首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
A Novel Family of Ubiquitous Heavy Metal Ion Transport Proteins   总被引:33,自引:0,他引:33  
We describe a novel diverse family of metal ion transporter (CDF) proteins (the cation diffusion facilitator (CDF) family) with members occurring in both prokaryotes and eukaryotes. Thirteen sequenced protein members of the CDF family have been identified, several of which have been shown to transport cobalt, cadmium and/or zinc. All members of the CDF family possess six putative transmembrane spanners with strongest conservation in the four N-terminal spanners, and on the basis of the analyses, we present a unified structural model. Members of the family are shown to exhibit an unusual degree of size variation, sequence divergence, and differences in cell localization and polarity. The phylogenetic tree for the CDF family reveals that prokaryotic and eukaryotic proteins cluster separately. It allows functional predictions for some uncharacterized members of this family. A signature sequence specific for the CDF family is derived. Received: 15 July 1996/Revised: 21 October 1996  相似文献   

2.
Several novel but similar heavy metal ion transporters, Zrt1, Zrt2, Zip1-4 and Irt1, have recently been characterized. Zrt1, Zrt2 and Zip1-4 are probably zinc transporters in Saccharomyces cerevisiae and Arabidopsis thaliana whereas Irt1 appears to play a role in iron uptake in A. thaliana. The family of proteins including these functionally characterized transporters has been designated the Zrt- and Irt-related protein (ZIP) family. In this report, ZIP family proteins in the current databases were identified and multiply aligned, and a phylogenetic tree for the family was constructed. A family specific signature sequence was derived, and the available sequences were analyzed for residues of potential functional significance. A fully conserved intramembranous histidyl residue, present within a putative amphipathic, α-helical, transmembrane spanning segment, was identified which may serve as a part of an intrachannel heavy metal ion binding site. The occurrence of a proposed extramembranal metal binding motif (H X H X H) was examined in order to evaluate its potential functional significance for various members of the family. The computational analyses reported in this topical review should serve as a guide to future researchers interested in the structure-function relationships of ZIP family proteins. Received: 31 March 1997/Revised: 14 May 1998  相似文献   

3.
We have isolated a 29,000-Da carbonic anhydrase (CA) protein from the zebrafish, Danio rerio, sequenced two peptide fragments, and tentatively identified it as a high-activity CA by inhibition kinetics. We have also characterized a 1,537-bp message whose deduced sequence of 260 amino acids matches that of the isolated protein. This CA is clearly an α-CA based on the similarity of its sequence to that of other members of the α-CA gene family. A phylogenetic analysis suggested CAH-Z diverged after the branching of the CA-V and CA-VII genes and prior to the duplications that generated the CA-I, CA-II, and CA-III genes of amniotes. This marks the first characterization of the mRNA and its protein product from the CA gene of a teleost. Received: 31 March 1996 / Accepted: 8 September 1996  相似文献   

4.
Three proteins have been identified in the milk of the common brush tail possum, Trichosurus vulpecula that from sequence analysis are members of the lipocalin family. They include β-lactoglobulin, which appears to have two forms; a homologue to the late-lactation protein found in tammar, Macropus eugenii; milk; and a novel protein termed trichosurin. Whereas β-lactoglobulin and trichosurin are both expressed throughout lactation, the late-lactation protein is not detected in samples taken before days 100–110 of lactation. The cDNAs encoding each of these proteins have been isolated from cDNA libraries prepared using possum mammary mRNA and sequenced. Phylogenetic analysis showed that the T. vulpeculaβ-lactoglobulin, along with two other macropod β-lactoglobulins, forms a subclass of β-lactoglobulins distinct from those for eutherian mammals; both marsupial late-lactation proteins appear to have similarities to a family of odorant-binding proteins, whereas trichosurin has similarities to the major urinary proteins of rodents. Received: 28 October 1996 / Accepted: 19 May 1997  相似文献   

5.
Molecular Evolution of the Myeloperoxidase Family   总被引:4,自引:0,他引:4  
Animal myeloperoxidase and its relatives constitute a diverse protein family, which includes myeloperoxidase, eosinophil peroxidase, thyroid peroxidase, salivary peroxidase, lactoperoxidase, ovoperoxidase, peroxidasin, peroxinectin, cyclooxygenase, and others. The members of this protein family share a catalytic domain of about 500 amino acid residues in length, although some members have distinctive mosaic structures. To investigate the evolution of the protein family, we performed a comparative analysis of its members, using the amino acid sequences and the coordinate data available today. The results obtained in this study are as follows: (1) 60 amino acid sequences belonging to this family were collected by database searching. We found a new member of the myeloperoxidase family derived from a bacterium. This is the first report of a bacterial member of this family. (2) An unrooted phylogenetic tree of the family was constructed according to the alignment. Considering the branching pattern in the obtained phylogenetic tree, together with the mosaic features in the primary structures, 60 members of the myeloperoxidase family were classified into 16 subfamilies. (3) We found two molecular features that distinguish cyclooxygenase from the other members of the protein family. (4) Several structurally deviated segments were identified by a structural comparison between cyclooxygenase and myeloperoxidase. Some of the segments seemed to be associated with the functional and/or structural differences between the enzymes. Received: 25 January 2000 / Accepted: 19 July 2000  相似文献   

6.
The α-esterase cluster of D. melanogaster contains 11 esterase genes dispersed over 60 kb. Embedded in the cluster are two unrelated open reading frames that have sequence similarity with genes encoding ubiquitin-conjugating enzyme and tropomyosin. The esterase amino acid sequences show 37–66% identity with one another and all but one have all the motifs characteristic of functional members of the carboxyl/cholinesterase multigene family. The exception has several frameshift mutations and appears to be a pseudogene. Patterns of amino acid differences among cluster members in relation to generic models of carboxyl/cholinesterase protein structure are broadly similar to those among other carboxyl/cholinesterases sequenced to date. However the α-esterases differ from most other members of the family in: their lack of a signal peptide; the lack of conservation in cysteines involved in disulfide bridges; and in four indels, two of which occur in or adjacent to regions that align with proposed substrate-binding sites of other carboxyl/cholinesterases. Phylogenetic analyses clearly identify three simple gene duplication events within the cluster. The most recent event involved the pseudogene which is located in an intron of another esterase gene. However, relative rate tests suggest that the pseudogene remained functional after the duplication event and has become inactive relatively recently. The distribution of indels also suggests a deeper node in the gene phylogeny that separates six genes at the two ends of the cluster from a block of five in the middle. Received: 18 January 1996 / Accepted: 12 March 1996  相似文献   

7.
The structure of a Salmonella enterica serovar typhi gene located within the fim gene cluster and encoding a putative periplasmic chaperone-like protein involved in the assembly of type 1 pili was determined. This gene, named fimC, has the ability to encode a 26-kDa polypeptide which is similar, at the sequence level, to the PapD periplasmic chaperonin mediating the assembly of P pili of Escherichia coli, as well as to other periplasmic chaperone-like proteins involved in the biogenesis of pili or capsule-like structures of various Gram-negative bacteria. A comprehensive search through the literature and sequence databases identified 31 (putative) bacterial proteins that can be included in this protein family on the basis of sequence similarity. Results of a multiple sequence comparison analysis showed that several residues, including most of those known to be critical in maintaining the three-dimensional structure of PapD, are either conserved or conservatively substituted in all these proteins, suggesting an overall similar folding for all of them. It was also evident that members of this family are clustered into different subfamilies according to structural and phyletic data. Received: 15 February 1996 / Accepted: 3 October 1996  相似文献   

8.
Summary Bumetanide-sensitive Na-K-Cl cotransporters and thiazide-sensitive Na-Cl cotransporters comprise a family of integral membrane transport proteins, the Na-K-Cl cotransporter (NKCC) family. Each of the members of this family is over 1,000 amino acids in length. We have multiply aligned the ten currently sequenced members of this family from human, rabbit, rodent, shark, flounder, moth, worm and yeast sources. Phylogenetic analyses suggest the presence of at least six isoforms of these full length proteins in eukaryotes. Average hydropathy and average similarity plots have been derived revealing that each of these proteins possesses a central, well conserved, hydrophobic domain of almost invariant length, possibly consisting of twelve transmembrane α-helical spanners, an N-terminal, poorly conserved, hydrophilic domain of variable length, and a C-terminal, moderately conserved, hydrophilic domain of moderately constant length. A functionally uncharacterized homologue of this family occurs in the cyanobacterium Synechococcus sp. Limited sequence similarity of these proteins with members of a family of basic amino acid transporters suggests that the NKCC family may be distantly related to the previously characterized, ubiquitous, amino acid-polyamine-choline (APC) family of facilitators. These observations suggest that the NKCC family is an old family that has its roots in the prokaryotic kingdom. Received: 27 July 1995/Revised: 8 November 1995  相似文献   

9.
All currently sequenced stress-activated protein kinases (SAPKs), extracellular signal-regulated kinases (ERKs), and other mitogen-activated protein kinases (MAPKs) were analyzed by sequence alignment, phylogenetic tree construction, and three-dimensional structure modeling in order to classify members of the MAPK family. Based on this analysis the MAPK family was divided into three subgroups (SAPKs, ERKs, and MAPK3) that consist of at least nine subfamilies. Members of a given subfamily were exclusively from animals, plants, or yeast/fungi. A single signature sequence, [LIVM][TS]XX[LIVM]XT[RK][WY]YRXPX[LIVM] [LIVM], was identified that is characteristic for all MAPKs and sufficient to distinguish MAPKs from other members of the protein kinase superfamily. This signature sequence contains the phosphorylation site and is located on loop 12 of the three-dimensional structure of MAPKs. I also identified signature sequences that are characteristic for each of the nine subfamilies of MAPKs. By modeling the three-dimensional structure of three proteins for each MAPK subfamily based on the resolved atomic structures of rat ERK2 and murine p38, it is demonstrated that amino acids conserved in all MAPKs are located primarily in the center of the protein around the catalytic cleft. I conclude that these residues are important for maintaining proper folding into the gross structure common to all MAPKs. On the other hand, amino acids conserved in a given subfamily are located mainly in the periphery of MAPKs, indicating their possible importance for defining interactions with substrates, activators, and inhibitors. Within these subfamily-specific regions, amino acids were identified that represent unique residues occurring in only a single subfamily and their location was mapped in three-dimensional structure models. These unique residues are likely to be crucial for subfamily-specific interactions of MAPKs with substrates, inhibitors, or activators and, therefore, represent excellent targets for site-directed mutagenesis experiments. Received: 13 August 1997 / Accepted: 21 November 1997  相似文献   

10.
We have isolated a new gene encoding a putative 103-kDa protein from the hyperthermophilic archaeon Sulfolobus acidocaldarius. Analysis of the deduced amino-acid sequence shows an extended central domain, predicted to form coiled-coil structures, and two terminal domains that display purine NTPase motifs. These features are reminiscent of mechanochemical motor proteins which use the energy of ATP hydrolysis to move specific cellular components. Comparative analysis of the amino-acid sequence of the terminal domains and predicted structural organization of this putative purine NTPase show that it is related both to eucaryal proteins from the ``SMC family' involved in the condensation of chromosomes and to several bacterial and eucaryal proteins involved in DNA recombination/repair. Further analyses revealed that these proteins are all members of the so called ``UvrA-related NTP-binding proteins superfamily' and form a large subgroup of motor-like NTPases involved in different DNA processing mechanisms. The presence of such protein in Archaea, Bacteria, and Eucarya suggests an early origin of DNA-motor proteins that could have emerged and diversified by domain shuffling. Received: 29 June 1996 / Accepted: 28 February 1997  相似文献   

11.
We have analyzed all currently sequenced eukaryotic proteins containing either a kinase module or a receiver module, corresponding to those found in bacterial sensor kinases or response regulators, respectively, of the so-called two-component regulatory systems. We demonstrate that the eukaryotic receiver modules belong to a single subfamily of the bacterial receiver modules. Moreover, the cognate eukaryotic kinase modules exhibit a similar clustering pattern on the sensor kinase phylogenetic tree, suggesting that they evolved in parallel with the receiver modules from a common ancestral source that bore both modules. Multiple alignments of the sequences corresponding to these modules are presented and discussed, and eukaryotic-specific signature sequences are derived. Received: 18 October 1995 / Accepted: 16 December 1996  相似文献   

12.
The human protein NEFA binds calcium, contains a leucine zipper repeat that does not form a homodimer, and is proposed (along with the homologous Nuc protein) to have a common evolutionary history with an EF-hand ancestor. We have isolated and characterized the N-terminal domain of NEFA that contains a signal sequence inferred from both endoproteinase Asp-N (Asp-N) and tryptic digests. Analysis of this N-terminal sequence shows significant similarity to the conserved multiple domains of the mitochondrial carrier family (MCF) proteins. The leader sequence of Nuc is, however, most similar to the signal sequences of membrane and/or secreted proteins (e.g., mouse insulin-like growth factor receptor). We suggest that the divergent NEFA and Nuc N-terminal sequences may have independent origins and that the common high hydrophobicity governs their targeting to the ER. These results provide insights into signal sequence evolution and the multiple origins of protein targeting. Received: 20 February 1997 / Accepted: 28 July 1997  相似文献   

13.
Membrane fractions highly enriched in chicken lens MIP (MIP28) were found to form ion channels when incorporated into planar lipid bilayers. The channels displayed prominent unitary conductances of about 60 and 290 pS in symmetric 150 mm KCl solution and were slightly anion selective. For both depolarizing and hyperpolarizing voltages, voltage sensitivity of the MIP28-induced conductance could be fit by a Boltzmann relation, symmetric around zero mV, with V 0 = 18.5 mV, n= 4.5 and g min/g max= 0.17. Channel properties were not appreciably altered by pH in the range of 5.8 to 7, although channel incorporation was observed to occur more frequently at lower pH values. Calcium, at millimolar concentrations, decreased the channel mean open time. Partial proteolysis of MIP28 to yield MIP21 did not appreciably affect single-channel conductance or voltage sensitivity of the reconstituted channels. MIP28 was not phosphorylated by cAMP dependent protein kinase (PKA). Although unitary conductance and selectivity of the chicken MIP channel are similar to those reported for the bovine MIP (MIP26), the voltage sensitivity of MIP28 was higher than that of the bovine homologue, and voltage sensitivity of MIP28 was not modulated by treatments previously shown to affect MIP26 voltage gating (partial proteolysis and protein phosphorylation by PKA: (Ehring et al., 1990). The existence of such strikingly different functional properties in highly homologous channel isoforms may provide a useful system for exploration of the structure-function relations of MIP channels. Received: 27 March 1996/Revised: 5 August 1996  相似文献   

14.
To date all attempts to derive a phyletic relationship among restriction endonucleases (ENases) from multiple sequence alignments have been limited by extreme divergence of these enzymes. Based on the approach of Johnson et al. (1990), I report for the first time the evolutionary tree of the ENase-like protein superfamily inferred from quantitative comparison of atomic coordinates of structurally characterized enzymes. The results presented are in harmony with previous comparisons obtained by crystallographic analyses. It is shown that λ-exonuclease initially diverged from the common ancestor and then two ``endonucleolytic' families branched out, separating ``blunt end cutters' from ``5′ four-base overhang cutters.' These data may contribute to a better understanding of ENases and encourage the use of structure-based methods for inference of phylogenetic relationship among extremely divergent proteins. In addition, the comparison of three-dimensional structures of ENase-like domains provides a platform for further clustering analyses of sequence similarities among different branches of this large protein family, rational choice of homology modeling templates, and targets for protein engineering. Received: 14 June 1999 / Accepted: 11 August 1999  相似文献   

15.
To further investigate the phylogeny of protozoa from the order Kinetoplastida we have sequenced the small subunit (SSU) and a portion of the large subunit (LSU) nuclear rRNA genes. The SSU and LSU sequences were determined from a lizard trypanosome, Trypanosoma scelopori and a bodonid, Rhynchobodo sp., and the LSU sequences were determined from an insect trypanosomatid, Crithidia oncopelti, and a bodonid, Dimastigella trypaniformis. Contrary to previous results, in which trypanosomes were found to be paraphyletic, with Trypanosoma brucei representing the earliest-diverging lineage, we have now found evidence for the monophyly of trypanosomes. Addition of new taxa which subdivide long branches (such as that of T. brucei) have helped to identify homoplasies responsible for the paraphyletic trees in previous studies. Although the monophyly of the trypanosome clade is supported in the bootstrap analyses for maximum likelihood at 97% and maximum parsimony at 92%, there is only a small difference in ln-likelihood value or tree length between the most optimal monophyletic tree and the best suboptimal paraphyletic tree. Within the trypanosomatid subtree, the clade of trypanosomes is a sister group to the monophyletic clade of the nontrypanosome genera. Different groups of trypanosomes group on the tree according to their mode of transmission. This suggests that the adaptation to invertebrate vectors plays a more important role in the trypanosome evolution than the adaptation to vertebrate hosts. Received: 5 July 1996 / Accepted: 26 September 1996  相似文献   

16.
Protein disulfide isomerase (PDI) is an enzyme that promotes protein folding by catalyzing disulfide bridge isomerization. PDI and its relatives form a diverse protein family whose members are characterized by thioredoxin-like (TX) domains in the primary structures. The family was classified into four classes by the number and the relative positions of the TX domains. To investigate the evolution of the domain structures, we aligned the amino acid sequences of the TX domains, and the molecular phylogeny was examined by the NJ and ML methods. We found that all of the current members of the PDI family have evolved from an ancestral enzyme, which has two TX domains in the primary structure. The diverse domain structures of the members have been generated through domain duplications and deletions.  相似文献   

17.
The immunoglobulin superfamily (IgSF) is a heterogenic group of proteins built on a common fold, called the Ig fold, which is a sandwich of two β sheets. Although members of the IgSF share a similar Ig fold, they differ in their tissue distribution, amino acid composition, and biological role. In this paper we report an up-to-date compilation of the IgSF where all known members of the IgSF are classified on the basis of their common functional role (immune system, antibiotic proteins, enzymes, cytokine receptors, etc.) and their distribution in tissue (neural system, extracellular matrix, tumor marker, muscular proteins, etc.), or in species (vertebrates, invertebrates, bacteria, viruses, fungi, and plants). The members of the family can contain one or many Ig domains, comprising two basic types: the constant domain (C), with seven strands, and the variable domain (V), with eight, nine, or ten strands. The different overviews of the IgSF led to the definition of new domain subtypes, mainly concerning the C type, based on the distribution of strands within the two sheets. The wide occurrence of the Ig fold and the much less conserved sequences could have developed from a common ancestral gene and/or from a convergent evolutionary process. Cell adhesion and pattern recognition seem to be the common feature running through the entire family. Received: 4 June 1997 / Accepted: 15 September 1997  相似文献   

18.
The Family of Major Royal Jelly Proteins and Its Evolution   总被引:8,自引:0,他引:8  
A cDNA encoding a new member of the gene family of major royal jelly proteins (MRJPs) from the honeybee, Apis mellifera, was isolated and sequenced. Royal jelly (RJ) is a secretion of the cephalic glands of nurse bees. The origin and biological function of the protein component (12.5%, w/w) of RJ is unknown. We show that the MRJP gene family encodes a group of closely related proteins that share a common evolutionary origin with the yellow protein of Drosophila melanogaster. Yellow protein functions in cuticle pigmentation in D. melanogaster. The MRJPs appear to have evolved a novel nutritional function in the honeybee. Received: 26 September 1998 / Accepted: 28 February 1999  相似文献   

19.
We have analyzed the gene that encodes receptor tyrosine kinase (RTK) from the marine sponge Geodia cydonium, which belongs to the most ancient and simple metazoan groups, the Porifera. RTKs are enzymes found only in metazoa. The sponge gene contains two introns in the extracellular part of the protein. However, the rest of the protein (transmembrane and intracellular part), including the tyrosine kinase (TK)-domain, is encoded by a single exon. In contrast, all TK genes, so far known only from higher animals (vertebrates), contain several introns especially in the TK-domain. The TK-domain of G. cydonium shows similarity with numerous members of receptor as well as nonreceptor TKs. Phylogenetic analysis of the sponge TK-domain indicates that this enzyme branched off first from the common tree of metazoan TK proteins. Consequently, we assume that introns, found in the TK-domains of genes from higher animals, were inserted into these genes after splitting off the sponge taxa from other metazoan organisms (over 600 million years ago). Our results support the view that ancient genes were not ``in pieces.' Received: 8 August 1996 / Accepted: 4 November 1996  相似文献   

20.
Mammalian secretory ribonucleases (RNases 1) form a family of extensively studied homologous proteins that were already used for phylogenetic analyses at the protein sequence level previously. In this paper we report the determination of six ribonuclease gene sequences of Artiodactyla and two of Cetacea. These sequences have been used with ruminant homologues in phylogenetic analyses that supported a group including hippopotamus and toothed whales, a group of ruminant pancreatic and brain-type ribonucleases, and a group of tylopod sequences containing the Arabian camel pancreatic ribonuclease gene and Arabian and Bactrian camel and alpaca RNase 1 genes of unknown function. In all analyses the pig was the first diverging artiodactyl. This DNA-based tree is compatible to published trees derived from a number of other genes. The differences to those trees obtained with ribonuclease protein sequences can be explained by the influence of convergence of pancreatic RNases from hippopotamus, camel, and ruminants and by taking into account the information from third codon positions in the DNA-based analyses. The evolution of sequence features of ribonucleases such as the distribution of positively charged amino acids and of potential glycosylation sites is described with regard to increased double-stranded RNA cleavage that is observed in several cetacean and artiodactyl RNases which may have no role in ruminant or ruminant-like digestion. Received: 2 June 1998 / Accepted: 31 August 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号