首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fraser JL  Neill E  Davey S 《DNA Repair》2003,2(11):1253-1267
In Schizosaccharomyces pombe, the endonuclease Uve1 functions as the first step in an alternate UV photo-product repair pathway that is distinct from nucleotide excision repair (NER). Based upon the broad substrate specificity of Uve1 in vitro, and the observation that Uve1 mutants accumulate spontaneous mutations at an elevated rate in vivo, we and others have hypothesized that this protein might have a function in a mutation avoidance pathway other than UV photo-product repair. We show here that fission yeast Uve1 also functions in oxidative damage repair in vivo. We have determined the spectrum of spontaneous mutations that arise in uve1 null (uve1 degrees ) cells and have observed that both G-->T(C-->A) and T-->G(A-->C) transversions occur at an increased rate relative to wildtype cells. These mutations are indicative of unrepaired oxidative DNA damage and are very similar to the mutation spectrum observed in 8-oxoguanine glycosylase (OGG1) mutants in Saccharomyces cerevisiae. We have generated an apn2 null (apn2 degrees ) strain and shown that it is mildly sensitive to H(2)O(2). Furthermore we have also shown that apn2 degrees cells have an elevated rate of spontaneous mutation that is similar to uve1 degrees. The phenotype of apn2 degrees uve1 degrees double mutants indicates that these genes define distinct spontaneous mutation avoidance pathways. While uve1 degrees cells show only a modest sensitivity to the oxidizing agent hydrogen peroxide (H(2)O(2)), both uve1 degrees and apn2 degrees cells also display a marked increased in mutation rate following exposure to H(2)O(2) doses. Collectively these data demonstrate that Uve1 is a component of multiple alternate repair pathways in fission yeast and suggest a possible role for Uve1 in a general alternate incision repair pathway in eukaryotes.  相似文献   

2.
Rhp14 of Schizosaccharomyces pombe is homologous to human XPA and Saccharomyces cerevisiae Rad14, which act in nucleotide excision repair of DNA damages induced by ultraviolet light and chemical agents. Cells with disrupted rhp14 were highly sensitive to ultraviolet light, and epistasis analysis with swi10 (nucleotide excision repair) and rad2 (Uve1-dependent ultraviolet light damage repair pathway) revealed that Rhp14 is an important component of nucleotide excision repair for ultraviolet light-induced damages. Moreover, defective rhp14 caused instability of a GT repeat, similar to swi10 and synergistically with msh2 and exo1. Recombinant Rhp14 with an N-terminal hexahistidine tag was purified from Escherichia coli. Complementation studies with a rhp14 mutant demonstrated that the tagged Rhp14 is functional in repair of ultraviolet radiation-induced damages and in mitotic mutation avoidance. In bandshift assays, Rhp14 showed a preference to substrates with mismatched and unpaired nucleotides. Similarly, XPA bound more efficiently to C/C, A/C, and T/C mismatches than to homoduplex DNA. Our data show that mismatches and loops in DNA are substrates of nucleotide excision repair. Rhp14 is likely part of the recognition complex but alone is not sufficient for the high discrimination of nucleotide excision repair for modified DNA.  相似文献   

3.
A frameshift reversion assay has been established for Schizosaccharomyces pombe, which allows detection of deletions and insertions of nucleotides in a non-repetitive DNA sequence. Compared to wild type, frameshift mutation rates were increased in the mismatch repair (MMR) mutants msh2, msh6, mlh1, and pms1, but not in a swi4 strain (defective in the Msh3 homologue). Rates were also elevated in the DNA nuclease-deficient strains rad2 (defective in the FEN-1 homologue) and exo1. In MutSalpha-deficient strains, msh2 and msh6, most of the reversions were 1bp deletions. In contrast, mlh1 and pms1 mutants, defective in MutLalpha, accumulated significantly more 2bp insertions, preferentially of the type CG to (CG)(2). Such duplications were less frequent in double mutants additionally defective in msh2, msh6, rad2, or exo1. Thus, accumulation of (CG)(2) in MutLalpha-deficient strains depends on the presence of MutSalpha, Rad2 and Exo1.  相似文献   

4.
J Qiu  M X Guan  A M Bailis    B Shen 《Nucleic acids research》1998,26(13):3077-3083
Two closely related genes, EXO1 and DIN 7, in the budding yeast Saccharomyces cerevisiae have been found to be sequence homologs of the exo1 gene from the fission yeast Schizosaccharomyces pombe . The proteins encoded by these genes belong to the Rad2/XPG and Rad27/FEN-1 families, which are structure-specific nucleases functioning in DNA repair. An XPG nuclease deficiency in humans is one cause of xeroderma pigmentosum and those afflicted display a hypersensitivity to UV light. Deletion of the RAD2 gene in S. cerevisiae also causes UV hypersensitivity, due to a defect in nucleotide excision repair (NER), but residual UV resistance remains. In this report, we describe evidence for the residual repair of UV damage to DNA that is dependent upon Exo1 nuclease. Expression of the EXO1 gene is UV inducible. Genetic analysis indicates that the EXO1 gene is involved in a NER-independent pathway for UV repair, as exo1 rad2 double mutants are more sensitive to UV than either the rad2 or exo1 single mutants. Since the roles of EXO1 in mismatch repair and recombination have been established, double mutants were constructed to examine the possible relationship between the role of EXO1 in UV resistance and its roles in other pathways for repair of UV damaged DNA. The exo1 msh2 , exo1 rad51 , rad2 rad51 and rad2 msh2 double mutants were all more sensitive to UV than their respective pairs of single mutants. This suggests that the observed UV sensitivity of the exo1 deletion mutant is unlikely to be due to its functional deficiencies in MMR, recombination or NER. Further, it suggests that the EXO1 , RAD51 and MSH2 genes control independent mechanisms for the maintenance of UV resistance.  相似文献   

5.
In yeast, Rad7 and Rad16 are two proteins required for nucleotide excision repair (NER) of non-transcribed chromatin. They have roles in damage recognition, in the postincision steps of NER, and in ultraviolet-light-dependent histone H3 acetylation. Moreover, Rad16 is an ATP-ase of the SNF2 superfamily and therefore might facilitate chromatin repair by nucleosome remodelling. Here, we used yeast rad7 Delta rad16 Delta mutants and show that Rad7-Rad16 is also required for NER of UV-lesions in three functionally distinct nucleosome-free regions (NFRs), the promoter and 3'-end of the URA3 gene and the ARS1 origin of replication. Moreover, rapid repair of UV-lesions by photolyase confirmed that nucleosomes were absent and that neither UV-damage formation nor rad7 Delta rad16 Delta mutations altered chromatin accessibility in NFRs. The data are consistent with a role of Rad7-Rad16 in damage recognition and processing in absence of nucleosomes. An additional role in nucleosome remodelling is discussed.  相似文献   

6.
Xie Z  Liu S  Zhang Y  Wang Z 《Nucleic acids research》2004,32(20):5981-5990
Nucleotide excision repair (NER) removes many different types of DNA lesions. Most NER proteins are indispensable for repair. In contrast, the yeast Rad23 represents a class of accessory NER proteins, without which NER activity is reduced but not eliminated. In mammals, the complex of HR23B (Rad23 homolog) and XPC (yeast Rad4 homolog) has been suggested to function in the damage recognition step of NER. However, the precise function of Rad23 or HR23B in NER remains unknown. Recently, it was suggested that the primary function of RAD23 protein in NER is its stabilization of XPC protein. Here, we tested the significance of Rad23-mediated Rad4 stabilization in NER, and analyzed the repair and biochemical activities of purified yeast Rad23 protein. Cellular Rad4 was indeed stabilized by Rad23 in the absence of DNA damage. Persistent overexpression of Rad4 in rad23 mutant cells, however, largely failed to complement the ultraviolet sensitivity of the mutant. Consistently, deficient NER in rad23 mutant cell extracts could not be complemented by purified Rad4 protein in vitro. In contrast, partial complementation was observed with purified Rad23 protein. Specific complementation to the level of wild-type repair was achieved by adding purified Rad23 together with small amounts of Rad4 protein to rad23 mutant cell extracts. Purified Rad23 protein was unable to bind to DNA, but stimulated the binding activity of purified Rad4 protein to N-acetyl-2-aminofluorene-damaged DNA. These results support two roles of Rad23 protein in NER: (i) its direct participation in the repair biochemistry, possibly due to its stimulatory activity on Rad4-mediated damage binding/recognition; and (ii) its stabilization of cellular Rad4 protein.  相似文献   

7.
Nucleotide excision repair (NER) in eukaryotes requires the assembly of a large number of protein factors at the lesion site which then coordinate the dual incision of the damaged DNA strand. However, the manner by which the different protein factors are assembled at the lesion site has remained unclear. Previously, we have shown that in the yeast Saccharomyces cerevisiae, NER proteins exist as components of different protein subassemblies: the Rad1-Rad10 nuclease, for example, forms a tight complex with the damage recognition protein Rad14, and the complex of Rad1-Rad10-Rad14 can be purified intact from yeast cells. As the Rad1-Rad10 nuclease shows no specificity for binding UV lesions in DNA, association with Rad14 could provide an effective means for the targeting of Rad1-Rad10 nuclease to damage sites in vivo. To test the validity of this idea, here we identify two rad1 mutations that render yeast cells as UV sensitive as the rad1Delta mutation but which have no effect on the recombination function of Rad1. From our genetic and biochemical studies with these rad1 mutations, we conclude that the ability of Rad1-Rad10 nuclease to associate in a complex with Rad14 is paramount for the targeting of this nuclease to lesion sites in vivo. We discuss the implications of these observations for the means by which the different NER proteins are assembled at the lesion site.  相似文献   

8.
He W  Zhao Y  Zhang C  An L  Hu Z  Liu Y  Han L  Bi L  Xie Z  Xue P  Yang F  Hang H 《Nucleic acids research》2008,36(20):6406-6417
Rad9 is conserved from yeast to humans and plays roles in DNA repair (homologous recombination repair, and base-pair excision repair) and cell cycle checkpoint controls. It has not previously been reported whether Rad9 is involved in DNA mismatch repair (MMR). In this study, we have demonstrated that both human and mouse Rad9 interacts physically with the MMR protein MLH1. Disruption of the interaction by a single-point mutation in Rad9 leads to significantly reduced MMR activity. This disruption does not affect S/M checkpoint control and the first round of G2/M checkpoint control, nor does it alter cell sensitivity to UV light, gamma rays or hydroxyurea. Our data indicate that Rad9 is an important factor in MMR and carries out its MMR function specifically through interaction with MLH1.  相似文献   

9.
Lyndaker AM  Goldfarb T  Alani E 《Genetics》2008,179(4):1807-1821
Efficient repair of DNA double-strand breaks (DSBs) requires the coordination of checkpoint signaling and enzymatic repair functions. To study these processes during gene conversion at a single chromosomal break, we monitored mating-type switching in Saccharomyces cerevisiae strains defective in the Rad1-Rad10-Slx4 complex. Rad1-Rad10 is a structure-specific endonuclease that removes 3' nonhomologous single-stranded ends that are generated during many recombination events. Slx4 is a known target of the DNA damage response that forms a complex with Rad1-Rad10 and is critical for 3'-end processing during repair of DSBs by single-strand annealing. We found that mutants lacking an intact Rad1-Rad10-Slx4 complex displayed RAD9- and MAD2-dependent cell cycle delays and decreased viability during mating-type switching. In particular, these mutants exhibited a unique pattern of dead and switched daughter cells arising from the same DSB-containing cell. Furthermore, we observed that mutations in post-replicative lesion bypass factors (mms2Delta, mph1Delta) resulted in decreased viability during mating-type switching and conferred shorter cell cycle delays in rad1Delta mutants. We conclude that Rad1-Rad10-Slx4 promotes efficient repair during gene conversion events involving a single 3' nonhomologous tail and propose that the rad1Delta and slx4Delta mutant phenotypes result from inefficient repair of a lesion at the MAT locus that is bypassed by replication-mediated repair.  相似文献   

10.
Li F  Dong J  Pan X  Oum JH  Boeke JD  Lee SE 《Molecular cell》2008,30(3):325-335
Elimination of a double-strand break (DSB) flanked by direct repeat sequences is mediated by single-strand annealing (SSA), which relies on a distinct set of gene products involving recombination, mismatch repair, and nucleotide excision repair. Here, we screened for yeast mutants defective in SSA with a plasmid-based SSA assay coupled to a barcode microarray readout. The screen identified Yal027Wp/Saw1 (single-strand annealing weakened 1) and Slx4 besides other known SSA proteins. Saw1 interacts physically with Rad1/Rad10, Msh2/Msh3, and Rad52 proteins, and cells lacking SLX4 or SAW1 accumulate recombination intermediates blocked at the Rad1/Rad10-dependent 3' flap cleavage step. Slx4 and Saw1 also contribute to the integrity of ribosomal DNA arrays. Saw1 mutants that fail to interact with Rad1, but retain interaction with Rad52 and Msh2, are defective in 3' flap removal and SSA repair. Deletion of SAW1 abolished association of Rad1 at SSA intermediates in vivo. We propose that Saw1 targets Rad1/Rad10 to Rad52-coated recombination intermediates.  相似文献   

11.
Aflatoxin B1 (AFB1) is a human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In humans, AFB1 is primarily bioactivated by cytochrome P450 1A2 (CYP1A2) and 3A4 to a genotoxic epoxide that forms N7-guanine DNA adducts. A series of yeast haploid mutants defective in DNA repair and cell cycle checkpoints were transformed with human CYP1A2 to investigate how these DNA adducts are repaired. Cell survival and mutagenesis following aflatoxin B1 treatment was assayed in strains defective in nucleotide excision repair (NER) (rad14), postreplication repair (PRR) (rad6, rad18, mms2, and rad5), homologous recombinational repair (HRR) (rad51 and rad54), base excision repair (BER) (apn1 apn2), nonhomologous end-joining (NHEJ) (yku70), mismatch repair (MMR) (pms1), translesion synthesis (TLS) (rev3), and checkpoints (mec1-1, mec1-1 rad53, rad9, and rad17). Together our data suggest the involvement of homologous recombination and nucleotide excision repair, postreplication repair, and checkpoints in the repair and/or tolerance of AFB1-induced DNA damage in the yeast model. Rev3 appears to mediate AFB1-induced mutagenesis when error-free pathways are compromised. The results further suggest unique roles for Rad5 and abasic endonuclease-dependent DNA intermediates in regulating AFB1-induced mutagenicity.  相似文献   

12.
M. Saparbaev  L. Prakash    S. Prakash 《Genetics》1996,142(3):727-736
The RAD1 and RAD10 genes of Saccharomyces cerevisiae are required for nucleotide excision repair and they also act in mitotic recombination. The Rad1-Rad10 complex has a single-stranded DNA endonuclease activity. Here, we show that the mismatch repair genes MSH2 and MSH3 function in mitotic recombination. For both his3 and his4 duplications, and for homologous integration of a linear DNA fragment into the genome, the msh3Δ mutation has an effect on recombination similar to that of the rad1Δ and rad10Δ mutations. The msh2Δ mutation also reduces the rate of recombination of the his3 duplication and lowers the incidence of homologous integration of a linear DNA fragment. Epistasis analyses indicate that MSH2 and MSH3 function in the RAD1-RAD10 recombination pathway, and studies presented here suggest an involvement of the RAD1-RAD10 pathway in reciprocal recombination. The possible roles of Msh2, Msh3, Rad1, and Rad10 proteins in genetic recombination are discussed. Coupling of mismatch binding proteins with the recombinational machinery could be important for ensuring genetic fidelity in the recombination process.  相似文献   

13.
Tran PT  Erdeniz N  Dudley S  Liskay RM 《DNA Repair》2002,1(11):895-912
Exo1p is a member of the Rad2p family of structure-specific nucleases that contain conserved N and I nuclease domains. Exo1p has been implicated in numerous DNA metabolic processes, such as recombination, double-strand break repair and DNA mismatch repair (MMR). In this report, we describe in vitro and in vivo characterization of full-length wild-type and mutant forms of Exo1p. Herein, we demonstrate that full-length yeast Exo1p possesses an intrinsic 5'-3' exonuclease activity as reported previously, but also possesses a flap-endonuclease activity. Our study indicates that Exo1p shares similar, but not identical structure-function relationships to other characterized members of the Rad2p family in the N and I nuclease domains. The two exo1p mutants we examined, showed deficiencies for both double-stranded DNA (dsDNA) 5'-3' exonuclease and flap-endonuclease activities. Examining the genetic interaction of these two exo1 mutations with rad27Delta suggest that the Exo1p flap-endonuclease activity and not the dsDNA 5'-3' exonuclease is redundant to Rad27p for viability. In addition, our in vivo results also indicate that many exo1Delta phenotypes are dependent on the complete catalytic activities of Exo1p. Finally, our findings plus those of other investigators suggest that Exo1p functions both in a catalytic and a structural capacity during DNA MMR.  相似文献   

14.
15.
Meiotic recombination in Saccharomyces cerevisiae involves the formation of heteroduplexes, duplexes containing DNA strands derived from two different homologues. If the two strands of DNA differ by an insertion or deletion, the heteroduplex will contain an unpaired DNA loop. We found that unpaired loops as large as 5.6 kb can be accommodated within a heteroduplex. Repair of these loops involved the nucleotide excision repair (NER) enzymes Rad1p and Rad10p and the mismatch repair (MMR) proteins Msh2p and Msh3p, but not several other NER (Rad2p and Rad14p) and MMR (Msh4p, Msh6p, Mlh1p, Pms1p, Mlh2p, Mlh3p) proteins. Heteroduplexes were also formed with DNA strands derived from alleles containing two different large insertions, creating a large "bubble"; repair of this substrate was dependent on Rad1p. Although meiotic recombination events in yeast are initiated by double-strand DNA breaks (DSBs), we showed that DSBs occurring within heterozygous insertions do not stimulate interhomologue recombination.  相似文献   

16.
Initial recognition of DNA damage is the crucial but poorly understood first step in DNA repair by the human nucleotide excision repair(NER) and mismatch repair (MMR) systems. Failure by NER or MMR to recognize DNA damage threatens the genetic integrity of the organism and may play a role in carcinogenesis. Both NER and MMR recognize and repair a wide variety of structurally dissimilar lesions against the background of normal DNA. Previous studies have suggested that detection of thermodynamic destabilization of DNA caused by covalent damage and base mismatches is a potential mechanism by which repair pathways with broad specificity such as NER and MMR recognize their substrates. However, both NER and MMR respectively, repair a wide variety of stabilizing and destabilizing covalent DNA lesions and base pair mismatches. A common feature of lesions that are both thermodynamically stabilizing and destabilizing is the alteration of the local DNA flexibility (dynamics). In this review we describe the experimental evidence for altered dynamics from NMR and thermodynamic studies on normal and damaged DNA molecules with respect to recognition by NER and MMR. Based on these data, we propose a model for initial detection of lesions by both NER and MMR that occurs through an indirect readout mechanism of alternative DNA conformations induced by covalent damage and base mismatches.  相似文献   

17.
Aneuploidy is the most frequent aberration observed in tumor cells, and underlies many debilitating and cancer-prone congenital disorders. Aneuploidy most often arises as a consequence of chromosomal non-disjunction, however, little is known about the genetic and epigenetic factors that affect the chromosomal segregation process. As many cancer-prone syndromes are associated with defects in DNA repair pathways we decided to investigate the relationship between DNA repair in mutation avoidance pathways, namely base and nucleotide excision, and mismatch repair (MMR), and aneuploidy in the yeast Saccharomyces cerevisiae. Isogenic haploid and diploid DNA repair deficient yeast strains were constructed, and spontaneous levels of intra- and inter-chromosomal recombination, forward mutation, chromosome gain, and loss were measured. We show that the nucleotide excision repair (NER) pathway is required for accurate chromosomal disjunction. In the absence of Rad1, Rad2, or Rad4, spontaneous levels of chromosome XV gain were significantly elevated in both haploid and diploid mutant strains. Thus, chromosome gain may be an additional cancer predisposing event in NER deficient patients.  相似文献   

18.
Saccharomyces cells with a single unrepaired double-strand break adapt after checkpoint-mediated G(2)/M arrest. We have found that both Rad51 and Rad52 recombination proteins play key roles in adaptation. Cells lacking Rad51p fail to adapt, but deleting RAD52 suppresses rad51Delta. rad52Delta also suppresses adaptation defects of srs2Delta mutants but not those of yku70Delta or tid1Delta mutants. Neither rad54Delta nor rad55Delta affects adaptation. A Rad51 mutant that fails to interact with Rad52p is adaptation defective; conversely, a C-terminal truncation mutant of Rad52p, impaired in interaction with Rad51p, is also adaptation defective. In contrast, rad51-K191A, a mutation that abolishes recombination and results in a protein that does not bind to single-stranded DNA (ssDNA), supports adaptation, as do Rad51 mutants impaired in interaction with Rad54p or Rad55p. An rfa1-t11 mutation in the ssDNA binding complex RPA partially restores adaptation in rad51Delta mutants and fully restores adaptation in yku70Delta and tid1Delta mutants. Surprisingly, although neither rfa1-t11 nor rad52Delta mutants are adaptation defective, the rad52Delta rfa1-t11 double mutant fails to adapt and exhibits the persistent hyperphosphorylation of the DNA damage checkpoint protein Rad53 after HO induction. We suggest that monitoring of the extent of DNA damage depends on independent binding of RPA and Rad52p to ssDNA, with Rad52p's activity modulated by Rad51p whereas RPA's action depends on Tid1p.  相似文献   

19.
Yeast Rad27 is a 5'-->3' exonuclease and a flap endo-nuclease. Apn1 is the major apurinic/apyrimidinic (AP) endonuclease in yeast. The rad27 deletion mutants are highly sensitive to methylmethane sulfonate (MMS). By examining the role of Rad27 in different modes of DNA excision repair, we wish to understand why the cytotoxic effect of MMS is dramatically enhanced in the absence of Rad27. Base excision repair (BER) of uracil-containing DNA was deficient in rad27 mutant extracts in that (i) the Apn1 activity was reduced, and (ii) after DNA incision by Apn1, hydrolysis of 1-5 nucleotides 3' to the baseless sugar phosphate was deficient. Thus, some AP sites may lead to unprocessed DNA strand breaks in rad27 mutant cells. The severe MMS sensitivity of rad27 mutants is not caused by a reduction of the Apn1 activity. Surprisingly, we found that Apn1 endonuclease sensitizes rad27 mutant cells to MMS. Deleting the APN1 gene largely restored the resistance of rad27 mutants to MMS. These results suggest that unprocessed DNA strand breaks at AP sites are mainly responsible for the MMS sensitivity of rad27 mutants. In contrast, nucleotide excision repair and BER of oxidative damage were not affected in rad27 mutant extracts, indicating that Rad27 is specifically required for BER of AP sites in DNA.  相似文献   

20.
Coïc E  Gluck L  Fabre F 《The EMBO journal》2000,19(13):3408-3417
Recombination events between non-identical sequences most often involve heteroduplex DNA intermediates that are subjected to mismatch repair. The well-characterized long-patch mismatch repair process, controlled in eukaryotes by bacterial MutS and MutL orthologs, is the major system involved in repair of mispaired bases. Here we present evidence for an alternative short-patch mismatch repair pathway that operates on a broad spectrum of mismatches. In msh2 mutants lacking the long-patch repair system, sequence analysis of recombination tracts resulting from exchanges between similar but non-identical (homeologous) parental DNAs showed the occurrence of short-patch repair events that can involve <12 nucleotides. Such events were detected both in mitotic and in meiotic recombinants. Confirming the existence of a distinct short-patch repair activity, we found in a recombination assay involving homologous alleles that closely spaced mismatches are repaired independently with high efficiency in cells lacking MSH2 or PMS1. We show that this activity does not depend on genes required for nucleotide excision repair and thus differs from the short-patch mismatch repair described in Schizosaccharomyces pombe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号