首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 632 毫秒
1.
Aims:  This study was conducted to investigate the application of 2,2′‐dipyridyl as a new approach to isolating siderophore‐producing actinobacteria. Methods and Results:  Isolation of actinobacteria from soil was conducted by a soil dilution plate technique using starch‐casein agar. Iron starvation was fostered by the incorporation of the iron chelator 2,2′‐dipyridyl in the isolation medium. Pretreatment of the samples at an elevated temperature (40°C) ensured that the majority of nonsporulating bacteria were excluded. The survivors of this treatment were largely actinobacteria. Of the viable cultures grown in the presence of 2,2′‐dipyridyl, more than 78–88% (average of three separate studies) were reported to produce siderophore‐like compounds compared to 13–18% (average of three separate studies) when grown on the basic media in the absence of the chelating agent. The most prolific producers as assessed by the chrome azurol sulphate (CAS) assay were further characterized and found to belong to the genus Streptomyces. Conclusions:  Selective pressure using 2,2′‐dipyridyl as an iron‐chelating agent in starch‐casein media increased the isolation of siderophore‐producing actinobacteria compared to the unamended medium. Significance and Impact of the Study:  The study described represents a new approach to the isolation of siderophore‐producing actinobacteria using a novel procedure that places a selection on cell population based upon the incorporation of a chelating agent in the medium.  相似文献   

2.
The study describes the use of the chelating agent 2,2′-dipyridyl in conjunction with lysine to increase the production of the siderophore desferrioxamine E by a previously described actinobacterium 23F. Desferrioxamine E is a type of siderophore known to be produced by Streptomycete species. Lysine is a precursor of the siderophore and its presence in the culture medium is known to promote desferrioxamine E synthesis. The further addition of 2,2′-dipyridyl was found to enhance production of the siderophore in the presence of lysine (5 g l?1) nearly twofold when incorporated at a concentration of 200 μM. Increasing the concentration of the chelating agent above 200 μM resulted in a decrease in siderophore production. The role of the chelating agent was thought to be in creating iron-limiting conditions in the culture medium and so promoting the induction of the desferrioxamine E biosynthetic pathway. This medium is likely to be a useful tool in the screening for producers of desferrioxamine E.  相似文献   

3.
An assay to detect UO(2)(2+) complexation was developed based on the chrome azurol S (CAS) assay for siderophores (B. Schwyn and J. B. Neilands, Anal. Biochem. 160:47-56, 1987) and was used to investigate the ability of fungal metabolites to complex actinides. In this assay the discoloration of two dyed agars (one containing a CAS-Fe(3+) dye and the other containing a CAS-UO(2)(2+) dye) caused by ligands was quantified. The assay was tested by using the siderophore desferrioxamine B (DFO), and the results showed that there was a regular, reproducible relationship between discoloration and the amount of siderophore added. The ratio of the discoloration on the CAS-UO(2)(2+) agar to the discoloration on the CAS-Fe(3+) agar was independent of the amount of siderophore added. A total of 113 fungi and yeasts were isolated from three soil samples taken from the Peak District National Park. The fungi were screened for the production of UO(2)(2+) chelators by using the CAS-based assay and were also tested specifically for hydroxamate siderophore production by using the hydroxamate siderophore auxotroph Aureobacterium flavescens JG-9. This organism is highly sensitive to the presence of hydroxamate siderophores. However, the CAS-based assay was found to be less sensitive than the A. flavescens JG-9 assay. No significant difference between the results for each site for the two tests was found. Three isolates were selected for further study and were identified as two Pencillium species and a Mucor species. Our results show that the new assay can be effectively used to screen fungi for the production of UO(2)(2+) chelating ligands. We suggest that hydroxamate siderophores can be produced by mucoraceous fungi.  相似文献   

4.
Iron is a key micronutrient for microbial growth but is often present in low concentrations or in biologically unavailable forms. Many microorganisms overcome this challenge by producing siderophores, which are ferric-iron chelating compounds that enable the solubilization and acquisition of iron in a bioactive form. Pantoea stewartii subsp. stewartii, the causal agent of Stewart''s wilt of sweet corn, produces a siderophore under iron-limiting conditions. The proteins involved in the biosynthesis and export of this siderophore are encoded by the iucABCD-iutA operon, which is homologous to the aerobactin biosynthetic gene cluster found in a number of enteric pathogens. Mutations in iucA and iutA resulted in a decrease in surface-based motility that P. stewartii utilizes during the early stages of biofilm formation, indicating that active iron acquisition impacts surface motility for P. stewartii. Furthermore, bacterial movement in planta is also dependent on a functional siderophore biosynthesis and uptake pathway. Most notably, siderophore-mediated iron acquisition is required for full virulence in the sweet corn host, indicating that active iron acquisition is essential for pathogenic fitness for this important xylem-dwelling bacterial pathogen.  相似文献   

5.
We developed a simple and universal method, by modifying the universal CAS (Chrome azurol S) assay, measuring siderophores in various biological fluids. We named the assay as CAS agar diffusion (CASAD) assay. CAS plate devoid of nutrients was prepared by using Bacto-agar (1.5%, w/v) as a matrix. Holes with 5-mm-diameter were punched on the CAS agar plate. Each hole was added by 35 microl of the test fluids containing Desferal that was twofold serially diluted. After incubating at 37 degrees C or room temperature for 4-8 h, the size of orange haloes formed around the holes was measured. The size of orange haloes correlated well with the concentration of Desferal in all the biological fluids tested in this study. CASAD assay showed consistent results in wide pH range from 5 to 9. Addition of iron to the test fluids containing Desferal decreased the size of orange haloes in a dose-dependent manner, which suggests that the CASAD assay detects only iron non-bound siderophore. These results suggest that CASAD assay would serve as a simple, stable, and highly reproducible test for screening and quantitative siderophore analysis in biological fluids.  相似文献   

6.
We have developed a high-performance liquid chromatography-electrospray ionization mass spectrometry (LC-MS) method for quantifying docetaxel and paclitaxel in human plasma. The assay fulfills the need for defining the lower plasma concentrations of these antineoplastic agents that result from a number of changes in how these agents are used clinically. The assay uses paclitaxel as the internal standard for docetaxel, and vice versa; solid-phase extraction; a Phenomenex Hypersil ODS (5 micrometer, 100x2 mm) reversed-phase analytical column; an isocratic mobile phase of 0.1% formic acid in methanol-water (70:30, v/v); and mass spectrometric detection using electrospray positive mode electron ionization. The assay has a lower limit of quantitation (LLOQ) of 0.3 nM and is linear between 0.3 nM and 1 microM for docetaxel. For paclitaxel, the LLOQ was 1 nM, and the assay is linear between 1 nM and 1 microM. We demonstrated the suitability of this assay for docetaxel by using it to quantify the docetaxel concentrations in plasma of a patient given 40 mg/m(2) of docetaxel and comparing those results to results produced when the same samples were assayed with an HPLC assay using absorbance detection. In a similar manner, the suitability of the assay for paclitaxel was demonstrated by using it to quantify the concentrations of paclitaxel in the plasma of a patient given 15 mg/m(2) of paclitaxel and comparing those results to results produced when the same samples were assayed with an HPLC assay using absorbance detection. The LC-MS assay, which proved superior because of its greater sensitivity and relatively short (7 min) run time, should be an important tool for future pharmacokinetic analyses of docetaxel and paclitaxel.  相似文献   

7.
Actively secreted iron chelating agents termed siderophores play an important role in the virulence and rhizosphere competence of fluorescent pseudomonads, including Pseudomonas aeruginosa which secretes a high affinity siderophore, pyoverdine, and the low affinity siderophore, pyochelin. Uptake of the iron-siderophore complexes is an active process that requires specific outer membrane located receptors, which are dependent of the inner membrane-associated protein TonB and two other inner membrane proteins, ExbB and ExbC. P. aeruginosa is also capable of using a remarkable variety of heterologous siderophores as sources of iron, apparently by expressing their cognate receptors. Illustrative of this feature are the 32 (of which 28 putative) siderophore receptor genes observed in the P. aeruginosa PAO1 genome. However, except for a few (pyoverdine, pyochelin, enterobactin), the vast majority of P. aeruginosa siderophore receptor genes still remain to be characterized. Ten synthetic iron chelators of catecholate type stimulated growth of a pyoverdine/pyochelin deficient P. aeruginosa PAO1 mutant under condition of severe iron limitation. Null mutants of the 32 putative TonB-dependent siderophore receptor encoding genes engineered in the same genetic background were screened for obvious deficiencies in uptake of the synthetic siderophores, but none showed decreased growth stimulation in the presence of the different siderophores. However, a double knock-out mutant of ferrienterobactin receptor encoding gene pfeA (PA 2688) and pirA (PA0931) failed to be stimulated by 4 of the tested synthetic catecholate siderophores whose chemical structures resemble enterobactin. Ferric-enterobactin also failed to stimulate growth of the double pfeA-pirA mutant although, like its synthetic analogues, it stimulated growth of the corresponding single mutants. Hence, we confirmed that pirA represents a second P. aeruginosa ferric-enterobactin receptor. The example of these two enterobactin receptors probably illustrates a more general phenomenon of siderophore receptor redundancy in P. aeruginosa.  相似文献   

8.
An assay to detect UO22+ complexation was developed based on the chrome azurol S (CAS) assay for siderophores (B. Schwyn and J. B. Neilands, Anal. Biochem. 160:47-56, 1987) and was used to investigate the ability of fungal metabolites to complex actinides. In this assay the discoloration of two dyed agars (one containing a CAS-Fe3+ dye and the other containing a CAS-UO22+ dye) caused by ligands was quantified. The assay was tested by using the siderophore desferrioxamine B (DFO), and the results showed that there was a regular, reproducible relationship between discoloration and the amount of siderophore added. The ratio of the discoloration on the CAS-UO22+ agar to the discoloration on the CAS-Fe3+ agar was independent of the amount of siderophore added. A total of 113 fungi and yeasts were isolated from three soil samples taken from the Peak District National Park. The fungi were screened for the production of UO22+ chelators by using the CAS-based assay and were also tested specifically for hydroxamate siderophore production by using the hydroxamate siderophore auxotroph Aureobacterium flavescens JG-9. This organism is highly sensitive to the presence of hydroxamate siderophores. However, the CAS-based assay was found to be less sensitive than the A. flavescens JG-9 assay. No significant difference between the results for each site for the two tests was found. Three isolates were selected for further study and were identified as two Pencillium species and a Mucor species. Our results show that the new assay can be effectively used to screen fungi for the production of UO22+ chelating ligands. We suggest that hydroxamate siderophores can be produced by mucoraceous fungi.  相似文献   

9.
1-(4-Methylsulfonyl)-2-thione-4-aryl-5-Z-6-methyl and oxyalkyl-imidazoles were synthesized from different tetrahydropyrimidinethiones and aryl sulfonyl chloride. These compunds were tested for metal chelating effects and to determine the phrase in which inhibition occured between two physiologically pertinent compunds and carbonic anhydrase (CA) isozymes I and II (hCA I and II), butyrylcholinesterase (BChE) and acetylcholinesterase (AChE). AChE was detected in high concentrations in the brain and red blood cells. BChE is another enzymes that is abundant available in the liver and released into the blood in a soluble form. Newly synthesized hetaryl sulfonamides exhibited impressive inhibition profiles with Ki values in the range of 1.42–6.58?nM against hCA I, 1.72–7.41?nM against hCA II, 0.20–1.14?nM against AChE and 1.55–5.92?nM against BChE. Moreover, acetazolamide showed Ki values of 43.69?±?6.44?nM against hCA I and 31.67?±?8.39?nM against hCA II. Additionally, tacrine showed Ki values of 25.75?±?3.39?nM and 37.82?±?2.08 against AChE and BChE, respectively.  相似文献   

10.
Iron-Binding Compounds Produced by Wood-Decaying Basidiomycetes   总被引:5,自引:0,他引:5       下载免费PDF全文
The chrome azurol-S universal siderophore assay and the rapid paper electrophoresis siderophore assay were used to screen 10 wood-decaying basidiomycete isolates for the formation of iron-chelating compounds. All 10 isolates were positive for chrome azurol-S reactivity on solid plating medium and in liquid cultures, and 9 of the 10 isolates produced fluorescent iron-binding compounds in the paper electrophoresis assay.  相似文献   

11.
The growth of marine bacteria under iron-limited conditions was investigated. Neither siderophore production nor bacterial growth was detected for Pelagiobacter sp. strain V0110 when Fe(III) was present in the culture medium at a concentration of <1.0 microM. However, the growth of V0110 was strongly stimulated by the presence of trace amounts of exogenous siderophore from an alpha proteobacterium, V0902, and 1 nM N-acyl-octanoylhomoserine lactone (C(8)-HSL), which is known as a quorum-sensing chemical signal. Even though the iron-binding functionality of a hydroxamate siderophore was undetected in the supernatant of V0902, a hydroxamate siderophore was detected in the supernatant of V0110 under the above conditions. These results indicated that hydroxamate siderophore biosynthesis by V0110 began in response to the exogenous siderophore from V0902 when in the presence of C(8)-HSL; however, C(8)-HSL production by V0110 and V0902 was not detected. Direct interaction between V0902 and V0110 through siderophore from V0902 was observed in the dialyzing culture. Similar stimulated growth by exogenous siderophore and HSL was also observed in other non-siderophore-producing bacteria isolated from marine sponges and seawater. The requirement of an exogenous siderophore and an HSL for heterologous siderophore production indicated the possibility that cell-cell communication between different species was occurring.  相似文献   

12.
13.
Fatty acid composition of human immune cells influences their function. The aim of this study was to evaluate the effects of known toxicant and immunomodulator, cadmium, at low concentrations on levels of selected fatty acids (FAs) in THP-1 macrophages. The differentiation of THP-1 monocytes into macrophages was achieved by administration of phorbol myristate acetate. Macrophages were incubated with various cadmium chloride (CdCl2) solutions for 48 h at final concentrations of 5 nM, 20 nM, 200 nM, and 2 μM CdCl2. Fatty acids were extracted from samples according to the Folch method. The fatty acid levels were determined using gas chromatography. The following fatty acids were analyzed: long-chain saturated fatty acids (SFAs) palmitic acid and stearic acid, very long-chain saturated fatty acid (VLSFA) arachidic acid, monounsaturated fatty acids (MUFAs) palmitoleic acid, oleic acid and vaccenic acid, and n-6 polyunsaturated fatty acids (PUFAs) linoleic acid and arachidonic acid. Treatment of macrophages with very low concentrations of cadmium (5–200 nM) resulted in significant reduction in the levels of arachidic, palmitoleic, oleic, vaccenic, and linoleic acids and significant increase in arachidonic acid levels (following exposure to 5 nM Cd), without significant reduction of palmitic and stearic acid levels. Treatment of macrophages with the highest tested cadmium concentration (2 μM) produced significant reduction in the levels of all examined FAs: SFAs, VLSFA, MUFAs, and PUFAs. In conclusion, cadmium at tested concentrations caused significant alterations in THP-1 macrophage fatty acid levels, disrupting their composition, which might dysregulate fatty acid/lipid metabolism thus affecting macrophage behavior and inflammatory state.  相似文献   

14.
假单胞菌荧光与非荧光铁载体对铁离子的应答差异   总被引:2,自引:0,他引:2  
假单胞菌既能产荧光铁载体也能产非荧光铁载体.通过对假单胞菌在不同铁离子浓度下,在通用CAS(Chrome azroul S)检测平板、改进的蔗糖-天冬氨酸(SA)平板(MSA)上以及通用液体CAS培养基和MSA培养基内的铁载体产生情况的比较,发现在通用CAS的液体培养基上产生的主要为非荧光铁载体(pyochelin),而在改进的MSA培养基上产生的主要为荧光铁载体(pyoverdine);在铁离子的应答方面,pyoverdine较pyochelin灵敏,较低的铁离子浓度即可抑制荧光铁载体的产生,但是不能抑制非荧光铁载体.  相似文献   

15.
Inhibition of the endonuclease activity of influenza RNA-dependent RNA polymerase is recognized as an attractive target for the development of new agents for the treatment of influenza infection. Our earlier study employing small molecule fragment screening using a high-resolution crystal form of pandemic 2009 H1N1 influenza A endonuclease domain (PAN) resulted in the identification of 5-chloro-3-hydroxypyridin-2(1H)-one as a bimetal chelating ligand at the active site of the enzyme. In the present study, several phenyl substituted 3-hydroxypyridin-2(1H)-one compounds were synthesized and evaluated for their ability to inhibit the endonuclease activity as measured by a high-throughput fluorescence assay. Two of the more potent compounds in this series, 16 and 18, had IC50 values of 11 and 23 nM in the enzymatic assay, respectively. Crystal structures revealed that these compounds had distinct binding modes that chelate the two active site metal ions (M1 and M2) using only two chelating groups. The SAR and the binding mode of these 3-hydroxypyridin-2-ones provide a basis for developing a new class of anti-influenza drugs.  相似文献   

16.
Nitrites and nitrates are widely used reporters of endogenous activity of nitric oxide synthases (NOS), an important group of enzymes producing the gaseous signal molecule nitric oxide (NO). However, due to the great chemical heterogeneity of neuronal tissues, standard analytical protocols for evaluation of neuronal nitrite/nitrate concentrations are inefficient. We optimized a high-performance capillary zone electrophoresis (CZE) technique to analyze nitrite/nitrate concentrations in submicroliter samples from mammalian neuronal tissues. The measurements were made using a PrinCE 476 computerized capillary electrophoresis system with a Crystal 1000 contact conductivity detector. Isotachophoretic stacking injection of 1000- to 10000-fold diluted samples, which had been pretreated with a custom-designed solid-phase microextraction (SPME) cartridge, was employed to assay micromolar and nanomolar nitrite and nitrate levels in the presence of the high millimolar chloride concentrations characteristic of many biological samples. In the presented technique, a 10-microl volume of diluted ganglionic sample was used for chloride removal and sample cleanup. The method yields high analytical performance, including good reproducibility, resolution, and accuracy. The limits of detection relative to undiluted sample matrix were 8.9 nM (0.41 ppb) and 3.54 nM (0.22 ppb) for nitrite and nitrate, respectively. In addition, this technique resolves other anions that are present in neuronal tissues at sub-nanomolar concentrations and can be broadly applied for high-throughput anionic profiling. In rat dorsal root ganglia, endogenous levels of nitrate (231+/-29 microM; n=6) and nitrite (24-96 microM) were found. These concentrations exceeded those previously found in neuronal tissue homogenates using different techniques.  相似文献   

17.
Siebner-Freibach  H.  Hadar  Y.  Chen  Y. 《Plant and Soil》2003,251(1):115-124
Previous investigations have shown significant sorption of siderophores to the solid phase in soils, and clay surfaces in particular. The ability of plants to utilize Fe from this reservoir is therefore of great interest. This research focused on the ability of the hydroxamate siderophore ferrioxamine B (FOB) sorbed to Ca-montmorillonite – prevailing in soils – to supply Fe to peanuts (Arachis hypogeae L.). Remediation of Fe deficiency by the sorbed siderophore was found to be similar to that by the free (unsorbed) form. The concentration needed to achieve complete remediation of chlorosis was one order of magnitude higher than that of the optimal FeEDDHA [Fe-ethylenediamine-di(o-hydroxyphenylacetic acid)]. Using dialysis tubes, it was shown that Fe uptake from the sorbed siderophore is executed mainly via long-range pathways and does not require close proximity to the plant roots. It was hypothesized that the process involves chelating agents in solution, which transport the Fe from the immobilized siderophore and enable its uptake by the plant. Under calcareous conditions, the ability of the sorbed FOB to supply Fe was significantly impaired, probably as a result of inactivation of the bridging mechanism. Various possible shuttle compounds were examined. EDDHA was found to be a very efficient shuttle compound, which caused complete remediation of Fe deficiency, even under very harsh calcareous conditions. The findings support our hypothesis and imply the effectiveness of a ligand-exchange mechanism to strategy I plants (commonly attributed to strategy II plants). We suggest that the secretion of substances with chelating abilities, which is usually considered a less effective means of Fe acquisition mechanism, takes on more importance in this context.  相似文献   

18.

Background

Bifidobacteria is one of the major gut commensal groups found in infants. Their colonization is commonly associated with beneficial effects to the host through mechanisms like niche occupation and nutrient competition against pathogenic bacteria. Iron is an essential element necessary for most microorganisms, including bifidobacteria and efficient competition for this micronutrient is linked to proliferation and persistence. For this research we hypothesized that bifidobacteria in the gut of iron deficient infants can efficiently sequester iron. The aim of the present study was to isolate bifidobacteria in fecal samples of iron deficient Kenyan infants and to characterize siderophore production and iron internalization capacity.

Results

Fifty-six bifidobacterial strains were isolated by streaking twenty-eight stool samples from Kenyan infants, in enrichment media. To target strains with high iron sequestration mechanisms, a strong iron chelator 2,2-dipyridyl was supplemented to the agar media. Bifidobacterial isolates were first identified to species level by 16S rRNA sequencing, yielding B. bifidum (19 isolates), B. longum (15), B. breve (11), B. kashiwanohense (7), B. pseudolongum (3) and B. pseudocatenulatum (1). While most isolated bifidobacterial species are commonly encountered in the infantile gut, B. kashiwanohense was not frequently reported in infant feces. Thirty strains from culture collections and 56 isolates were characterized for their siderophore production, tested by the CAS assay. Siderophore activity ranged from 3 to 89% siderophore units, with 35 strains (41%) exhibiting high siderophore activity, and 31 (36%) and 20 (23%) showing intermediate or low activity. The amount of internalized iron of 60 bifidobacteria strains selected for their siderophore activity, was in a broad range from 8 to118 μM Fe. Four strains, B. pseudolongum PV8-2, B. kashiwanohense PV20-2, B. bifidum PV28-2a and B. longum PV5-1 isolated from infant stool samples were selected for both high siderophore activity and iron internalization.

Conclusions

A broad diversity of bifidobacteria were isolated in infant stools using iron limited conditions, with some strains exhibiting high iron sequestration properties. The ability of bifidobacteria to efficiently utilize iron sequestration mechanism such as siderophore production and iron internalization may confer an ecological advantage and be the basis for enhanced competition against enteropathogens.

Electronic supplementary material

The online version of this article (doi:10.1186/s12866-014-0334-z) contains supplementary material, which is available to authorized users.  相似文献   

19.
The periplasmic protein FepB of Escherichia coli is a component of the ferric enterobactin transport system. We overexpressed and purified the binding protein 23-fold from periplasmic extracts by ammonium sulfate precipitation and chromatographic methods, with a yield of 20%, to a final specific activity of 15,500 pmol of ferric enterobactin bound/mg. Periplasmic fluid from cells overexpressing the binding protein adsorbed catecholate ferric siderophores with high affinity: in a gel filtration chromatography assay the K(d) of the ferric enterobactin-FepB binding reaction was approximately 135 nM. Intrinsic fluorescence measurements of binding by the purified protein, which were more accurate, showed higher affinity for both ferric enterobactin (K(d) = 30 nM) and ferric enantioenterobactin (K(d) = 15 nM), the left-handed stereoisomer of the natural E. coli siderophore. Purified FepB also adsorbed the apo-siderophore, enterobactin, with comparable affinity (K(d) = 60 nM) but did not bind ferric agrobactin. Polyclonal rabbit antisera and mouse monoclonal antibodies raised against nearly homogeneous preparations of FepB specifically recognized it in solid-phase immunoassays. These sera enabled the measurement of the FepB concentration in vivo when expressed from the chromosome (4,000 copies/cell) or from multicopy plasmids (>100,000 copies/cell). Overexpression of the binding protein did not enhance the overall affinity or rate of ferric enterobactin transport, supporting the conclusion that the rate-limiting step of ferric siderophore uptake through the cell envelope is passage through the outer membrane.  相似文献   

20.
Antiviral resistance is currently monitored by a labelled enzymatic assay, which can give inconsistent results because of the short half‐life of the labelled product, and variations in assay conditions. In this paper, we describe a competitive surface plasmon resonance (SPR) inhibition assay for measuring the sensitivities of wild‐type neuraminidase (WT NA) and the H274Y (histidine 274 tyrosine) NA mutant to antiviral drugs. The two NA isoforms were expressed in High‐five™ (Trichoplusia ni) insect cells. A spacer molecule (1,6‐hexanediamine (HDA)) was conjugated to the 7‐hydroxyl group of zanamivir, and the construct (HDA‐zanamivir) was immobilized onto a SPR sensor chip to obtain a final immobilization response of 431 response units. The immobilized HDA‐zanamivir comprised a bio‐specific ligand for the WT and mutant proteins. The effects of the natural substrate (sialic acid) and two inhibitors (zanamivir and oseltamivir) on NA binding to the immobilized ligand were studied. The processed SPR data was analysed to determine 50% inhibitory concentrations (IC50‐spr), using a log dose–response curve fit. Although both NA isoforms had almost identical IC50‐spr values for sialic acid (WT = 5.5 nM; H274Y mutant = 3.25 nM) and zanamivir (WT = 2.16 nM; H274Y mutant = 2.42 nM), there were significant differences between the IC50‐spr values obtained for the WT (7.7 nM) and H274Y mutant (256 nM) NA in the presence of oseltamivir, indicating that oseltamivir has a reduced affinity for the H274Y mutant. The SPR inhibition assay strategy presented in this work could be applied for the rapid screening of newly emerging variants of NA for their sensitivity to antiviral drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号