosex populations.  相似文献   

8.
Fish genetic breeding is a process that remolds heritable traits to obtain neotype and improved varieties.For the purpose of genetic improvement,researchers can select for desirable genetic traits,integrate a suite of traits from different donors,or alter the innate genetic traits of a species.These improved varieties have,in many cases,facilitated the development of the aquaculture industry by lowering costs and increasing both quality and yield.In this review,we present the pertinent literatures and summarize the biological bases and application of selection breeding technologies(containing traditional selective breeding,molecular marker-assisted breeding,genome-wide selective breeding and breeding by controlling single-sex groups),integration breeding technologies(containing cross breeding,nuclear transplantation,germline stem cells and germ cells transplantation,artificial gynogenesis,artificial androgenesis and polyploid breeding)and modification breeding technologies(represented by transgenic breeding)in fish genetic breeding.Additionally,we discuss the progress our laboratory has made in the field of chromosomal ploidy breeding of fish,including distant hybridization,gynogenesis,and androgenesis.Finally,we systematically summarize the research status and known problems associated with each technology.  相似文献   

9.
Distant hybridization leads to different ploidy fishes   总被引:3,自引:0,他引:3  
Distant hybridization makes it possible to transfer the genome of one species to another, which results in changes in phenotypes and genotypes of the progenies. This study shows that distant hybridization or the combination of this method with gynogenesis or androgenesis lead to different ploidy fishes with genetic variation, including fertile tetraploid hybrids, sterile triploid hybrids, fertile diploid hybrids, fertile diploid gynogenetic fish, and their derived progenies. The formations of the different ploidy fishes depend on the genetic relationship between the parents. In this study, several types of distant hybridization, including red crucian carp (Carassius auratus red var.) (2n=100, abbreviated as RCC) (♀)×common carp (Cyprinus carpio L.) (2n=100, abbreviated as CC) (♂), and RCC (2n=100) (♀)×blunt snout bream (Megalobrama amblycephala) (2n=48, abbreviated as BSB) (♂) are described. In the distant hybridization of RCC (♀)×CC (♂), bisexual fertile F3–F18 allotetraploid hybrids (4n=200, abbreviated as 4nAT) were formed. The diploid hybrid eggs and diploid sperm generated by the females and males of 4nAT developed into diploid gynogenetic hybrids and diploid androgenetic hybrids, respectively, by gynogenesis and androgenesis, without treatment for doubling the chromosome. Improved tetraploid hybrids and improved diploid fishes with genetic variation were derived from the gynogenetic hybrid line. The improved diploid fishes included the high-body RCC and high-body goldfish. The formation of the tetraploid hybrids was related to the occurrence of unreduced gametes generated from the diploid hybrids, which involved in premeiotic endoreduplication, endomitosis, or fusion of germ cells. The sterile triploid hybrids (3n=150) were produced on a large scale by crossing the males of tetraploid hybrids with females of diploid fish (2n=100). In another distant hybridization of RCC (♀)×BSB (♂), different ploidy fishes were obtained, including diploid bisexual fertile natural gynogenetic fish (2n=100), sterile triploid hybrids (3n=124), and bisexual fertile tetraploid hybrids (4n=148). Furthermore, two kinds of pentaploid hybrids (5n=172 and 5n=198) were formed. The biological characteristics and the mechanisms of formation of the different ploidy fish were compared and discussed at the cellular and molecular level. The results indicated distant hybridization or the combination of this method with gynogenesis or androgenesis affects the formation of different ploidy fish with genetic variation.  相似文献   

10.
H I Khawaja  J Sybenga  J R Ellis 《Génome》1997,40(6):937-944
Chromosome pairing and chiasma formation were studied in natural and induced tetraploids (2n = 28) of Lathyrus odoratus (induced), Lathyrus pratensis (natural and induced), Lathyrus sativus (induced), and Lathyrus venosus (natural), as well as in triploids of L. pratensis and diploids of L. odoratus, L. pratensis, and L. sativus. All natural tetraploids appeared to be autotetraploids and their meiotic metaphase I behaviour was very similar to that of the induced autotetraploids, with average numbers of pairing partner switches exceeding 4 or even 5. Multivalent frequencies were high, but the numbers of chiasmata were not much higher than necessary to maintain the configurations. Interstitial chiasmata were common, but not predominant. Fertility was reduced, but sufficient for predominantly vegetatively reproducing species. The triploids of L. pratensis had an even higher multivalent frequency than the tetraploids, but still produced some viable progeny at or close to the tetraploid level, suggesting that in mixed populations of diploids and tetraploids, triploids can contribute to gene flow between the ploidy levels. There was no significant correlation between chiasma frequency and ring bivalent frequency in the diploids and multivalent frequency in the corresponding tetraploids. In the tetraploids, chiasma frequency and multivalent frequency were negatively correlated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号