首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
HFE is a nonclassical class I major histocompatibility complex (MHC) molecule that is mutated in the autosomal recessive iron overload disease hereditary hemochromatosis. There is evidence linking HFE with reduced iron uptake by the transferrin receptor (TfR). Using a panel of HFE and TfR monoclonal antibodies to examine human HFE (hHFE)-expressing cell lines, we demonstrate the expression of stable and fully glycosylated TfR-free and TfR-associated hHFE/beta2m complexes. We show that both the stability and assembly of hHFE complexes can be modified by the human cytomegalovirus (HCMV) viral protein US2, known to interfere with the expression of classical class I MHC molecules. HCMV US2, but not US11, targets HFE molecules for degradation by the proteasome. Whether this interference with the regulation of iron metabolism by a viral protein is a means of potentiating viral replication remains to be determined. The reduced expression of classical class I MHC and HFE complexes provides the virus with an efficient tool for altering cellular metabolism and escaping certain immune responses.  相似文献   

2.
Mutations in the HFE gene and a newly identified second transferrin receptor gene, TfR2, cause hemochromatosis. The cognate proteins, HFE and TfR2, are therefore of key importance in human iron homeostasis. HFE is expressed in small intestinal crypt cells where transferrin-iron entry may determine subsequent iron absorption by mature enterocytes, but the physiological function of TfR2 is unknown. Using specific peptide antisera, we examined the duodenal localization of HFE and TfR2 in humans and mice, with and without HFE deficiency, by confocal microscopy. We also investigated potential interactions of these proteins in human intestinal cells in situ. Duodenal expression of HFE and TfR2 (but not TfR1) in wild-type mice and humans was restricted to crypt cells, in which they co-localized. HFE deficiency disrupted this interaction, altering the cellular distribution of TfR2 in human crypts. In human Caco-2 cells, HFE and TfR2 co-localized to a distinct CD63-negative vesicular compartment showing marked signal enhancement on exposure to iron-saturated transferrin ligand, indicating that HFE preferentially interacts with TfR2 in a specialized early endosomal transport pathway for transferrin-iron. This interaction occurs specifically in small intestinal crypt cells that differentiate to become iron-absorbing enterocytes. Our immunohistochemical findings provide evidence for a novel mechanism for the regulation of iron balance in mammals.  相似文献   

3.
4.
Transferrin receptor (TfR) is a dimeric cell surface protein that binds both the serum iron transport protein transferrin (Fe-Tf) and HFE, the protein mutated in patients with the iron overload disorder hereditary hemochromatosis. HFE and Fe-Tf can bind simultaneously to TfR to form a ternary complex, but HFE binding to TfR lowers the apparent affinity of the Fe-Tf/TfR interaction. This apparent affinity reduction could result from direct competition between HFE and Fe-Tf for their overlapping binding sites on each TfR polypeptide chain, from negative cooperativity, or from a combination of both. To explore the mechanism of the affinity reduction, we constructed a heterodimeric TfR that contains mutations such that one TfR chain binds only HFE and the other binds only Fe-Tf. Binding studies using a heterodimeric form of soluble TfR demonstrate that TfR does not exhibit cooperativity in heterotropic ligand binding, suggesting that some or all of the effects of HFE on iron homeostasis result from competition with Fe-Tf for TfR binding. Experiments using transfected cell lines demonstrate a physiological role for this competition in altering HFE trafficking patterns.  相似文献   

5.
The transferrin receptor (TfR) interacts with two proteins important for iron metabolism, transferrin (Tf) and HFE, the protein mutated in hereditary hemochromatosis. A second receptor for Tf, TfR2, was recently identified and found to be functional for iron uptake in transfected cells (Kawabata, H., Germain, R. S., Vuong, P. T., Nakamaki, T., Said, J. W., and Koeffler, H. P. (2000) J. Biol. Chem. 275, 16618-16625). TfR2 has a pattern of expression and regulation that is distinct from TfR, and mutations in TfR2 have been recognized as the cause of a non-HFE linked form of hemochromatosis (Camaschella, C., Roetto, A., Cali, A., De Gobbi, M., Garozzo, G., Carella, M., Majorano, N., Totaro, A., and Gasparini, P. (2000) Nat. Genet. 25, 14-15). To investigate the relationship between TfR, TfR2, Tf, and HFE, we performed a series of binding experiments using soluble forms of these proteins. We find no detectable binding between TfR2 and HFE by co-immunoprecipitation or using a surface plasmon resonance-based assay. The affinity of TfR2 for iron-loaded Tf was determined to be 27 nm, 25-fold lower than the affinity of TfR for Tf. These results imply that HFE regulates Tf-mediated iron uptake only from the classical TfR and that TfR2 does not compete for HFE binding in cells expressing both forms of TfR.  相似文献   

6.
Iron is essential for cell survival and regulates many cell functions. In the context of the immune response, iron-related metabolism is tightly controlled in activated lymphocytes as well as in cells of the innate immunity. More precisely, for dendritic cells (DCs), which are the key cell type in the development of a specific immune response, the importance of iron absorption was recently unravelled by showing that depletion of iron inhibits the maturation of DCs. On this basis, we studied in detail the expression of iron transport proteins and HFE in DCs. We found that iron uptake in this cell type is mediated by divalent-metal transporter 1 (DMT1) and transferrin receptor-1 (TfR) whereas Ferroportin-1 is very weakly expressed. HFE that regulates TfR's activity is also detected at the mRNA level. The expression of DMT1 and HFE barely varies upon endotoxin-induced maturation but TfR is up-regulated and the iron export molecule Ferroportin-1 is down-regulated. As opposed to MHC class II molecules, the intracellular localization of TfR is not changed during maturation. Our results indicate that the uptake of iron during DCs development and maturation is mediated by a strong expression of iron-uptake molecules such as DMT1 and TfR as well as a down-regulation of iron export molecules such as Ferroportin-1.  相似文献   

7.
HFE is a class I major histocompatibility complex (MHC)-related protein that is mutated in patients with the iron storage disease hereditary hemochromatosis. HFE binds tightly to transferrin receptor (TfR), the receptor that mediates uptake of iron-loaded transferrin. The binding affinities for TfR of HFE mutants, designed using the HFE crystal structure, were measured using biosensor assays. The results allow localization of the TfR binding site on HFE to the C-terminal portion of the alpha1 domain helix and an adjacent loop, a region distinct from the ligand binding sites on class I MHC and related proteins. A biosensor-derived pH-dependent affinity profile for the HFE-TfR interaction is discussed in terms of HFE's hypothesized role in intracellular trafficking.  相似文献   

8.
Most enveloped viruses enter cells through binding of virion surface envelope proteins to receptors found on the plasma membrane of the cell. The beta retrovirus mouse mammary tumor virus (MMTV) uses transferrin receptor 1 (TfR1) to enter cells in a pH-dependent mechanism, probably co-trafficking with TfR1 to an acidic compartment where virus entry occurs. We have shown here that, although mouse and rat TfR1 function as entry receptors, cat, dog, hamster, or human TfR1s do not support MMTV infection. We also demonstrated that MMTV entry is independent of transferrin, iron, and the TfR1 cofactor hereditary hematochromatosis HFE protein. Using chimeric mouse/human hybrid TfR1 constructs, we determined the site of interaction with MMTV and found that it maps to two segments physically disparate from the TfR and HFE binding sites. Thus, MMTV has apparently evolved to enter cells independently of the iron status of the host.  相似文献   

9.
Mutations in either HFE or transferrin receptor 2 (TfR2) cause decreased expression of the iron regulatory hormone hepcidin and hemochromatosis. HFE and TfR2 were recently discovered to form a stable complex at the cell membrane when co-expressed in heterologous cell lines. We analyzed the functional consequences of the co-expression of these proteins using transfected TRVb cells, a Chinese hamster ovary derived cell line without endogenous HFE or transferrin receptor. The co-expression of TfR2 in TRVb cells expressing HFE led to accelerated HFE biosynthesis and late-Golgi maturation, suggesting interaction prior to cell surface localization. The co-expression of HFE in cells expressing TfR2 led to increased affinity for diferric transferrin, increased transferrin-dependent iron uptake, and relative resistance to iron chelation. These observations indicate that HFE influences the functional properties of TfR2, and suggests a model in which the interaction of these proteins might influence signal transduction to hepcidin.  相似文献   

10.
HFE, the protein that is mutated in hereditary haemochromatosis, binds to the transferrin receptor (TfR). Here we show that wild-type HFE and TfR localize in endosomes and at the basolateral membrane of a polarized duodenal epithelial cell line, whereas the primary haemochromatosis HFE mutant, and another mutant with impaired TfR-binding ability accumulate in the ER/Golgi and at the basolateral membrane, respectively. Levels of the iron-storage protein ferritin are greatly reduced and those of TfR are slightly increased in cells expressing wild-type HFE, but not in cells expressing either mutant. Addition of an endosomal-targeting sequence derived from the human low-density lipoprotein receptor (LDLR) to the TfR-binding-impaired mutant restores its endosomal localization but not ferritin reduction or TfR elevation. Thus, binding to TfR is required for transport of HFE to endosomes and regulation of intracellular iron homeostasis, but not for basolateral surface expression of HFE.  相似文献   

11.
Hereditary Hemochromatosis is an iron overload disease most frequently associated with mutations in the HFE gene. While clinical studies of the disease have received extensive attention by various groups, the localisation, trafficking and function of the HFE protein, and its chaperone beta2-microglobulin (beta2M), require further investigation. In this study, we present data on the cellular localisation of HFE and its clinically relevant mutants in HuTu 80 cells. We find by confocal microscopy that HFE localises to the endosomal-recycling compartment (ERC), with minimal localisation to sorting or late endosomes. Interestingly, we also demonstrate that beta2M localises to the ERC where it co-localises with HFE. We find that exogenous expression of HFE results in enhanced beta2M cellular levels and that beta2M is necessary for cell surface expression of HFE. Finally, we have analysed the functional effects of exogenous expression of HFE and beta2M on transferrin binding to the cell surface. In summary, our study sheds light on the localisation and functional effects of the HFE and its chaperone protein beta2M.  相似文献   

12.
13.
14.
HFE is a class I major histocompatibility complex (MHC)-related protein that is mutated in patients with the iron overload disease hereditary hemochromatosis. HFE binds to transferrin receptor (TfR), the receptor used by cells to obtain iron in the form of diferric transferrin (Fe-Tf). Previous studies demonstrated that HFE and Fe-Tf can bind simultaneously to TfR to form a ternary complex, and that membrane-bound or soluble HFE binding to cell surface TfR results in a reduction in the affinity of TfR for Fe-Tf. We studied the inhibition by soluble HFE of the interaction between soluble TfR and Fe-Tf using radioactivity-based and biosensor-based assays. The results demonstrate that HFE inhibits the TfR:Fe-Tf interaction by binding at or near the Fe-Tf binding site on TfR, and that the Fe-Tf:TfR:HFE ternary complex consists of one Fe-Tf and one HFE bound to a TfR homodimer.  相似文献   

15.
People suffering from hereditary hemochromatosis (HH) can not regulate the uptake of iron properly and gradually accumulate iron in their body over their lifetime. The protein involved in HH, HFE, has been recently identified as a class I major histocompatibility complex (MHC) homolog. The wild-type HFE associates and co-traffics with the transferrin receptor (TfR). The mutation responsible for 83% of HH (C260Y) results in the failure of HFE to form a critical disulfide bond, bind β2 microglobulin, bind TfR, and traffic to the cell surface. In non-polarized cells, the partnership of HFE and TfR results in decreased iron uptake into cells. The mechanism whereby a class I MHC homolog modifies the function of a membrane receptor and how this dynamic complex of molecules regulates iron transport across intestinal epithelial cells is the subject of this review.  相似文献   

16.
The transferrin receptor (TfR) binds two proteins critical for iron metabolism: transferrin (Tf) and HFE, the protein mutated in hereditary hemochromatosis. Previous results demonstrated that Tf and HFE compete for binding to TfR, suggesting that Tf and HFE bind to the same or an overlapping site on TfR. TfR is a homodimer that binds one Tf per polypeptide chain (2:2, TfR/Tf stoichiometry), whereas both 2:1 and 2:2 TfR/HFE stoichiometries have been observed. In order to more fully characterize the interaction between HFE and TfR, we determined the binding stoichiometry using equilibrium gel-filtration and analytical ultracentrifugation. Both techniques indicate that a 2:2 TfR/HFE complex can form at submicromolar concentrations in solution, consistent with the hypothesis that HFE competes for Tf binding to TfR by blocking the Tf binding site rather than by exerting an allosteric effect. To determine whether the Tf and HFE binding sites on TfR overlap, residues at the HFE binding site on TfR were identified from the 2.8 A resolution HFE-TfR co-crystal structure, then mutated and tested for their effects on HFE and Tf binding. The binding affinities of soluble TfR mutants for HFE and Tf were determined using a surface plasmon resonance assay. Substitutions of five TfR residues at the HFE binding site (L619A, R629A, Y643A, G647A and F650Q) resulted in significant reductions in Tf binding affinity. The findings that both HFE and Tf form 2:2 complexes with TfR and that mutations at the HFE binding site affect Tf binding support a model in which HFE and Tf compete for overlapping binding sites on TfR.  相似文献   

17.
Iron regulatory protein 1 (IRP1) functions as translational regulator that plays a central role in coordinating the cellular iron metabolism by binding to the mRNA of target genes such as the transferrin receptor (TfR)--the major iron uptake protein. Reactive oxygen species such as H2O2 and O2*- that are both co-released by inflammatory cells modulate IRP1 in opposing directions. While H2O2--similar to iron depletion--strongly induces IRP1 via a signalling cascade, O2*- inactivates the mRNA binding activity by a direct chemical attack. These findings have raised the question of whether compartmentalization may be an important mechanism for isolating these biological reactants when released from inflammatory cells during the oxygen burst cascade. To address this question, we studied cytosolic IRP1 and its downstream target TfR in conjunction with a tightly controlled biochemical modulation of extracellular O2*- and H2O2 levels mimicking the oxygen burst cascade of inflammatory cells. We here demonstrate that IRP1 activity and expression of TfR are solely dependent on H2O2 when co-released O2*- with from xanthine oxidase. Our findings confirm that extracellular H2O2 determines the functionality of the IRP1 cluster and its downstream targets while the reactivity of O2*- is limited to its compartment of origin.  相似文献   

18.
In Caucasians, 4–35% of hemochromatosis patients carry at least one chromosome without a common HFE mutation (i.e. C282Y, H63D and S65C). Several studies have now shown that iron overload phenotypes in such patients can be associated with uncommon HFE mutations. We previously supported implication of the C282Y/Q283P compound heterozygous genotype in hemochromatosis phenotypes and, based on molecular dynamics simulations, proposed that the Q283P substitution prevents normal folding of the HFE 3-domain. In the current work, we have used HeLa cells carrying wild-type or Q283P-mutant HFE cDNA under the control of a tetracycline-sensitive promoter to functionally characterise the Q283P mutation. Experiments using cells over-expressing wild-type HFE confirm the existence of 2microglobulin(2m)/HFE and HFE/transferrin receptor 1 (TfR1) interactions, as well as the capacity of HFE to reduce transferrin-mediated iron uptake. In contrast, neither 2m/HFE nor HFE/TfR1 complex formation was detected in cells over-expressing the mutated form of HFE. Moreover, the 283P HFE protein was found to have a very limited effect on the major cellular iron uptake pathway. Combined, our results indicate that the Q283P mutation leads to structural and functional consequences similar to those described for the main hereditary hemochromatosis mutation. As a consequence, our study has implications for the screening of hemochromatosis patients that have one or two copies of HFE which lack the main mutations. It also highlights that protein structure prediction methods could be more generally used to better interpret relationships between rare genotypes and molecular diagnosis of a human inherited disorder.  相似文献   

19.
human immunodeficiency virus type 1 (HIV-1) Nef interacts with the clathrin-associated AP-1 and AP-3 adaptor complexes, stabilizing their association with endosomal membranes. These findings led us to hypothesize a general impact of this viral protein on the endosomal system. Here, we have shown that Nef specifically disturbs the morphology of the early/recycling compartment, inducing a redistribution of early endosomal markers and a shortening of the tubular recycling endosomal structures. Furthermore, Nef modulates the trafficking of the transferrin receptor (TfR), the prototypical recycling surface protein, indicating that it also disturbs the function of this compartment. Nef reduces the rate of recycling of TfR to the plasma membrane, causing TfR to accumulate in early endosomes and reducing its expression at the cell surface. These effects depend on the leucine-based motif of Nef, which is required for the membrane stabilization of AP-1 and AP-3 complexes. Since we show that this motif is also required for the full infectivity of HIV-1 virions, these results indicate that the positive influence of Nef on viral infectivity may be related to its general effects on early/recycling endosomal compartments.  相似文献   

20.
血色素沉着是一种血浆铁沉积过多而导致的器官损伤性疾病,多种铁调节基因如HFE、HJV、HAMP和TfR2等的突变均可导致该病的发生,其中HAMP是最为重要的一种。HAMP基因编码一种名为海帕西啶的小肽,是小肠铁重吸收和巨噬细胞铁释放的负调节因子。海帕西啶含量的减少将导致血清铁过负荷和血色素沉着的发生,HFE、HJV和TfR2等基因可影响海帕西啶的表达,从而使海帕西啶成为血色素沉着的中央调节者。这些研究对血色素沉着发生机制的理解及其诊断和治疗具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号