首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
addresses the inheritable phenomena that are non-attributable to the sequence changes in genome and the players as well as the underlying mechanisms that are operated at the levels of DNA methylation, histone modification, chromatin remolding and gene expression. Epigenetic mechanisms in all biological processes match its genetic counterparts in significance. Both establishment and maintenance of the DNA methylation profiles of the higher eukaryotes are under the precise controls, the details and key players of which remain largely unknown.  相似文献   

2.
Cell walls are vital to the normal growth and development of plants as they protect the protoplast and provide rigidity to the stem. Here, two poplar and Arabidopsis orthologous endoglucanases, which have been proposed to play a role in secondary cell wall development, were examined. The class B endoglucanases, Pt GH9B5 and At GH9B5, are secreted enzymes that have a predicted glycosylphosphatidylinositol anchor, while the class C endoglucanases, Pt GH9C2 and At GH9C2, are also predicted to be secreted but instead contain a carbohydrate-binding module.The poplar endoglucanases were expressed in Arabidopsis using both a 35 S promoter and the Arabidopsis secondary cell wall-specific Ces A8 promoter. Additionally, Arabidopsis t-DNA insertion lines and an RNAiconstruct was created to downregulate At GH9C2 in Arabidopsis. All of the plant lines were examined for changes in cell morphology and patterning, growth and development, cell wall crystallinity, micro fibril angle, and proportion of cell wall carbohydrates. Misregulation of Pt GH9B5/At GH9B5 resulted in changes in xylose content, while misregulation of Pt GH9C2/At GH9C2 resulted in changes in crystallinity, which was inversely correlated with changes in plant height and rosette diameter. Together, these results suggest that these endoglucanases affect secondary cell wall development by contributing to the cell wall crystallization process.  相似文献   

3.
Epigenetic changes in virus-associated human cancers   总被引:6,自引:0,他引:6  
Li HP  Leu YW  Chang YS 《Cell research》2005,15(4):262-271
Epigenetics of human cancer becomes an area of emerging research direction due to a growing understanding of specific epigenetic pathways and rapid development of detection technologies. Aberrant promoter hypermethylation is a prevalent phenonmena in human cancers. Tumor suppressor genes are often hypermethylated due to the increased activity or deregulation of DNMTs. Increasing evidence also reveals that viral genes are one of the key players in regulating DNA methylation. In this review, we will focus on hypermethylation and tumor suppressor gene silencing and the signal pathways that are involved, particularly in cancers closely associated with the hepatitis B virus, simian virus 40 (SV40), and Epstein-Barr virus. In addition, we will discuss current technologies for genome-wide detection of epigenetically regulated targets, which allow for systematic DNA hypermethylation analysis. The study of epigenetic changes should provide a global view of gene profile in cancer, and epigenetic markers could be used for early detection, prognosis, and therapy of cancer.  相似文献   

4.
5.
To observe the binding of plasmid DNA to non-nuclear DNA binding proteins in sar-coplasmic reticulum (SR) and the effects of this binding on SR function, sarcoplasmic reticulum proteins in rat skeletal muscle were isolated by differential centrifuge and sucrose density-gradient centrifuge. The results showed that there are two sequence-independent DNA binding proteins in SR proteins, the molecular weights of which are 83 and 58 ku, respectively. Ca2 uptake and release of SR were remarkably promoted by the binding of plasmid DNA to DNA binding proteins in SR, the mechanism is probably through increasing of Ca2 -ATPase activity in SR and changing of character of Ca2 release channel ryanodine receptors induced by the binding. These results suggest that there exist DNA binding proteins in SR and its binding to DNA may affect Ca2 transport of SR.  相似文献   

6.
7.
In recent years, global changes are the major causes of frequent, widespread outbreaks of pests in mosaic landscapes, which have received substantial attention worldwide. We collected data on global changes(landscape and climate) and economic damage caused by six main insect pests during 1951–2010 in China. Landscape changes had significant effects on all six insect pests. Pest damage increased significantly with increasing arable land area in agricultural landscapes. However, climate changes had no effect on damage caused by pests, except for the rice leaf roller(Cnaphalocrocis medinalis Guenee) and armyworm(Mythimna separate(Walker)), which caused less damage to crops with increasing mean temperature. Our results indicate that there is slight evidence of possible offset effects of climate changes on the increasing damage from these two agricultural pests. Landscape changes have caused serious outbreaks of several species, which suggests the possibility of the use of landscape design for the control of pest populations through habitat rearrangement. Landscape manipulation may be used as a green method to achieve sustainable pest management with minimal use of insecticides and herbicides.  相似文献   

8.
9.
Indirect interactions in food webs can strongly influence the net effect of global change on ecological communities yet they are rarely quantified and hence remain poorly understood. Using a 22-year time series, we investigated climate-induced and predator-mediated indirect effects on grazing intensity in the tundra food web of Bylot Island, which experienced a warming trend over the last two decades. We evaluated the relative effects of environmental parameters on the proportion of plant biomass grazed by geese in wetlands and examined the temporal changes in the strength of these cascading effects. Migrating geese are the dominant herbivores on Bylot Island and can consume up to 60% of the annual production of wetland graminoids. Spring North Atlantic Oscillation, mid-summer temperatures and summer abundance of lemmings (prey sharing predators with geese) best-explained annual variation in grazing intensity. Goose grazing impact increased in years with high temperatures and high lemming abundance. However, the strength of these indirect effects on plants changed over time. Grazing intensity was weakly explained by environmental factors in recent years, which were marked by a sharp increase in plant primary production and steady decrease in grazing pressure. Indirect effects do not seem to be reversing the direct positive effect of warming on wetland plants. We suggest that cascading effects on plants may lag considerably behind direct effects in vertebrate dominated arctic communities, especially where key herbivore populations are strongly affected by factors outside of the Arctic [Current Zoology 60 (2): 189-202, 2014].  相似文献   

10.
Shi P  Yu L  Fu YX  Huang JF  Zhang KQ  Zhang YP 《Cell research》2006,16(3):323-327
For developing efficient vaccines, it is essential to identify which amino acid changes are most important to the survival of the virus. We investigate the amino acid substitution features in the Avian Infectious Bronchitis Virus (AIBV) antigenic domain of a vaccine serotype (DE072) and a virulent viral strain (GA98) to better understand adaptive evolution of AIBV. In addition, the SARS Coronavirus (SARS-CoV) was also analyzed in the same way. It is interesting to find that extreme comparability exists between AIBV and SARS in amino acid substitution pattern. It suggests that amino acid changes that result in overall shift of residue charge and polarity should be paid special attention to during the development of vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号