首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two previously undetected domains were identified in a variety of RNA-binding proteins, particularly RNA-modifying enzymes, using methods for sequence profile analysis. A small domain consisting of 60–65 amino acid residues was detected in the ribosomal protein S4, two families of pseudouridine synthases, a novel family of predicted RNA methylases, a yeast protein containing a pseudouridine synthetase and a deaminase domain, bacterial tyrosyl-tRNA synthetases, and a number of uncharacterized, small proteins that may be involved in translation regulation. Another novel domain, designated PUA domain, after PseudoUridine synthase and Archaeosine transglycosylase, was detected in archaeal and eukaryotic pseudouridine synthases, archaeal archaeosine synthases, a family of predicted ATPases that may be involved in RNA modification, a family of predicted archaeal and bacterial rRNA methylases. Additionally, the PUA domain was detected in a family of eukaryotic proteins that also contain a domain homologous to the translation initiation factor eIF1/SUI1; these proteins may comprise a novel type of translation factors. Unexpectedly, the PUA domain was detected also in bacterial and yeast glutamate kinases; this is compatible with the demonstrated role of these enzymes in the regulation of the expression of other genes. We propose that the S4 domain and the PUA domain bind RNA molecules with complex folded structures, adding to the growing collection of nucleic acid-binding domains associated with DNA and RNA modification enzymes. The evolution of the translation machinery components containing the S4, PUA, and SUI1 domains must have included several events of lateral gene transfer and gene loss as well as lineage-specific domain fusions. Received: 15 May 1998 / Accepted: 20 July 1998  相似文献   

2.
A global alignment of EF-G(2) sequences was corrected by reference to protein structure. The selection of characters eligible for construction of phylogenetic trees was optimized by searching for regions arising from the artifactual matching of sequence segments unique to different phylogenetic domains. The spurious matchings were identified by comparing all sections of the global alignment with a comprehensive inventory of significant binary alignments obtained by BLAST probing of the DNA and protein databases with representative EF-G(2) sequences. In three discrete alignment blocks (one in domain II and two in domain IV), the alignment of the bacterial sequences with those of Archaea–Eucarya was not retrieved by database probing with EF-G(2) sequences, and no EF-G homologue of the EF-2 sequence segments was detected by using partial EF-G(2) sequences as probes in BLAST/FASTA searches. The two domain IV regions (one of which comprises the ADP-ribosylatable site of EF-2) are almost certainly due to the artifactual alignment of insertion segments that are unique to Bacteria and to Archaea–Eucarya. Phylogenetic trees have been constructed from the global alignment after deselecting positions encompassing the unretrieved, spuriously aligned regions, as well as positions arising from misalignment of the G′ and G″ subdomain insertion segments flanking the ``fifth' consensus motif of the G domain (?varsson, 1995). The results show inconsistencies between trees inferred by alternative methods and alternative (DNA and protein) data sets with regard to Archaea being a monophyletic or paraphyletic grouping. Both maximum-likelihood and maximum-parsimony methods do not allow discrimination (by log-likelihood difference and difference in number of inferred substitutions) between the conflicting (monophyletic vs. paraphyletic Archaea) topologies. No specific EF-2 insertions (or terminal accretions) supporting a crenarchaeal–eucaryal clade are detectable in the new EF-G(2) sequence alignment.  相似文献   

3.
The structure of a Salmonella enterica serovar typhi gene located within the fim gene cluster and encoding a putative periplasmic chaperone-like protein involved in the assembly of type 1 pili was determined. This gene, named fimC, has the ability to encode a 26-kDa polypeptide which is similar, at the sequence level, to the PapD periplasmic chaperonin mediating the assembly of P pili of Escherichia coli, as well as to other periplasmic chaperone-like proteins involved in the biogenesis of pili or capsule-like structures of various Gram-negative bacteria. A comprehensive search through the literature and sequence databases identified 31 (putative) bacterial proteins that can be included in this protein family on the basis of sequence similarity. Results of a multiple sequence comparison analysis showed that several residues, including most of those known to be critical in maintaining the three-dimensional structure of PapD, are either conserved or conservatively substituted in all these proteins, suggesting an overall similar folding for all of them. It was also evident that members of this family are clustered into different subfamilies according to structural and phyletic data. Received: 15 February 1996 / Accepted: 3 October 1996  相似文献   

4.
The human protein NEFA binds calcium, contains a leucine zipper repeat that does not form a homodimer, and is proposed (along with the homologous Nuc protein) to have a common evolutionary history with an EF-hand ancestor. We have isolated and characterized the N-terminal domain of NEFA that contains a signal sequence inferred from both endoproteinase Asp-N (Asp-N) and tryptic digests. Analysis of this N-terminal sequence shows significant similarity to the conserved multiple domains of the mitochondrial carrier family (MCF) proteins. The leader sequence of Nuc is, however, most similar to the signal sequences of membrane and/or secreted proteins (e.g., mouse insulin-like growth factor receptor). We suggest that the divergent NEFA and Nuc N-terminal sequences may have independent origins and that the common high hydrophobicity governs their targeting to the ER. These results provide insights into signal sequence evolution and the multiple origins of protein targeting. Received: 20 February 1997 / Accepted: 28 July 1997  相似文献   

5.
A New Appraisal of the Prokaryotic Origin of Eukaryotic Phytochromes   总被引:5,自引:0,他引:5  
The evolutionary origin of the phytochromes of eukaryotes is controversial. Three cyanobacterial proteins have been described as ``phytochrome-like' and have been suggested to be potential ancestors of these essential photoreceptors: Cph1 from Synechocystis PCC 6803, showing homology to phytochromes along its entire length and known to attach a chromophore; and PlpA from Synechocystis PCC 6803 and RcaE from Fremyella diplosiphon, both showing homology to phytochromes most strongly only in the C-terminal region and not known to bind a chromophore. We have reexamined the evolution of the photoreceptors using for PCR amplification a highly conserved region encoding the chromophore-binding domain in both Cph1 and phytochromes of plants and have identified genes for phytochrome-like proteins (PLP) in 11 very diverse cyanobacteria. The predicted gene products contain either a Cys, Arg, Ile, or Leu residue at the putative chromophore binding site. In 10 of the strains examined only a single gene was found, but in Calothrix PCC 7601 two genes (cphA and cphB) were identified. Phylogenetic analysis revealed that genes encoding PLP are homologues that share a common ancestor with the phytochromes of eukaryotes and diverged before the latter. In contrast, the putative sensory/regulatory proteins, including PlpA and RcaE, that lack a part of the chromophore lyase domain essential for chromophore attachment on the apophytochrome, are only distantly related to phytochromes. The Ppr protein of the anoxygenic photosynthetic bacterium Rhodospirillum centenum and the bacterial phytochrome-like proteins (BphP) of Deinococcus radiodurans and Pseudomonas aeruginosa fall within the cluster of cyanobacterial phytochromes. Received: 9 December 1999 / Accepted: 10 May 2000  相似文献   

6.
In addition to its well-known role in recognition by the proteasome, ubiquitin-conjugation is also involved in downregulation of membrane receptors, transporters and channels. In most cases, ubiquitination of these plasma membrane proteins leads to their internalization followed by targeting to the lysosome/vacuole for degradation. A crucial role in ubiquitination of many plasma membrane proteins appears to be played by ubiquitin-protein ligases of the Nedd4/Rsp5p family. All family members carry an N-terminal Ca2+-dependent lipid/protein binding (C2) domain, two to four WW domains and a C-terminal catalytic Hect-domain. Nedd4 is involved in downregulation of the epithelial Na+ channel, by binding of its WW domains to specific PY motifs of the channel. Rsp5p, the unique family member in S. cerevisiae, is involved in ubiquitin-dependent endocytosis of a great number of yeast plasma membrane proteins. These proteins lack apparent PY motifs, but carry acidic sequences, and/or phosphorylated-based sequences that might be important, directly or indirectly, for their recognition by Rsp5p. In contrast to polyubiquitination leading to proteasomal recognition, a number of Rsp5p targets carry few ubiquitins per protein, and moreover with a different ubiquitin linkage. Accumulating evidence suggests that, at least in yeast, ubiquitin itself may constitute an internalization signal, recognized by a hypothetical receptor. Recent data also suggest that Nedd4/Rsp5p might play a role in the endocytic process possibly involving its C2 domain, in addition to its role in ubiquitinating endocytosed proteins. Recieved: 19 January 2000/Revised: 6 April 2000  相似文献   

7.
The majority of plant disease resistance genes are members of very large multigene families. They encode structurally related proteins containing nucleotide binding site domains (NBS) and C-terminal leucine rich repeats (LRR). The N-terminal region of some resistance genes contain a short sequence called TIR with homology to the animal innate immunity factors, Toll and interleukin receptor-like genes. Only a few plant resistance genes have been functionally analyzed and the origin and evolution of plant resistance genes remain obscure. We have reconstructed gene phylogeny by exhaustive analysis of available genome and amplified NBS domain sequences. Our study shows that NBS domains faithfully predict whole gene structure and can be divided into two major groups. Group I NBS domains contain group-specific motifs that are always linked with the TIR sequence in the N terminus. Significantly, Group I NBS domains and their associated TIR domains are widely distributed in dicot species but were not detected in cereal databases. Furthermore, Group I specific NBS sequences were readily amplified from dicot genomic DNA but could not be amplified from cereal genomic DNA. In contrast, Group II NBS domains are always associated with putative coiled-coil domains in their N terminus and appear to be present throughout the angiosperms. These results suggest that the two main groups of resistance genes underwent divergent evolution in cereal and dicot genomes and imply that their cognate signaling pathways have diverged as well. Received: 17 May 1999 / Accepted: 25 September 1999  相似文献   

8.
Southern hybridization data suggest that the male sex-determining locus, Sry, is often duplicated in rodents. Here we explore DNA sequence evolution of orthologous and paralogous copies of Sry isolated from six species of African murines. PCR amplification followed by direct sequencing revealed from two to four copies of Sry per species. All copies include a long open reading frame, with a stop codon that coincides closely with the stop codon of the house mouse, Mus musculus, a species known to have a single copy of Sry. A phylogenetic analysis suggests that there are at least seven paralogous copies of Sry in this group of rodents. Putative orthologues are identical; sequence divergence among putative paralogues ranges from 1 to 8% (excluding the CAG repeat), with much lower levels of divergence in the high-mobility group (HMG-box) region than in the C-terminal region. A high proportion of nucleotide substitutions in both regions result in amino-acid replacement. The long open reading frame, conserved HMG-box, and pattern of evolution of the putative paralogues suggest that they are functional. Received: 4 October 1996 / Accepted: 17 January 1997  相似文献   

9.
A novel member of the innexin family (cv-inx) has been isolated from the annelid polychaete worm Chaetopterus variopedatus using a PCR approach on genomic DNA and sequence analysis on genomic DNA clones. The gene is present in a HindIII-HindIII segment of 2250 bp containing an uninterrupted open reading frame of 1196 bp encoding a protein of 399 amino acids. The predicted protein shows the typical structural features of innexins and consensus sites for phosphorylation. Analyses on genomic DNA demonstrate that cv-inx is a single copy gene with no introns in the coding region, exactly corresponding to the cDNA sequence. The gene expression is regulated during development as shown by Northern blots analyses of the RNA and by immunoreaction with antibodies against the protein at several embryonic stages. The finding of an innexin in the phylum Annelida, outside of the Ecdysozoa clade, and its peculiar gene structure suggest the necessity to reconsider the current hypothesis on the origin and evolution of gap junctional proteins. Received: 15 December 2000 / Accepted: 27 August 2001  相似文献   

10.
In the search for the essential functional domains of the large mechanosensitive ion channel (MscL) of E. coli, we have cloned several mutants of the mscL gene into a glutathione S-transferase fusion protein expression system. The resulting mutated MscL proteins had either amino acid additions, substitutions or deletions in the amphipathic N-terminal region, and/or deletions in the amphipathic central or hydrophilic C-terminal regions. Proteolytic digestion of the isolated fusion proteins by thrombin yielded virtually pure recombinant MscL proteins that were reconstituted into artificial liposomes and examined for function by the patch-clamp technique. The addition of amino acid residues to the N-terminus of the MscL did not affect channel activity, whereas N-terminal deletions or changes to the N-terminal amino acid sequence were poorly tolerated and resulted in channels exhibiting altered pressure sensitivity and gating. Deletion of 27 amino acids from the C-terminus resulted in MscL protein that formed channels similar to the wild-type, while deletion of 33 C-terminal amino acids extinguished channel activity. Similarly, deletion of the internal amphipathic region of the MscL abolished activity. In accordance with a recently proposed spatial model of the MscL, our results suggest that (i) the N-terminal portion participates in the channel activation by pressure, and (ii) the essential channel functions are associated with both, the putative central amphipathic α-helical portion of the protein and the six C-terminal residues RKKEEP forming a charge cluster following the putative M2 membrane spanning α-helix. Received: 25 September 1996/Revised: 21 November 1996  相似文献   

11.
In this paper we report the identification and characterization of a DNA region containing putative mcpA-like gene coding for a Methyl Accepting Chemotaxis Protein (MCP) and belonging to a Burkholderia endosymbiont of the arbuscular mycorrhizal fungus Gigaspora margarita. A genomic library of total DNA extracted from the fungal spores, representative of the bacterial genome, was used to investigate the prokaryotic genome. PCR experiments with primers designed on the Burkholderia mcpA-like gene and Southern blot analysis demonstrate that they actually belong to the genome of G. margarita endosymbiont. The expression of the mcpA-like gene in the fungal spores was demonstrated by RT-PCR experiments. The detailed comparative analysis of the bacterial MCPs available in databases allowed to draw a possible evolutionary pathway leading to the present-day mcpA genes. Accordingly, the ancestor of the mcpA-like genes was the result of a domain shuffling event involving two ancestral mini-genes encoding a PAS-PAC and a MA domains, respectively, followed by the elongation of the PAS-PAC moiety. The following evolutionary divergence involved not only point mutations, but also larger rearrangements (insertions and deletions) at the 3′ end of the gene.  相似文献   

12.
Glutamine synthetase type I (GSI) genes have previously been described only in prokaryotes except that the fungus Emericella nidulans contains a gene (fluG) which encodes a protein with a large N-terminal domain linked to a C-terminal GSI-like domain. Eukaryotes generally contain the type II (GSII) genes which have been shown to occur also in some prokaryotes. The question of whether GSI and GSII genes are orthologues or paralogues remains a point of controversy. In this article we show that GSI-like genes are widespread in higher plants and have characterized one of the genes from the legume Medicago truncatula. This gene is part of a small gene family and is expressed in many organs of the plant. It encodes a protein similar in size and with between 36 and 46% amino acid sequence similarity to prokaryotic GS proteins used in the analyses, whereas it is larger and with less than 25% similarity to GSII proteins, including those from the same plant species. Phylogenetic analyses suggest that this protein is most similar to putative proteins encoded by expressed sequence tags of other higher plant species (including dicots and a monocot) and forms a cluster with FluG as the most divergent of the GSI sequences. The discovery of GSI-like genes in higher plants supports the paralogous evolution of GSI and GSII genes, which has implications for the use of GS in molecular studies on evolution. Received: 4 May 1999 / Accepted: 17 September 1999  相似文献   

13.
Evolution of Chitin-Binding Proteins in Invertebrates   总被引:11,自引:0,他引:11  
Analysis of a group of invertebrate proteins, including chitinases and peritrophic matrix proteins, reveals the presence of chitin-binding domains that share significant amino acid sequence similarity. The data suggest that these domains evolved from a common ancestor which may be a protein containing a single chitin-binding domain. The duplication and transposition of this chitin-binding domain may have contributed to the functional diversification of chitin-binding proteins. Sequence comparisons indicated that invertebrate and plant chitin binding domains do not share significant amino acid sequence similarity, suggesting that they are not coancestral. However, both the invertebrate and the plant chitin-binding domains are cysteine-rich and have several highly conserved aromatic residues. In plants, cysteines have been elucidated in maintaining protein folding and aromatic amino acids in interacting with saccharides [Wright HT, Sanddrasegaram G, Wright CS (1991) J Mol Evol 33:283–294]. It is likely that these residues perform similar functions in invertebrates. We propose that the invertebrate and the plant chitin-binding domains share similar mechanisms for folding and saccharide binding and that they evolved by convergent evolution. Furthermore, we propose that the disulfide bonds and aromatic residues are hallmarks for saccharide-binding proteins. Received: 2 March 1998 / Accepted: 17 July 1998  相似文献   

14.
15.
The φ29-like phage genus of Podoviridae family contains phages B103, BS32, GA-1, M2, Nf, φ15, φ29, and PZA that all infect Bacillus subtilis. They have very similar morphology and their genomes consist of linear double-stranded DNA of approximately 20 kb. The nucleotide sequences of individual genomes or their parts determined thus far show that these phages evolved from a common ancestor. A terminal protein (TP) that is covalently bound to the DNA 5′-end primes DNA replication of these phages. The same mechanism of DNA replication is used by the Cp-1 related phages (also members of the Podoviridae family) and by the phage PRD1 (member of the Tectoviridae family). Based on the complete or partial genomic sequence data of these phages it was possible to analyze the evolutionary relationship within the φ29-like phage genus as well as to other protein-primed replicating phages. Noncoding regions containing origins of replication were used in the analysis, as well as amino acid sequences of DNA polymerases, and with the φ29-like phages also amino acid sequences of the terminal proteins and of the gene 17 protein product, an accessory component of bacteriophage DNA replicating machinery. Included in the analysis are also results of a comparison of these phage DNAs with the prophages present in the Bacillus subtilis genome. Based on this complex analysis we define and describe in more detail the evolutionary branches of φ29-like phages, one branch consisting of phages BS32, φ15, φ29, and PZA, the second branch composed of phages B103, M2, and Nf, and the third branch having phage GA-1 as its sole member. In addition, amino acid sequences of holins, proteins involved in phage lysis were used to extend the evolutionary study to other phages infecting Gram-positive bacteria. The analysis based on the amino acid sequences of holins showed several weak points in present bacteriophage classification. Received: 14 April 1998 / Accepted: 31 July 1998  相似文献   

16.
Protein sequences with similarities to Escherichia coli RecA were compared across the major kingdoms of eubacteria, archaebacteria, and eukaryotes. The archaeal sequences branch monophyletically and are most closely related to the eukaryotic paralogous Rad51 and Dmc1 groups. A multiple alignment of the sequences suggests a modular structure of RecA-like proteins consisting of distinct segments, some of which are conserved only within subgroups of sequences. The eukaryotic and archaeal sequences share an N-terminal domain which may play a role in interactions with other factors and nucleic acids. Several positions in the alignment blocks are highly conserved within the eubacteria as one group and within the eukaryotes and archaebacteria as a second group, but compared between the groups these positions display nonconservative amino acid substitutions. Conservation within the RecA-like core domain identifies possible key residues involved in ATP-induced conformational changes. We propose that RecA-like proteins derive evolutionarily from an assortment of independent domains and that the functional homologs of RecA in noneubacteria comprise an array of RecA-like proteins acting in series or cooperatively. Received: 25 October 1996 / Accepted: 31 December 1996  相似文献   

17.
A cDNA encoding a 47 kDa nucleoside triphosphatase (NTPase) that is associated with the chromatin of pea nuclei has been cloned and sequenced. The translated sequence of the cDNA includes several domains predicted by known biochemical properties of the enzyme, including five motifs characteristic of the ATP-binding domain of many proteins, several potential casein kinase II phosphorylation sites, a helix-turn-helix region characteristic of DNA-binding proteins, and a potential calmodulin-binding domain. The deduced primary structure also includes an N-terminal sequence that is a predicted signal peptide and an internal sequence that could serve as a bipartite-type nuclear localization signal. Both in situ immunocytochemistry of pea plumules and immunoblots of purified cell fractions indicate that most of the immunodetectable NTPase is within the nucleus, a compartment proteins typically reach through nuclear pores rather than through the endoplasmic reticulum pathway. The translated sequence has some similarity to that of human lamin C, but not high enough to account for the earlier observation that IgG against human lamin C binds to the NTPase in immunoblots. Northern blot analysis shows that the NTPase mRNA is strongly expressed in etiolated plumules, but only poorly or not at all in the leaf and stem tissues of light-grown plants. Accumulation of NTPase mRNA in etiolated seedlings is stimulated by brief treatments with both red and far-red light, as is characteristic of very low-fluence phytochrome responses. Southern blotting with pea genomic DNA indicates the NTPase is likely to be encoded by a single gene.  相似文献   

18.
The catfish nonspecific cytotoxic cell receptor protein (NCCRP-1) provides an important function in target cell recognition and activation of cytotoxicity. This report identifies and characterizes a zebrafish orthologue of the catfish NCCRP-1. The zebrafish NCCRP-1 cDNA contains an open reading frame that encodes a predicted protein of 237 amino acids with a MW of 27 kDa and a pI of 5.5. Sequence similarities comparisons show that the NCCRP-1 receptors from these two phylogenetically distant species share a high degree of identity. These results suggested that NCCRP-1 performs a crucial function in innate immunity in teleosts. Further, a zebrafish 17-mer peptide corresponding to the catfish NCCRP-1 antigen-binding domain inhibited (catfish) cytotoxicity toward conventional tumor target cells (HL-60). These data appeared to indicate that the zebrafish NCCRP-1 protein may function as an antigen recognition molecule and, as such, may participate in innate immunity in teleosts. A homology search of the zebrafish NCCRP-1 protein revealed that it shares a significant level of identity with another group of proteins belonging to an F-box subfamily. These proteins share an F-box domain in the N terminus (not present in NCCRP-1) and an extremely conserved C-terminal region that has been termed the F-box-associated domain (FBA). The FBA is currently of unknown function. A new gene family is proposed in this work, based on similarities in the FBA sequences with the catfish and zebrafish NCCRP-1 peptides. This new gene family includes several F-box domain-containing proteins and a predicted C. elegans protein. Received: 20 June 2001 / Accepted: 31 August 2001  相似文献   

19.
Plant storage proteins comprise a major part of the human diet. Sequence analysis has revealed that these proteins probably share a common ancestor with a fungal oxalate decarboxylase and/or related bacterial genes. Additionally, all these proteins share a central core sequence with several other functionally diverse enzymes and binding proteins, many of which are associated with synthesis of the extracellular matrix during sporulation/encystment. A possible prokaryotic relative of this sequence is a bacterial protein (SASP) known to bind to DNA and thereby protect spores from extreme environmental conditions. This ability to maintain cell viability during periods of dehydration in spores and seeds may relate to absolute conservation of residues involved in structure determination. Received: 25 April 1997 / Accepted: 29 July 1997  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号