首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Singh OV 《Proteomics》2006,6(20):5481-5492
Microbial-mediated attenuation of toxic aromatic pollutants offers great potential for the restoration of contaminated environments in an ecologically acceptable manner. However, incomplete biological information regarding the regulation of growth and metabolism in many microbial communities restricts progress in the site-specific mineralization process. In the postgenomic era, recent advances in MS have allowed enormous progress in proteomics and elucidated many complex biological interactions. These research forefronts are now expanding toward the analysis of low-molecular-weight primary and secondary metabolites analysis, i.e., metabolomics. The advent of 2-DE in conjunction with MS offers a promising approach to address the molecular mechanisms of bioremediation. The two fields of proteomics and metabolomics have thus far worked separately to identify proteins and primary and secondary metabolites during bioremediation. A simultaneous study combining functional proteomics and metabolomics, i.e., proteometabolomics would create a system-wide approach to studying site-specific microorganisms during active mineralization processes. This article deals with advances in environmental proteomics and metabolomics and advocates the simultaneous study of both technologies to implement cell-free bioremediation.  相似文献   

2.
There is a strong interest in knowing how various microbial systems respond to the presence of uranium (U), largely in the context of bioremediation. There is no known biological role for uranium so far. Uranium is naturally present in rocks and minerals. The insoluble nature of the U(IV) minerals keeps uranium firmly bound in the earth’s crust minimizing its bioavailability. However, anthropogenic nuclear reaction processes over the last few decades have resulted in introduction of uranium into the environment in soluble and toxic forms. Microbes adsorb, accumulate, reduce, oxidize, possibly respire, mineralize and precipitate uranium. This review focuses on the microbial responses to uranium exposure which allows the alteration of the forms and concentrations of uranium within the cell and in the local environment. Detailed information on the three major bioprocesses namely, biosorption, bioprecipitation and bioreduction exhibited by the microbes belonging to various groups and subgroups of bacteria, fungi and algae is provided in this review elucidating their intrinsic and engineered abilities for uranium removal. The survey also highlights the instances of the field trials undertaken for in situ uranium bioremediation. Advances in genomics and proteomics approaches providing the information on the regulatory and physiologically important determinants in the microbes in response to uranium challenge have been catalogued here. Recent developments in metagenomics and metaproteomics indicating the ecologically relevant traits required for the adaptation and survival of environmental microbes residing in uranium contaminated sites are also included. A comprehensive understanding of the microbial responses to uranium can facilitate the development of in situ U bioremediation strategies.  相似文献   

3.
生物组学在污染环境微生物修复研究中的应用   总被引:1,自引:0,他引:1  
随着分子生物学、生物信息学和各种理化检测技术的发展,特别是人类基因组计划成功实施以来,基因组学研究取得了重大突破与进展。而包括转录组学、蛋白组学和代谢组学在内的后基因组学也相继出现,并被广泛应用在环境微生物学的各个研究领域。本文主要概述了当前基因组学、转录组学、蛋白质组学和代谢组学在污染环境生物修复研究中的最新研究进展,分析比较了各组学的优势与不足,同时结合本课题组的主要研究方向探讨了各生物组学在赤潮生消过程和有机污染物降解机理等研究中的应用。  相似文献   

4.
5.
丝状真菌不仅是致病菌,而且在异源表达工业酶、化学制品以及药物活性物质中发挥着越来越重要的作用。随着人类基因组计划的实施和推进,生命科学研究已进入了功能基因组时代,特别是蛋白质组学,在蛋白质水平对丝状真菌细胞生命过程中蛋白质功能和蛋白质之间的相互作用以及特殊条件下的变化机制进行研究,对生命的复杂活动进行深入而又全面的认识也为丝状真菌工业酶制剂和重组药物的开发提供广阔的创新空间。本文综述了蛋白质组学的研究内容和方法,总结了其在丝状真菌致病菌、抗生素产生菌和纤维素酶产生菌中的应用现状。不同层次的功能基因组学分析可以从各个角度掌握生物体的代谢网络和调控机制,本文还对蛋白质组学以及功能基因组学各部分内容的整合运用进行了展望。  相似文献   

6.
7.
Neoporphyra haitanensis is an economically important red seaweed that inhabits upper intertidal zones. The thallus tolerates extreme fluctuating environmental stresses (e.g., surviving more than 80% water loss during low tides). To elucidate the global molecular responses relevant to this outstanding desiccation tolerance, a quantitative proteomics analysis of N. haitanensis under different desiccation treatments as well as rehydration was performed. According to the clustering of expression patterns and the functional interpretation of the 483 significantly differentially expressed proteins, a three-stage cellular response to desiccation stress and subsequent rehydration was proposed. Stage I: at the beginning of water loss, multiple signal transduction pathways were triggered including lipid signaling, protein phosphorylation cascades, and histone acetylation controlling acetate biosynthesis to further modulate downstream hormone signaling. Protein protection by peptidyl-prolyl isomerase and ROS scavenging systems were also immediately switched on. Stage II: with the aggravation of stress, increases in antioxidant systems, the accumulation of LEA proteins, and the temporary biosynthesis of branched starch were observed. Multiple enzymes involved in redox homeostasis, including peroxiredoxin, thioredoxin, ascorbate peroxidase, superoxide dismutase, glutathione peroxidase, and glutathione reductase, were hypothesized to function in specific cellular compartments. Stage III: when the desiccated thalli had rehydrated for 30 mins, photosynthesis and carbon fixation were recovered, and antioxidant activities and protein structure protection were maintained at a high level. This work increases the understanding of the molecular responses to environmental stresses via a proteomic approach in red seaweeds and paves the way for further functional studies and genetic engineering.  相似文献   

8.
微生物蛋白质组学的定量分析   总被引:2,自引:0,他引:2  
越来越多的微生物基因组序列数据为系统地研究基因的调节和功能创造了有利条件.由于蛋白质是具有生物功能的分子,蛋白质组学在微生物基因组的功能研究中异军突起、蓬勃发展.微生物蛋白质组学的基本原则是,用比较研究来阐明和理解不同微生物之间或不同生长条件下基因的表达水平.显而易见,定量分析技术是比较蛋白质组学中急需发展的核心技术.对蛋白质组学定量分析技术在微生物蛋白质组研究中的进展进行了综述.  相似文献   

9.
The revolutionary growth in the computation speed and memory storage capability has fueled a new era in the analysis of biological data. Hundreds of microbial genomes and many eukaryotic genomes including a cleaner draft of human genome have been sequenced raising the expectation of better control of microorganisms. The goals are as lofty as the development of rational drugs and antimicrobial agents, development of new enhanced bacterial strains for bioremediation and pollution control, development of better and easy to administer vaccines, the development of protein biomarkers for various bacterial diseases, and better understanding of host-bacteria interaction to prevent bacterial infections. In the last decade the development of many new bioinformatics techniques and integrated databases has facilitated the realization of these goals. Current research in bioinformatics can be classified into: (i) genomics – sequencing and comparative study of genomes to identify gene and genome functionality, (ii) proteomics – identification and characterization of protein related properties and reconstruction of metabolic and regulatory pathways, (iii) cell visualization and simulation to study and model cell behavior, and (iv) application to the development of drugs and anti-microbial agents. In this article, we will focus on the techniques and their limitations in genomics and proteomics. Bioinformatics research can be classified under three major approaches: (1) analysis based upon the available experimental wet-lab data, (2) the use of mathematical modeling to derive new information, and (3) an integrated approach that integrates search techniques with mathematical modeling. The major impact of bioinformatics research has been to automate the genome sequencing, automated development of integrated genomics and proteomics databases, automated genome comparisons to identify the genome function, automated derivation of metabolic pathways, gene expression analysis to derive regulatory pathways, the development of statistical techniques, clustering techniques and data mining techniques to derive protein-protein and protein-DNA interactions, and modeling of 3D structure of proteins and 3D docking between proteins and biochemicals for rational drug design, difference analysis between pathogenic and non-pathogenic strains to identify candidate genes for vaccines and anti-microbial agents, and the whole genome comparison to understand the microbial evolution. The development of bioinformatics techniques has enhanced the pace of biological discovery by automated analysis of large number of microbial genomes. We are on the verge of using all this knowledge to understand cellular mechanisms at the systemic level. The developed bioinformatics techniques have potential to facilitate (i) the discovery of causes of diseases, (ii) vaccine and rational drug design, and (iii) improved cost effective agents for bioremediation by pruning out the dead ends. Despite the fast paced global effort, the current analysis is limited by the lack of available gene-functionality from the wet-lab data, the lack of computer algorithms to explore vast amount of data with unknown functionality, limited availability of protein-protein and protein-DNA interactions, and the lack of knowledge of temporal and transient behavior of genes and pathways.  相似文献   

10.
11.
Although most organisms have detoxification abilities (i.e mineralization, transformation and/or immobilization of pollutants), microorganisms, particularly bacteria, play a crucial role in biogeochemical cycles and in sustainable development of the biosphere. Next to glucosyl residues, the benzene ring is the most widely distributed unit of chemical structure in nature, and many of the aromatic compounds are major environmental pollutants. Bacteria have developed strategies for obtaining energy from virtually every compound under oxic or anoxic conditions (using alternative final electron acceptors such as nitrate, sulfate, and ferric ions). Clusters of genes coding for the catabolism of aromatic compounds are usually found in mobile genetic elements, such as transposons and plasmids, which facilitate their horizontal gene transfer and, therefore, the rapid adaptation of microorganisms to new pollutants. A successful strategy for in situ bioremediation has been the combination, in a single bacterial strain or in a syntrophic bacterial consortium, of different degrading abilities with genetic traits that provide selective advantages in a given environment. The advent of high-throughput methods for DNA sequencing and analysis of gene expression (genomics) and function (proteomics), as well as advances in modelling microbial metabolism in silico, provide a global, rational approach to unravel the largely unexplored potentials of microorganisms in biotechnological processes thereby facilitating sustainable development.  相似文献   

12.
Lipid-degrading or lipolytic enzymes have gained enormous attention in academic and industrial sectors. Several efforts are underway to discover new lipase enzymes from a variety of microorganisms with particular catalytic properties to be used for extensive applications. In addition, various tools and strategies have been implemented to unravel the functional relevance of the versatile lipid-degrading enzymes for special purposes. This review highlights the study of microbial lipid-degrading enzymes through an integrative computational approach. The identification of putative lipase genes from microbial genomes and metagenomic libraries using homology-based mining is discussed, with an emphasis on sequence analysis of conserved motifs and enzyme topology. Molecular modelling of three-dimensional structure on the basis of sequence similarity is shown to be a potential approach for exploring the structural and functional relationships of candidate lipase enzymes. The perspectives on a discriminative framework of cutting-edge tools and technologies, including bioinformatics, computational biology, functional genomics and functional proteomics, intended to facilitate rapid progress in understanding lipolysis mechanism and to discover novel lipid-degrading enzymes of microorganisms are discussed.  相似文献   

13.
在感染性疾病的范畴内,目前急需一个能有效地、精确地和综合性地研究微生物感染的结构性和功能性基因组学和蛋白质组学 ( 感染组学 ) 的全面方法. 新的方法 ( 如 DNA 和蛋白质微阵列 ) 和传统方法 ( 如分子克隆、 PCR 、基因敲除,加进 (knockin) 和反义术等 ) 的结合将有助于克服今天的困难. 在感染时,微生物及其宿主的全部表型改变 ( 感染组 ) 均由微生物病原体及其宿主的基因组所编码,并在特异的微生物 - 宿主相互作用时的某些环境条件下表达. 微生物及其宿主的全部药物反应 ( 药理组 ) 可用基因组或蛋白质组的方法检出. 分析基因型和表型或表达形式的全基因组方法将最终导致对微生物的发病机理、感染性疾病的快速诊断和控制感染的新策略的全面研究. 感染性疾病中最基本的问题是,如何全面地和综合性地应用感染组学,来了解微生物病原体及其宿主的相互作用.  相似文献   

14.
Water deficit or dehydration hampers plant growth and development, and shrinks harvest size of major crop species worldwide. Therefore, a better understanding of dehydration response is the key to decipher the regulatory mechanism of better adaptation. In recent years, nuclear proteomics has become an attractive area of research, particularly to study the role of nucleus in stress response. In this study, a proteome of dehydration‐sensitive chickpea cultivar (ICCV‐2) was generated from nuclei‐enriched fractions. The LC‐MS/MS analysis led to the identification of 75 differentially expressed proteins presumably associated with different metabolic and regulatory pathways. Nuclear localisation of three candidate proteins was validated by transient expression assay. The ICCV‐2 proteome was then compared with that of JG‐62, a tolerant cultivar. The differential proteomics and in silico analysis revealed cultivar‐specific differential expression of many proteins involved in various cellular functions. The differential tolerance could be attributed to altered expression of many structural proteins and the proteins involved in stress adaptation, notably the ROS catabolising enzymes. Further, a comprehensive comparison on the abiotic stress‐responsive nuclear proteome was performed using the datasets published thus far. These findings might expedite the functional determination of the dehydration‐responsive proteins and their prioritisation as potential molecular targets for better adaptation.  相似文献   

15.
Hecker M  Völker U 《Proteomics》2004,4(12):3727-3750
Using Bacillus subtilis as a model system for functional genomics, this review will provide insights how proteomics can be used to bring the virtual life of genes to the real life of proteins. Physiological proteomics will generate a new and broad understanding of cellular physiology because the majority of proteins synthesized in the cell can be visualized. From a physiological point of view two major proteome fractions can be distinguished: proteomes of growing cells and proteomes of nongrowing cells. In the main analytical window almost 50% of the vegetative proteome expressed in growing cells of B. subtilis were identified. This proteomic view of growing cells can be employed for analyzing the regulation of entire metabolic pathways and thus opens the chance for a comprehensive understanding of metabolism and growth processes of bacteria. Proteomics, on the other hand, is also a useful tool for analyzing the adaptational network of nongrowing cells that consists of several partially overlapping regulation groups induced by stress/starvation stimuli. Furthermore, proteomic signatures for environmental stimuli can not only be applied to predict the physiological state of cells, but also offer various industrial applications from fermentation monitoring up to the analysis of the mode of action of drugs. Even if DNA array technologies currently provide a better overview of the gene expression profile than proteome approaches, the latter address biological problems in which they can not be replaced by mRNA profiling procedures. This proteomics of the second generation is a powerful tool for analyzing global control of protein stability, the protein interaction network, protein secretion or post-translational modifications of proteins on the way towards the elucidation of the mystery of life.  相似文献   

16.
17.
18.
Quantitative proteomics based on 2D electrophoresis (2-DE) coupled with peptide mass fingerprinting is still one of the most widely used quantitative proteomics approaches in microbiology research. Our view on the exploitation of this global expression analysis technique and its contribution and potential to push forward the field of molecular microbial physiology towards a molecular systems microbiology perspective is discussed in this article. The advances registered in 2-DE-based quantitative proteomic analysis leading to increased protein resolution, sensitivity and accuracy, and the promising use of 2-DE to gain insights into post-translational modifications at a proteome-wide level (considering all the proteins/protein forms expressed by the genome) are focused on. Given the progress made in this field, it is foreseen that the 2-DE-based approach to quantitative proteomics will continue to be a fundamental tool for microbiologists working at a genome-wide scale. Guidelines are also provided for the exploitation of expression proteomics data, based on useful computational tools, and for the integration of these data with other genome-wide expression information. The advantages and limitations of a complete 2-DE-based expression proteomics analysis, envisaging the quantification of the global changes occurring in the proteome of a given cell depending on environmental or genetic manipulations, are discussed from the microbiologist's perspective. Particular focus is given to the emerging field of toxicoproteomics, a new systems toxicity approach that offers a powerful tool to directly monitor the earliest stages of the toxicological response by identifying critical proteins and pathways that are affected by, and respond to, a chemical stress. The experimental design and the bioinformatics analysis of data used in our laboratory to gain mechanistic insights through expression proteomics into the responses of the eukaryotic model Saccharomyces cerevisiae or of Pseudomonas strains to environmental toxicants are presented as case studies.  相似文献   

19.
Quantitative proteomics based on 2D electrophoresis (2-DE) coupled with peptide mass fingerprinting is still one of the most widely used quantitative proteomics approaches in microbiology research. Our view on the exploitation of this global expression analysis technique and its contribution and potential to push forward the field of molecular microbial physiology towards a molecular systems microbiology perspective is discussed in this article. The advances registered in 2-DE-based quantitative proteomic analysis leading to increased protein resolution, sensitivity and accuracy, and the promising use of 2-DE to gain insights into post-translational modifications at a proteome-wide level (considering all the proteins/protein forms expressed by the genome) are focused on. Given the progress made in this field, it is foreseen that the 2-DE-based approach to quantitative proteomics will continue to be a fundamental tool for microbiologists working at a genome-wide scale. Guidelines are also provided for the exploitation of expression proteomics data, based on useful computational tools, and for the integration of these data with other genome-wide expression information. The advantages and limitations of a complete 2-DE-based expression proteomics analysis, envisaging the quantification of the global changes occurring in the proteome of a given cell depending on environmental or genetic manipulations, are discussed from the microbiologist’s perspective. Particular focus is given to the emerging field of toxicoproteomics, a new systems toxicity approach that offers a powerful tool to directly monitor the earliest stages of the toxicological response by identifying critical proteins and pathways that are affected by, and respond to, a chemical stress. The experimental design and the bioinformatics analysis of data used in our laboratory to gain mechanistic insights through expression proteomics into the responses of the eukaryotic model Saccharomyces cerevisiae or of Pseudomonas strains to environmental toxicants are presented as case studies.  相似文献   

20.
Bioremediation is a process that uses microorganisms or their enzymes to remove pollutants from the environment. Generally, bioremediation technologies can be classified as in situ or ex situ. In situ bioremediation involves treating the contaminated material at the site while ex situ involves the removal of the contaminated material to be treated elsewhere. Like so much else in biology, the ease and availability of genomic data has created a new level of understanding this system. Bioremediation capabilities of the microbial population can be analyzed; not only by physiological parameters, but also by the use of genomic tools, and efficient remediation strategies can be planned. PCR and DNA- or oligonucleotide-based microarray technology is a powerful functional genomics tool that allows researchers to view the physiology of a living cell from a comprehensive and dynamic molecular perspective. This paper explores the use of such tools in bioremediation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号