首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Smad anchor for receptor activation (SARA or ZFYVE9) has been proposed to mediate transforming growth factor β (TGF-β) signaling by direct interaction with the non-activated Smad proteins and the TGF-β receptors; however, these findings are controversial. We demonstrate no correlation between SARA expression and the levels of TGF-β-induced phosphorylation of Smads in various B-cell lymphomas. Moreover, knockdown of SARA in HeLa cells did not interfere with TGF-β-induced Smad activation, Smad nuclear translocation, or induction of TGF-β target genes. Various R-Smads and TGF-β receptors did not co-immunoprecipitate with SARA. Collectively, our results demonstrate that SARA is dispensable for functional TGF-β-mediated signaling.  相似文献   

4.
5.
6.
The biological effects of type I serine/threonine kinase receptors and Smad proteins were examined using an adenovirus-based vector system. Constitutively active forms of bone morphogenetic protein (BMP) type I receptors (BMPR-IA and BMPR-IB; BMPR-I group) and those of activin receptor-like kinase (ALK)-1 and ALK-2 (ALK-1 group) induced alkaline phosphatase activity in C2C12 cells. Receptor-regulated Smads (R-Smads) that act in the BMP pathways, such as Smad1 and Smad5, also induced the alkaline phosphatase activity in C2C12 cells. BMP-6 dramatically enhanced alkaline phosphatase activity induced by Smad1 or Smad5, probably because of the nuclear translocation of R-Smads triggered by the ligand. Inhibitory Smads, i.e., Smad6 and Smad7, repressed the alkaline phosphatase activity induced by BMP-6 or the type I receptors. Chondrogenic differentiation of ATDC5 cells was induced by the receptors of the BMPR-I group but not by those of the ALK-1 group. However, kinase-inactive forms of the receptors of the ALK-1 and BMPR-I groups blocked chondrogenic differentiation. Although R-Smads failed to induce cartilage nodule formation, inhibitory Smads blocked it. Osteoblast differentiation induced by BMPs is thus mediated mainly via the Smad-signaling pathway, whereas chondrogenic differentiation may be transmitted by Smad-dependent and independent pathways.  相似文献   

7.
8.
转化生长因子TGF-β超家族是一类在结构上相关的蛋白,目前发现在哺乳动物中有超过30多个细胞因子可能属于这一超家族。它们在各类细胞中广泛参与细胞生长、黏附、迁移、分化及凋亡等过程。其中抑制型Smad(I-Smads,包括Smad6和Smad7)是TGF-β/BMP信号通路里重要的抑制型蛋白,在多种细胞与组织的发育过程以及疾病的发生过程中扮演着重要的角色。对其研究已经过10多年,取得许多重大的进展,但也还有很多重要的问题还没有解决。着重介绍I-Smads对TGF-β信号通路的负调控研究进展。  相似文献   

9.
Smads are intracellular mediators of transforming growth factor β (TGF-β) superfamily signaling. In this review, we focus on the genetic mouse models for Smad pathways, which have provided functional evidence regarding the complex circuitry in angiogenesis and hematopoiesis during development. In the early stages of vascular development, TGF-β signaling is a contri buting factor in angiogenesis and vascular maturation. Whereas in the later embryogenesis, selected molecules of Smad pathways, such as TGF-β type II receptor (TbRII), ALK5, and Smad5, seem to be dispensable for vessel morphogenesis and integrity. TGF-β signaling is not required in the induction of hematopoietic precursors from mesoderm, but inhibits the subsequent expansion of committed hematopoietic precursors. By contrast, bone morphogenetic protein 4 (BMP4) has long been acknowledged pivotal in mesoderm induction and hematopoietic commitment during development. However, recent genetic evidence shows the BMP4-ALK3 axis is not crucial for the formation of hematopoietic cells from FLK1+ mesoderm. Because of the highly redundant mechanisms within the Smad pathways, the precise role of the Smad signaling involved in vascular and hematopoietic development remains nebulous. The generation of novel cell lineage restricted Cre transgenes would shed new light on the future relevant investigations.  相似文献   

10.
11.
Animals use TGF-β superfamily signal transduction pathways during development and tissue maintenance. The superfamily has traditionally been divided into TGF-β/Activin and BMP branches based on relationships between ligands, receptors, and R-Smads. Several previous reports have shown that, in cell culture systems, "BMP-specific" Smads can be phosphorylated in response to TGF-β/Activin pathway activation. Using Drosophila cell culture as well as in vivo assays, we find that Baboon, the Drosophila TGF-β/Activin-specific Type I receptor, can phosphorylate Mad, the BMP-specific R-Smad, in addition to its normal substrate, dSmad2. The Baboon-Mad activation appears direct because it occurs in the absence of canonical BMP Type I receptors. Wing phenotypes generated by Baboon gain-of-function require Mad, and are partially suppressed by over-expression of dSmad2. In the larval wing disc, activated Baboon cell-autonomously causes C-terminal Mad phosphorylation, but only when endogenous dSmad2 protein is depleted. The Baboon-Mad relationship is thus controlled by dSmad2 levels. Elevated P-Mad is seen in several tissues of dSmad2 protein-null mutant larvae, and these levels are normalized in dSmad2; baboon double mutants, indicating that the cross-talk reaction and Smad competition occur with endogenous levels of signaling components in vivo. In addition, we find that high levels of Activin signaling cause substantial turnover in dSmad2 protein, providing a potential cross-pathway signal-switching mechanism. We propose that the dual activity of TGF-β/Activin receptors is an ancient feature, and we discuss several ways this activity can modulate TGF-β signaling output.  相似文献   

12.
13.
Hypertrophic maturation of chondrocytes is a crucial step in endochondral ossification, whereas abnormally accelerated differentiation of hypertrophic chondrocytes in articular cartilage is linked to pathogenesis of osteoarthritis. This cellular process is promoted or inhibited by bone morphogenetic protein (BMP) or transforming growth factor-β (TGF-β) signaling, respectively, suggesting that these signaling pathways cross-talk during chondrocyte maturation. Here, we demonstrated that expression of Tgfb1 was increased, followed by phosphorylation of Smad2, during BMP-2-induced hypertrophic maturation of ATDC5 chondrocytes. Application of a TGF-β type I receptor inhibitor compound, SB431542, increased the expression of Id1, without affecting the phosphorylation status of Smad1/5/8, indicating that the activated endogenous TGF-β pathway inhibited BMP signaling downstream of the Smad activation step. We searched for TGF-β-inducible effectors that are able to inhibit BMP signaling in ATDC5 cells and identified SnoN. Overexpression of SnoN suppressed the activity of a BMP-responsive luciferase reporter in COS-7 cells as well as expression of Id1 in ATDC5 cells and, subsequently, the expression of Col10a1, a hallmark of hypertrophic chondrocyte maturation. siRNA-mediated loss of SnoN showed opposite effects in BMP-treated ATDC5 cells. In adult mice, we found the highest level of SnoN expression in articular cartilage. Importantly, SnoN was expressed, in combination with phosphorylated Smad2/3, in prehypertrophic chondrocytes in the growth plate of mouse embryo bones and in chondrocytes around the ectopically existing hypertrophic chondrocytes of human osteoarthritis cartilage. Our results indicate that SnoN mediates a negative feedback mechanism evoked by TGF-β to inhibit BMP signaling and, subsequently, hypertrophic maturation of chondrocytes.  相似文献   

14.
TGF-β and BMP signaling in osteoblast differentiation and bone formation   总被引:1,自引:0,他引:1  
Transforming growth factor-beta (TGF-β)/bone morphogenic protein (BMP) signaling is involved in a vast majority of cellular processes and is fundamentally important throughout life. TGF-β/BMPs have widely recognized roles in bone formation during mammalian development and exhibit versatile regulatory functions in the body. Signaling transduction by TGF-β/BMPs is specifically through both canonical Smad-dependent pathways (TGF-β/BMP ligands, receptors and Smads) and non-canonical Smad-independent signaling pathway (e.g. p38 mitogen-activated protein kinase pathway, MAPK). Following TGF-β/BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation. The coordinated activity of Runx2 and TGF-β/BMP-activated Smads is critical for formation of the skeleton. Recent advances in molecular and genetic studies using gene targeting in mice enable a better understanding of TGF-β/BMP signaling in bone and in the signaling networks underlying osteoblast differentiation and bone formation. This review summarizes the recent advances in our understanding of TGF-β/BMP signaling in bone from studies of genetic mouse models and human diseases caused by the disruption of TGF-β/BMP signaling. This review also highlights the different modes of cross-talk between TGF-β/BMP signaling and the signaling pathways of MAPK, Wnt, Hedgehog, Notch, and FGF in osteoblast differentiation and bone formation.  相似文献   

15.
16.
17.
18.
The present study evaluated endogenous activities and the role of BMP and transforming growth factor-β (TGF-β), representative members of the TGF-β family, during myotube differentiation in C2C12 cells. Smad phosphorylation at the C-terminal serines was monitored, since TGF-β family members signal via the phosphorylation of Smads in a ligand-dependent manner. Expression of phosphorylated Smad1/5/8, which is an indicator of BMP activity, was higher before differentiation, and rapidly decreased after differentiation stimulation. Differentiation-related changes were consistent with those in the expression of Ids, well-known BMP-responsive genes. Treatment with inhibitors of BMP type I receptors or noggin in C2C12 myoblasts down-regulated the expression of myogenic regulatory factors, such as Myf5 and MyoD, leading to impaired myotube formation. Addition of BMP-2 during the myoblast phase also inhibited myotube differentiation through the down-regulation of Myf5 and MyoD. In contrast to endogenous BMP activity, the phosphorylation of Smad2, a TGF-β-responsive Smad, was higher 8-16 days after differentiation stimulation. A-83-01, an inhibitor of TGF-β type I receptor, increased the expression of Myf5 and MyoD, and enhanced myotube formation. The present results reveal that endogenous activities of the TGF-β family are changed during myogenesis in a pathway-specific manner, and that the activities are required for myogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号