首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Iron is essential for cell survival and regulates many cell functions. In the context of the immune response, iron-related metabolism is tightly controlled in activated lymphocytes as well as in cells of the innate immunity. More precisely, for dendritic cells (DCs), which are the key cell type in the development of a specific immune response, the importance of iron absorption was recently unravelled by showing that depletion of iron inhibits the maturation of DCs. On this basis, we studied in detail the expression of iron transport proteins and HFE in DCs. We found that iron uptake in this cell type is mediated by divalent-metal transporter 1 (DMT1) and transferrin receptor-1 (TfR) whereas Ferroportin-1 is very weakly expressed. HFE that regulates TfR's activity is also detected at the mRNA level. The expression of DMT1 and HFE barely varies upon endotoxin-induced maturation but TfR is up-regulated and the iron export molecule Ferroportin-1 is down-regulated. As opposed to MHC class II molecules, the intracellular localization of TfR is not changed during maturation. Our results indicate that the uptake of iron during DCs development and maturation is mediated by a strong expression of iron-uptake molecules such as DMT1 and TfR as well as a down-regulation of iron export molecules such as Ferroportin-1.  相似文献   

2.
3.
Mutations in the HFE gene and a newly identified second transferrin receptor gene, TfR2, cause hemochromatosis. The cognate proteins, HFE and TfR2, are therefore of key importance in human iron homeostasis. HFE is expressed in small intestinal crypt cells where transferrin-iron entry may determine subsequent iron absorption by mature enterocytes, but the physiological function of TfR2 is unknown. Using specific peptide antisera, we examined the duodenal localization of HFE and TfR2 in humans and mice, with and without HFE deficiency, by confocal microscopy. We also investigated potential interactions of these proteins in human intestinal cells in situ. Duodenal expression of HFE and TfR2 (but not TfR1) in wild-type mice and humans was restricted to crypt cells, in which they co-localized. HFE deficiency disrupted this interaction, altering the cellular distribution of TfR2 in human crypts. In human Caco-2 cells, HFE and TfR2 co-localized to a distinct CD63-negative vesicular compartment showing marked signal enhancement on exposure to iron-saturated transferrin ligand, indicating that HFE preferentially interacts with TfR2 in a specialized early endosomal transport pathway for transferrin-iron. This interaction occurs specifically in small intestinal crypt cells that differentiate to become iron-absorbing enterocytes. Our immunohistochemical findings provide evidence for a novel mechanism for the regulation of iron balance in mammals.  相似文献   

4.
HFE, the protein that is mutated in hereditary haemochromatosis, binds to the transferrin receptor (TfR). Here we show that wild-type HFE and TfR localize in endosomes and at the basolateral membrane of a polarized duodenal epithelial cell line, whereas the primary haemochromatosis HFE mutant, and another mutant with impaired TfR-binding ability accumulate in the ER/Golgi and at the basolateral membrane, respectively. Levels of the iron-storage protein ferritin are greatly reduced and those of TfR are slightly increased in cells expressing wild-type HFE, but not in cells expressing either mutant. Addition of an endosomal-targeting sequence derived from the human low-density lipoprotein receptor (LDLR) to the TfR-binding-impaired mutant restores its endosomal localization but not ferritin reduction or TfR elevation. Thus, binding to TfR is required for transport of HFE to endosomes and regulation of intracellular iron homeostasis, but not for basolateral surface expression of HFE.  相似文献   

5.
Brain iron transport and distributional pattern of divalent metal transporter I (DMT1) were studied in homozygous Belgrade rats (b/b) which suffer from a mutation in the DMT1 gene. In adult rats, brain uptake of transferrin-bound iron injected intravenously (i.v.) was significantly lower compared with that in heterozygous Belgrade (+/b) and Wistar rats, whereas transferrin uptake was identical. The difference in iron uptake was not apparent until 30 min after injection. The brain iron concentration was lower, and neuronal transferrin receptor-immunoreactivity higher, in adult b/b rats, thus confirming their iron-deficient stage. Antibodies targeting different sites on the DMT1 molecule consistently detected DMT1 in neurones and choroid plexus at the same level irrespective of strain, but failed to detect DMT1 in brain capillary endothelial cells (BCECs), or macro- or microglial cells. The absence of DMT1 in BCECs was confirmed in immunoblots of purified BCECs. DMT1 was virtually undetectable in neurones of rats aged 18 post-natal days irrespective of strain. Neuronal expression of transferrin receptors and DMT1 in adult rats implies that neurones at this age acquire iron by receptor-mediated endocytosis of transferrin followed by iron transport out of endosomes mediated by DMT1. The existence of the mutated DMT1 molecule in neurones suggests that the low cerebral iron uptake in b/b rats derives from a reduced neuronal uptake rather than an impaired iron transport through the blood-brain barrier.  相似文献   

6.
Mutations in the HFE gene result in hereditary hemochromatosis, a disorder of iron metabolism characterized by increased intestinal iron absorption. Based on the observation that ectopic expression of HFE strongly inhibits apical iron uptake (Arredondo et al., 2001, FASEB J 15, 1276–1278), a negative regulation of HFE on the apical membrane transporter DMT1 was proposed as a mechanism by which HFE regulates iron absorption. To test this hypothesis, we investigated: (i) the effect of HFE antisense oligonucleotides on apical iron uptake by polarized Caco-2 cells; (ii) the apical/basolateral membrane distribution of HFE, β-2 microglobulin and DMT1; (iii) the putative molecular association between HFE and DMT1. We found that HFE antisense treatment reduced HFE expression and increased apical iron uptake, whereas transfection with wild-type HFE inhibited iron uptake. Thus, an inverse relationship was established between HFE levels and apical iron uptake activity. Selective apical or basolateral biotinylation indicated preferential localization of DMT1 to the apical membrane and of HFE and β-2 microglobulin (β2m) to the basolateral membrane. Ectopic expression of HFE resulted in increased distribution of HFE–β2m to the apical membrane. The amount of HFE–β2m in the apical membrane inversely correlated with apical iron uptake rates. Immunoprecipitations of HFE or β2m with specific antibodies resulted in the co-precipitation of DMT1. These results sustain a model by which direct interaction between DMT1 and HFE–β2m in the apical membrane of Caco-2 cells result in down-regulation of apical iron uptake activity.  相似文献   

7.
Iron uptake and storage are tightly regulated to guarantee sufficient iron for essential cellular processes and to prevent the production of damaging free radicals. A non-classical class I MHC molecule, the hemochromatosis factor HFE, has been shown to regulate iron metabolism, potentially via its direct interaction with the transferrin receptor (TfR). In this study, we demonstrate that a soluble beta2microglobulin-HFE monochain (sHFE) folds with beta2microglobulin (beta2m) and associates with the TfR, indicating that the transmembrane and cytoplasmic domains are not necessary for assembly and trafficking through the ER-Golgi network. We also demonstrate human TfR-specific uptake and accumulation of extracellular sHFE by treated cells. The sHFE localized to the endosomal compartment albeit we observed variation in the time taken for endosomal trafficking between different cell types. The sHFE monochain was effective in reducing Tf uptake into cells, however this did not correlate to any changes in TfR or ferritin synthesis, in contrast to the HFE-induced increase and decrease of TfR and ferritin, respectively. These findings of incongruent sHFE activity suggest that either variation in affinity binding of sHFE to TfR prevents efficient modulation of iron-regulated proteins or that HFE has multiple functions some of which may be independent of TfR but dependent on interactions within the endosomal compartment for effective modulation of iron metabolism.  相似文献   

8.
The transferrin receptor (TfR) interacts with two proteins important for iron metabolism, transferrin (Tf) and HFE, the protein mutated in hereditary hemochromatosis. A second receptor for Tf, TfR2, was recently identified and found to be functional for iron uptake in transfected cells (Kawabata, H., Germain, R. S., Vuong, P. T., Nakamaki, T., Said, J. W., and Koeffler, H. P. (2000) J. Biol. Chem. 275, 16618-16625). TfR2 has a pattern of expression and regulation that is distinct from TfR, and mutations in TfR2 have been recognized as the cause of a non-HFE linked form of hemochromatosis (Camaschella, C., Roetto, A., Cali, A., De Gobbi, M., Garozzo, G., Carella, M., Majorano, N., Totaro, A., and Gasparini, P. (2000) Nat. Genet. 25, 14-15). To investigate the relationship between TfR, TfR2, Tf, and HFE, we performed a series of binding experiments using soluble forms of these proteins. We find no detectable binding between TfR2 and HFE by co-immunoprecipitation or using a surface plasmon resonance-based assay. The affinity of TfR2 for iron-loaded Tf was determined to be 27 nm, 25-fold lower than the affinity of TfR for Tf. These results imply that HFE regulates Tf-mediated iron uptake only from the classical TfR and that TfR2 does not compete for HFE binding in cells expressing both forms of TfR.  相似文献   

9.
Diabetes mellitus is associated with altered iron homeostasis in both human and animal diabetic models. Iron is a metal oxidant capable of generating reactive oxygen species (ROS) and has been postulated to contribute to diabetic nephropathy. Two proteins involved in iron metabolism that are expressed in the kidney are the divalent metal transporter, DMT1 (Slc11a2), and the Transferrin Receptor (TfR). Thus, we investigated whether renal DMT1 or TfR expression is altered in diabetes, as this could potentially affect ROS generation and contribute to diabetic nephropathy. Rats were rendered diabetic with streptozotocin (STZ-diabetes) and renal DMT1 and TfR expression studied using semi-quantitative immunoblotting and immunofluorescence. In STZ-diabetic Sprague-Dawley rats, renal DMT1 expression was significantly reduced and TfR expression increased after 2 weeks. DMT1 downregulation was observed in both proximal tubules and collecting ducts. Renal DMT1 expression was also decreased in Wistar rats following 12 weeks of STZ-diabetes, an effect that was fully corrected by insulin-replacement but not by cotreatment with the aldose reductase inhibitor, sorbinil. Increased renal TfR expression was also observed in STZ-diabetic Wistar rats together with elevated cellular iron accumulation. Together these data demonstrate renal DMT1 downregulation and TfR upregulation in STZ-diabetes. Whilst the consequence of altered DMT1 expression on renal iron handling and oxidant damage remains to be determined, the attenuation of the putative lysosomal iron exit pathway in proximal tubules could potentially explain lysosomal iron accumulation reported in human diabetes and STZ-diabetic animals.  相似文献   

10.
Regulation of iron absorption is thought to be mediated by the amount of iron taken up by duodenal crypt cells via the transferrin receptor (TfR)-transferrin cycle and the activity of the divalent metal transporter (DMT1), although DMT1 cannot be detected morphologically in crypt cells. We investigated the uptake of transferrin-bound iron by duodenal enterocytes in Wistar rats fed different levels of iron and Belgrade (b/b) rats in which iron uptake by the transferrin cycle is defective because of a mutation in DMT1. We showed that DMT1 in our colony of b/b rats contains the G185R mutation, which in enterocytes results in reduced cellular iron content and increased DMT1 gene expression similar to levels in iron deficiency of normal rats. In all groups the uptake of transferrin-bound iron by crypt cells was directly proportional to plasma iron concentration, being highest in iron-loaded Wistar rats and b/b rats. We conclude that the uptake of transferrin-bound iron by developing enterocytes is largely independent of DMT1.  相似文献   

11.
Mechanism for multiple ligand recognition by the human transferrin receptor   总被引:3,自引:1,他引:2  
Transferrin receptor 1 (TfR) plays a critical role in cellular iron import for most higher organisms. Cell surface TfR binds to circulating iron-loaded transferrin (Fe-Tf) and transports it to acidic endosomes, where low pH promotes iron to dissociate from transferrin (Tf) in a TfR-assisted process. The iron-free form of Tf (apo-Tf) remains bound to TfR and is recycled to the cell surface, where the complex dissociates upon exposure to the slightly basic pH of the blood. Fe-Tf competes for binding to TfR with HFE, the protein mutated in the iron-overload disease hereditary hemochromatosis. We used a quantitative surface plasmon resonance assay to determine the binding affinities of an extensive set of site-directed TfR mutants to HFE and Fe-Tf at pH 7.4 and to apo-Tf at pH 6.3. These results confirm the previous finding that Fe-Tf and HFE compete for the receptor by binding to an overlapping site on the TfR helical domain. Spatially distant mutations in the TfR protease-like domain affect binding of Fe-Tf, but not iron-loaded Tf C-lobe, apo-Tf, or HFE, and mutations at the edge of the TfR helical domain affect binding of apo-Tf, but not Fe-Tf or HFE. The binding data presented here reveal the binding footprints on TfR for Fe-Tf and apo-Tf. These data support a model in which the Tf C-lobe contacts the TfR helical domain and the Tf N-lobe contacts the base of the TfR protease-like domain. The differential effects of some TfR mutations on binding to Fe-Tf and apo-Tf suggest differences in the contact points between TfR and the two forms of Tf that could be caused by pH-dependent conformational changes in Tf, TfR, or both. From these data, we propose a structure-based model for the mechanism of TfR-assisted iron release from Fe-Tf.  相似文献   

12.
Mutations in either HFE or transferrin receptor 2 (TfR2) cause decreased expression of the iron regulatory hormone hepcidin and hemochromatosis. HFE and TfR2 were recently discovered to form a stable complex at the cell membrane when co-expressed in heterologous cell lines. We analyzed the functional consequences of the co-expression of these proteins using transfected TRVb cells, a Chinese hamster ovary derived cell line without endogenous HFE or transferrin receptor. The co-expression of TfR2 in TRVb cells expressing HFE led to accelerated HFE biosynthesis and late-Golgi maturation, suggesting interaction prior to cell surface localization. The co-expression of HFE in cells expressing TfR2 led to increased affinity for diferric transferrin, increased transferrin-dependent iron uptake, and relative resistance to iron chelation. These observations indicate that HFE influences the functional properties of TfR2, and suggests a model in which the interaction of these proteins might influence signal transduction to hepcidin.  相似文献   

13.
BackgroundProtoporphyrin IX (PP IX), the immediate precursor to heme, combines with ferrous iron to make this product. The effects of exogenous PP IX on iron metabolism remain to be elucidated. Peripheral-type benzodiazepine receptor (PBR) is implicated in the transport of coproporphyrinogen into the mitochondria for conversion to PP IX. We have demonstrated that PBR-Associated Protein 7 (PAP7) bound to the Iron Responsive Element (IRE) isoform of divalent metal transporter 1 (DMT1). PP IX and PAP7 are ligands for PBR, thus, we hypothesized that PAP7 interact with PP IX via PBR.MethodsWe have examined in K562 cells, which can be induced to undergo erythroid differentiation by PP IX and hemin, the effects of PP IX on the expression of PAP7 and other proteins involved in cellular iron metabolism, transferrin receptor 1 (TfR1), DMT1, ferritin heavy chain (FTH), c-Myc and C/EBPα by western blot and quantitative real time PCR analyses.ResultsPP IX significantly decreased mRNA levels of DMT1 (IRE) and (non-IRE) from 4 h. PP IX markedly decreased protein levels of C/EBPα, PAP7 and DMT1. In contrast, hemin, which like PP IX also induces K562 cell differentiation, had no effect on PAP7 or DMT1 expression.ConclusionWe hypothesize that PP IX binds to PBR displacing PAP7 protein, which is then degraded, decreasing the interaction of PAP7 with DMT1 (IRE) and resulting in increased turnover of DMT1.General significanceThese results suggest that exogenous PP IX disrupts iron metabolism by decreasing the protein expression levels of PAP7, DMT1 and C/EBPα.  相似文献   

14.
Most enveloped viruses enter cells through binding of virion surface envelope proteins to receptors found on the plasma membrane of the cell. The beta retrovirus mouse mammary tumor virus (MMTV) uses transferrin receptor 1 (TfR1) to enter cells in a pH-dependent mechanism, probably co-trafficking with TfR1 to an acidic compartment where virus entry occurs. We have shown here that, although mouse and rat TfR1 function as entry receptors, cat, dog, hamster, or human TfR1s do not support MMTV infection. We also demonstrated that MMTV entry is independent of transferrin, iron, and the TfR1 cofactor hereditary hematochromatosis HFE protein. Using chimeric mouse/human hybrid TfR1 constructs, we determined the site of interaction with MMTV and found that it maps to two segments physically disparate from the TfR and HFE binding sites. Thus, MMTV has apparently evolved to enter cells independently of the iron status of the host.  相似文献   

15.
16.
People suffering from hereditary hemochromatosis (HH) can not regulate the uptake of iron properly and gradually accumulate iron in their body over their lifetime. The protein involved in HH, HFE, has been recently identified as a class I major histocompatibility complex (MHC) homolog. The wild-type HFE associates and co-traffics with the transferrin receptor (TfR). The mutation responsible for 83% of HH (C260Y) results in the failure of HFE to form a critical disulfide bond, bind β2 microglobulin, bind TfR, and traffic to the cell surface. In non-polarized cells, the partnership of HFE and TfR results in decreased iron uptake into cells. The mechanism whereby a class I MHC homolog modifies the function of a membrane receptor and how this dynamic complex of molecules regulates iron transport across intestinal epithelial cells is the subject of this review.  相似文献   

17.
18.
Prior studies have demonstrated that the inner ear can accumulate a variety of essential and potentially toxic heavy metals including manganese, lead, cobalt and cadmium. Metal accumulation is regulated in part by the functionality and affinity of these metals for the different transport systems responsible for uptake across the blood-cochlea barrier and their subsequent uptake into the different cells within the inner ear. Transport of these metals across cell membranes occurs by many of the same transport systems which include DMT1, Zip8 and Zip14. All three metal transporters have been identified in the cochlea based on quantitative PCR analysis. Prior studies in our laboratory examined the localization and developmental changes of DMT1 in rat cochlea and since the two Zip proteins are also likely to contribute to the transport of essential and non-essential divalent cations, we performed immunolabeling experiments in postnatal day three rat pups and adult rats. For comparison, we also immunolabeled the specimens with antibody against transferrin receptor 1 (TfR1) which is important in DMT1-mediated transport of Fe and Mn. Results presented in this paper demonstrate that the cellular and subcellular distribution of both Zip8 and Zip14 within the different components of the inner ear are distinct from that of DMT1. Nuclear localization for both Zip transporters as well as TfR1 was observed. The findings also reveal that the selective distribution of the three proteins was altered during development presumably to meet the changing needs of the cells to maintain normal and functional levels of iron and other essential metals.  相似文献   

19.
Post-transcriptional expression of DMT1 in the heart of rat   总被引:11,自引:0,他引:11  
  相似文献   

20.
Two iron transporters, divalent metal transporter1 (DMT1) and ferroportin1 (FPN1) have been identified; however, their role during infancy is unknown. We investigated DMT1, FPN1, ferritin, and transferrin receptor expression, iron absorption and tissue iron in iron-deficient rat pups, iron-deficient rat pups given iron supplements, and controls during early (day 10) and late infancy (day 20). With iron deficiency, DMT1 was unchanged and FPN1 was decreased (-80%) at day 10. Body iron uptake, mucosal iron retention, and total iron absorption were unchanged. At day 20, DMT1 increased fourfold and FPN1 increased eightfold in the low-Fe group compared with controls. Body iron uptake and total iron absorption were increased, and mucosal iron retention was decreased with iron deficiency. Iron supplementation normalized expression levels of the transporters, body iron uptake, mucosal iron retention, and total iron absorption of the low-Fe group to those of controls at day 20. In summary, the molecular mechanisms regulating iron absorption during early infancy differ from late infancy when they are similar to adult animals, indicating developmental regulation of iron absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号