首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 234 毫秒
1.
Association mapping based on the linkage disequilibrium provides a promising tool to identify genes responsible for quantitative variations underlying complex traits. Presented here is a maize association mapping panel consisting of 155 inbred lines with mainly temperate germplasm, which was phenotyped for 34 traits and genotyped using 82 SSRs and 1,536 SNPs. Abundant phenotypic and genetic diversities were observed within the panel based on the phenotypic and genotypic analysis. A model-based analysis using 82 SSRs assigned all inbred lines to two groups with eight subgroups. The relative kinship matrix was calculated using 884 SNPs with minor allele frequency ≥20% indicating that no or weak relationships were identified for most individual pairs. Three traits (total tocopherol content in maize kernel, plant height and kernel length) and 1,414 SNPs with missing data <20% were used to evaluate the performance of four models for association mapping analysis. For all traits, the model controlling relative kinship (K) performed better than the model controlling population structure (Q), and similarly to the model controlling both population structure and relative kinship (Q + K) in this panel. Our results suggest this maize panel can be used for association mapping analysis targeting multiple agronomic and quality traits with optimal association model.  相似文献   

2.
关联分析及其在植物遗传学研究中的应用   总被引:4,自引:0,他引:4  
植物的很多重要经济性状均属于复杂性状。基于连锁分析的QTL作图是研究复杂性状的有效手段, 但其尚存在一定的局限性。随着现代生物学的发展, 一种基于连锁不平衡的新剖分复杂性状方法--关联分析法, 开始应用于植物遗传学研究。与QTL作图法相比, 应用关联分析法具有不需要构建特殊的群体, 可同时对多个等位基因进行分析, 定位QTL精度可达到单基因水平等优势。该文介绍了关联分析方法学的基础和特性, 简述了其在植物遗传学研究中的进展情况, 并对其未来发展和在植物遗传学研究中的应用进行了展望。  相似文献   

3.
The potential utility of the Collaborative Cross (CC) mouse resource was evaluated to better understand complex traits related to energy balance. A primary focus was to examine if genetic diversity in emerging CC lines (pre-CC) would translate into equivalent phenotypic diversity. Second, we mapped quantitative trait loci (QTL) for 15 metabolism- and exercise-related phenotypes in this population. We evaluated metabolic and voluntary exercise traits in 176 pre-CC lines, revealing phenotypic variation often exceeding that seen across the eight founder strains from which the pre-CC was derived. Many phenotypic correlations existing within the founder strains were no longer significant in the pre-CC population, potentially representing reduced linkage disequilibrium (LD) of regions harboring multiple genes with effects on energy balance or disruption of genetic structure of extant inbred strains with substantial shared ancestry. QTL mapping revealed five significant and eight suggestive QTL for body weight (Chr 4, 7.54 Mb; CI 3.32-10.34 Mb; Bwq14), body composition, wheel running (Chr 16, 33.2 Mb; CI 32.5-38.3 Mb), body weight change in response to exercise (1: Chr 6, 77.7Mb; CI 72.2-83.4 Mb and 2: Chr 6, 42.8 Mb; CI 39.4-48.1 Mb), and food intake during exercise (Chr 12, 85.1 Mb; CI 82.9-89.0 Mb). Some QTL overlapped with previously mapped QTL for similar traits, whereas other QTL appear to represent novel loci. These results suggest that the CC will be a powerful, high-precision tool for examining the genetic architecture of complex traits such as those involved in regulation of energy balance.  相似文献   

4.
Association mapping is a powerful approach for exploring the molecular basis of phenotypic variations in plants. A maize (Zea mays L.) association mapping panel including 527 inbred lines with tropical, subtropical and temperate backgrounds, representing the global maize diversity, was genotyped using 1,536 single nucleotide polymorphisms (SNPs). In total, 926 SNPs with minor allele frequencies of ≥0.1 were used to estimate the pattern of genetic diversity and relatedness among individuals. The analysis revealed broad phenotypic diversity and complex genetic relatedness in the maize panel. Two different Bayesian approaches identified three specific subpopulations, which were then reconfirmed by principal component analysis (PCA) and tree-based analyses. Marker–trait associations were performed to assess the suitability of different models for false-positive correction by population structure (Q matrix/PCA) and familial kinship (K matrix) alone or in combination in this panel. The K, Q + K and PCA + K models could reduce the false positives, and the Q + K model performed slightly better for flowering time, ear height and ear diameter. Our findings suggest that this maize panel is suitable for association mapping in order to understand the relationship between genotypic and phenotypic variations for agriculturally complex quantitative traits using optimal statistical methods.  相似文献   

5.
Germplasm diversity is the mainstay for crop improvement and genetic dissection of complex traits. Understanding genetic diversity, population structure, and the level and distribution of linkage disequilibrium (LD) in target populations is of great importance and a prerequisite for association mapping. In this study, 100 genome-wide simple sequence repeat (SSR) markers were used to assess genetic diversity, population structure, and LD of 416 rice accessions including landraces, cultivars and breeding lines collected mostly in China. A model-based population structure analysis divided the rice materials into seven subpopulations. 63% of the SSR pairs in these accessions were in LD, which was mostly due to an overall population structure, since the number of locus pairs in LD was reduced sharply within each subpopulation, with the SSR pairs in LD ranging from 5.9 to 22.9%. Among those SSR pairs showing significant LD, the intrachromosomal LD had an average of 25–50 cM in different subpopulations. Analysis of the phenotypic diversity of 25 traits showed that the population structure accounted for an average of 22.4% of phenotypic variation. An example association mapping for starch quality traits using both the candidate gene mapping and genome-wide mapping strategies based on the estimated population structure was conducted. Candidate gene mapping confirmed that the Wx and starch synthase IIa (SSIIa) genes could be identified as strongly associated with apparent amylose content (AAC) and pasting temperature (PT), respectively. More importantly, we revealed that the Wx gene was also strongly associated with PT. In addition to the major genes, we found five and seven SSRs were associated with AAC and PT, respectively, some of which have not been detected in previous linkage mapping studies. The results suggested that the population may be useful for the genome-wide marker–trait association mapping. This new association population has the potential to identify quantitative trait loci (QTL) with small effects, which will aid in dissecting complex traits and in exploiting the rich diversity present in rice germplasm.  相似文献   

6.
T Würschum  T Kraft 《Heredity》2014,112(4):463-468
Association mapping has become a widely applied genomic approach to identify quantitative trait loci (QTL) and dissect the genetic architecture of complex traits. However, approaches to assess the quality of the obtained QTL results are lacking. We therefore evaluated the potential of cross-validation in association mapping based on a large sugar beet data set. Our results show that the proportion of the population that should be used as estimation and validation sets, respectively, depends on the size of the mapping population. Generally, a fivefold cross-validation, that is, 20% of the lines as independent validation set, appears appropriate for commonly used population sizes. The predictive power for the proportion of genotypic variance explained by QTL was overestimated by on average 38% indicating a strong bias in the estimated QTL effects. The cross-validated predictive power ranged between 4 and 50%, which are more realistic estimates of this parameter for complex traits. In addition, QTL frequency distributions can be used to assess the precision of QTL position estimates and the robustness of the detected QTL. In summary, cross-validation can be a valuable tool to assess the quality of QTL parameters in association mapping.  相似文献   

7.
BACKGROUND: The model plant Arabidopsis thaliana (Arabidopsis) shows a wide range of genetic and trait variation among wild accessions. Because of its unparalleled biological and genomic resources, the potential of Arabidopsis for molecular genetic analysis of this natural variation has increased dramatically in recent years. SCOPE: Advanced genomics has accelerated molecular phylogenetic analysis and gene identification by quantitative trait loci (QTL) mapping and/or association mapping in Arabidopsis. In particular, QTL mapping utilizing natural accessions is now becoming a major strategy of gene isolation, offering an alternative to artificial mutant lines. Furthermore, the genomic information is used by researchers to uncover the signature of natural selection acting on the genes that contribute to phenotypic variation. The evolutionary significance of such genes has been evaluated in traits such as disease resistance and flowering time. However, although molecular hallmarks of selection have been found for the genes in question, a corresponding ecological scenario of adaptive evolution has been difficult to prove. Ecological strategies, including reciprocal transplant experiments and competition experiments, and utilizing near-isogenic lines of alleles of interest will be a powerful tool to measure the relative fitness of phenotypic and/or allelic variants. CONCLUSIONS: As the plant model organism, Arabidopsis provides a wealth of molecular background information for evolutionary genetics. Because genetic diversity between and within Arabidopsis populations is much higher than anticipated, combining this background information with ecological approaches might well establish Arabidopsis as a model organism for plant evolutionary ecology.  相似文献   

8.
Li H  Bradbury P  Ersoz E  Buckler ES  Wang J 《PloS one》2011,6(3):e17573

Background

Nested association mapping (NAM) is a novel genetic mating design that combines the advantages of linkage analysis and association mapping. This design provides opportunities to study the inheritance of complex traits, but also requires more advanced statistical methods. In this paper, we present the detailed algorithm of a QTL linkage mapping method suitable for genetic populations derived from NAM designs. This method is called joint inclusive composite interval mapping (JICIM). Simulations were designed on the detected QTL in a maize NAM population and an Arabidopsis NAM population so as to evaluate the efficiency of the NAM design and the JICIM method.

Principal Findings

Fifty-two QTL were identified in the maize population, explaining 89% of the phenotypic variance of days to silking, and nine QTL were identified in the Arabidopsis population, explaining 83% of the phenotypic variance of flowering time. Simulations indicated that the detection power of these identified QTL was consistently high, especially for large-effect QTL. For rare QTL having significant effects in only one family, the power of correct detection within the 5 cM support interval was around 80% for 1-day effect QTL in the maize population, and for 3-day effect QTL in the Arabidopsis population. For smaller-effect QTL, the power diminished, e.g., it was around 50% for maize QTL with an effect of 0.5 day. When QTL were linked at a distance of 5 cM, the likelihood of mapping them as two distinct QTL was about 70% in the maize population. When the linkage distance was 1 cM, they were more likely mapped as one single QTL at an intermediary position.

Conclusions

Because it takes advantage of the large genetic variation among parental lines and the large population size, NAM is a powerful multiple-cross design for complex trait dissection. JICIM is an efficient and specialty method for the joint QTL linkage mapping of genetic populations derived from the NAM design.  相似文献   

9.
Historically our ability to identify genetic variants underlying complex behavioral traits in mice has been limited by low mapping resolution of conventional mouse crosses. The newly developed Diversity Outbred (DO) population promises to deliver improved resolution that will circumvent costly fine‐mapping studies. The DO is derived from the same founder strains as the Collaborative Cross (CC), including three wild‐derived strains. Thus the DO provides more allelic diversity and greater potential for discovery compared to crosses involving standard mouse strains. We have characterized 283 male and female DO mice using open‐field, light–dark box, tail‐suspension and visual‐cliff avoidance tests to generate 38 behavioral measures. We identified several quantitative trait loci (QTL) for these traits with support intervals ranging from 1 to 3 Mb in size. These intervals contain relatively few genes (ranging from 5 to 96). For a majority of QTL, using the founder allelic effects together with whole genome sequence data, we could further narrow the positional candidates. Several QTL replicate previously published loci. Novel loci were also identified for anxiety‐ and activity‐related traits. Half of the QTLs are associated with wild‐derived alleles, confirming the value to behavioral genetics of added genetic diversity in the DO. In the presence of wild‐alleles we sometimes observe behaviors that are qualitatively different from the expected response. Our results demonstrate that high‐precision mapping of behavioral traits can be achieved with moderate numbers of DO animals, representing a significant advance in our ability to leverage the mouse as a tool for behavioral genetics .  相似文献   

10.
Comparison of biometrical models for joint linkage association mapping   总被引:1,自引:0,他引:1  
Joint linkage association mapping (JLAM) combines the advantages of linkage mapping and association mapping, and is a powerful tool to dissect the genetic architecture of complex traits. The main goal of this study was to use a cross-validation strategy, resample model averaging and empirical data analyses to compare seven different biometrical models for JLAM with regard to the correction for population structure and the quantitative trait loci (QTL) detection power. Three linear models and four linear mixed models with different approaches to control for population stratification were evaluated. Models A, B and C were linear models with either cofactors (Model-A), or cofactors and a population effect (Model-B), or a model in which the cofactors and the single-nucleotide polymorphism effect were modeled as nested within population (Model-C). The mixed models, D, E, F and G, included a random population effect (Model-D), or a random population effect with defined variance structure (Model-E), a kinship matrix defining the degree of relatedness among the genotypes (Model-F), or a kinship matrix and principal coordinates (Model-G). The tested models were conceptually different and were also found to differ in terms of power to detect QTL. Model-B with the cofactors and a population effect, effectively controlled population structure and possessed a high predictive power. The varying allele substitution effects in different populations suggest as a promising strategy for JLAM to use Model-B for the detection of QTL and then to estimate their effects by applying Model-C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号