首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a major pest throughout South East Asia and in a number of Pacific Islands. As a result of their widespread distribution, pest status, invasive ability and potential impact on market access, B. dorsalis and many other fruit fly species are considered major threats to many countries. CLIMEX was used to model the potential global distribution of B. dorsalis under current and future climate scenarios. Under current climatic conditions, its projected potential distribution includes much of the tropics and subtropics and extends into warm temperate areas such as southern Mediterranean Europe. The model projects optimal climatic conditions for B. dorsalis in the south-eastern USA, where the principle range-limiting factor is likely to be cold stress. As a result of climate change, the potential global range for B. dorsalis is projected to extend further polewards as cold stress boundaries recede. However, the potential range contracts in areas where precipitation is projected to decrease substantially. The significant increases in the potential distribution of B. dorsalis projected under the climate change scenarios suggest that the World Trade Organization should allow biosecurity authorities to consider the effects of climate change when undertaking pest risk assessments. One of the most significant areas of uncertainty in climate change concerns the greenhouse gas emissions scenarios. Results are provided that span the range of standard Intergovernmental Panel on Climate Change scenarios. The impact on the projected distribution of B. dorsalis is striking, but affects the relative abundance of the fly within the total suitable range more than the total area of climatically suitable habitat.  相似文献   

2.
The West Indian fruit fly, Anastrepha obliqua (Macquart), is one of the most important pests throughout the Americas. CLIMEX 3.0 and ArcGIS 9.3 were used to model the current and future potential geographical distribution of this pest. Under current climatic conditions, A. obliqua is predicted to be able to establish throughout much of the tropics and subtropics, including not only North and South America, where it has been reported, but also southern Asia, northeastern Australia and Sub-Saharan Africa. The main factors limiting the pest's range expansion may be cold stress. Climate change expands the potential distribution of A. obliqua poleward as cold stress boundaries recede, but the predicted distribution in northwestern Australia and northern parts of Sub-Saharan Africa will decrease because of heat stress. Considering the widely suitable range for A. obliqua globally and in China, enhanced quarantine and monitoring measures should be implemented in areas that are projected to be suitable for the establishment of the pest under current and future climatic conditions.  相似文献   

3.
We modelled the ecoclimatic niche of Culicoides imicola, a major arthropod vector of midge-borne viral pathogens affecting ruminants and equids, at fine scale and on a global extent, so as to provide insight into current and future risks of disease epizootics, and increase current knowledge of the species'' ecology. Based on the known distribution and ecology of C. imicola, the species'' response to monthly climatic conditions was characterised using CLIMEX with 10′ spatial resolution climatic datasets. The species'' climatic niche was projected worldwide and under future climatic scenarios. The validated model highlights the role of irrigation in supporting the occurrence of C. imicola in arid regions. In Europe, the modelled potential distribution of C. imicola extended further West than its reported distribution, raising questions regarding ongoing process of colonization and non-climatic habitat factors. The CLIMEX model highlighted similar ecological niches for C. imicola and the Australasian C. brevitarsis raising questions on biogeography and biosecurity. Under the climate change scenarios considered, its'' modelled potential distribution could expand northward in the Northern hemisphere, whereas in Africa its range may contract in the future. The biosecurity risks from bluetongue and African horse sickness viruses need to be re-evaluated in regions where the vector''s niche is suitable. Under a warmer climate, the risk of vector-borne epizootic pathogens such as bluetongue and African horse sickness viruses are likely to increase as the climate suitability for C. imicola shifts poleward, especially in Western Europe.  相似文献   

4.
The production of agricultural commodities faces increased risk of pests, diseases and other stresses due to climate change and variability. This study assesses the potential distribution of agricultural pests under projected climatic scenarios using evidence from the African coffee white stem borer (CWB), Monochamus leuconotus (Pascoe) (Coleoptera: Cerambycidae), an important pest of coffee in Zimbabwe. A species distribution modeling approach utilising Boosted Regression Trees (BRT) and Generalized Linear Models (GLM) was applied on current and projected climate data obtained from the WorldClim database and occurrence data (presence and absence) collected through on-farm biological surveys in Chipinge, Chimanimani, Mutare and Mutasa districts in Zimbabwe. Results from both the BRT and GLM indicate that precipitation-related variables are more important in determining species range for the CWB than temperature related variables. The CWB has extensive potential habitats in all coffee areas with Mutasa district having the largest model average area suitable for CWB under current and projected climatic conditions. Habitat ranges for CWB will increase under future climate scenarios for Chipinge, Chimanimani and Mutare districts while it will decrease in Mutasa district. The highest percentage change in area suitable for the CWB was for Chimanimani district with a model average of 49.1% (3 906 ha) increase in CWB range by 2080. The BRT and GLM predictions gave similar predicted ranges for Chipinge, Chimanimani and Mutasa districts compared to the high variation in current and projected habitat area for CWB in Mutare district. The study concludes that suitable area for CWB will increase significantly in Zimbabwe due to climate change and there is need to develop adaptation mechanisms.  相似文献   

5.
《Journal of Asia》2021,24(4):1077-1086
Leptoglossus occidentalis Heidemann (Heteroptera: Coreidae) is a notorious pest that causes irreversible damage to coniferous forests in South Korea. However, an effective control strategy is still under development. In this study, we used CLIMEX to analyze the potential distribution of L. occidentalis in relation to climate and host plants in South Korea for the identification of effective control spots. The climate needs of L. occidentalis under current and future climate conditions were analyzed and projected on a map along with the distribution of coniferous forests. The CLIMEX model projected that the area of L. occidentalis distribution would decrease slightly in 2060 compared with that at present. However, it was projected that occurrence in mountainous regions would be sustained, suggesting continued damage to coniferous forests in South Korea.  相似文献   

6.
Taylor S  Kumar L  Reid N  Kriticos DJ 《PloS one》2012,7(4):e35565
The threat posed by invasive species, in particular weeds, to biodiversity may be exacerbated by climate change. Lantana camara L. (lantana) is a woody shrub that is highly invasive in many countries of the world. It has a profound economic and environmental impact worldwide, including Australia. Knowledge of the likely potential distribution of this invasive species under current and future climate will be useful in planning better strategies to manage the invasion. A process-oriented niche model of L. camara was developed using CLIMEX to estimate its potential distribution under current and future climate scenarios. The model was calibrated using data from several knowledge domains, including phenological observations and geographic distribution records. The potential distribution of lantana under historical climate exceeded the current distribution in some areas of the world, notably Africa and Asia. Under future scenarios, the climatically suitable areas for L. camara globally were projected to contract. However, some areas were identified in North Africa, Europe and Australia that may become climatically suitable under future climates. In South Africa and China, its potential distribution could expand further inland. These results can inform strategic planning by biosecurity agencies, identifying areas to target for eradication or containment. Distribution maps of risk of potential invasion can be useful tools in public awareness campaigns, especially in countries that have been identified as becoming climatically suitable for L. camara under the future climate scenarios.  相似文献   

7.
As the primary pest of palm trees, Rhynchophorus ferrugineus (Olivier) (Coleoptera: Curculionidae) has caused serious harm to palms since it first invaded China. The present study used CLIMEX 1.1 to predict the potential distribution of R. ferrugineus in China according to both current climate data (1981–2010) and future climate warming estimates based on simulated climate data for the 2020s (2011–2040) provided by the Tyndall Center for Climate Change Research (TYN SC 2.0). Additionally, the Ecoclimatic Index (EI) values calculated for different climatic conditions (current and future, as simulated by the B2 scenario) were compared. Areas with a suitable climate for R. ferrugineus distribution were located primarily in central China according to the current climate data, with the northern boundary of the distribution reaching to 40.1°N and including Tibet, north Sichuan, central Shaanxi, south Shanxi, and east Hebei. There was little difference in the potential distribution predicted by the four emission scenarios according to future climate warming estimates. The primary prediction under future climate warming models was that, compared with the current climate model, the number of highly favorable habitats would increase significantly and expand into northern China, whereas the number of both favorable and marginally favorable habitats would decrease. Contrast analysis of EI values suggested that climate change and the density of site distribution were the main effectors of the changes in EI values. These results will help to improve control measures, prevent the spread of this pest, and revise the targeted quarantine areas.  相似文献   

8.
The significant dependence of agricultural productivity on pest control requires pest distribution predictions at an early stage of pest invasion. Because pest cycles are critically affected by climate, climate is one of the most important factors for predicting an invasive pest. CLIMEX is a highly effective tool that can predict potential geographical species distributions, and test the regional suitability for a target species' habitat based on data including climate change scenarios. CLIMEX has been recently used in Europe, North America, China and Australia, among others. However, for modeling species distributions in Korea, the use of the model has been limited to date. This study aimed to first introduce the function and application of CLIMEX by reviewing important studies using this model. Second, we investigated previous studies using the model simulation to demonstrate the practical applicability of CLIMEX for the agricultural sector, and its use in forecasting.  相似文献   

9.
Climate is changing and, as a consequence, some areas that are climatically suitable for date palm (Phoenix dactylifera L.) cultivation at the present time will become unsuitable in the future. In contrast, some areas that are unsuitable under the current climate will become suitable in the future. Consequently, countries that are dependent on date fruit export will experience economic decline, while other countries’ economies could improve. Knowledge of the likely potential distribution of this economically important crop under current and future climate scenarios will be useful in planning better strategies to manage such issues. This study used CLIMEX to estimate potential date palm distribution under current and future climate models by using one emission scenario (A2) with two different global climate models (GCMs), CSIRO-Mk3.0 (CS) and MIROC-H (MR). The results indicate that in North Africa, many areas with a suitable climate for this species are projected to become climatically unsuitable by 2100. In North and South America, locations such as south-eastern Bolivia and northern Venezuela will become climatically more suitable. By 2070, Saudi Arabia, Iraq and western Iran are projected to have a reduction in climate suitability. The results indicate that cold and dry stresses will play an important role in date palm distribution in the future. These results can inform strategic planning by government and agricultural organizations by identifying new areas in which to cultivate this economically important crop in the future and those areas that will need greater attention due to becoming marginal regions for continued date palm cultivation.  相似文献   

10.
  • 1 Invertebrate pests, such as blue oat mites Penthaleus spp., cause significant economic damage to agricultural crops in Australia. Climate is a major driver of invertebrate species distributions and climate change is expected to shift pest assemblages and pest prevalence across Australia. At this stage, little is known of how individual species will respond to climate change.
  • 2 We have mapped the current distribution for each of the three pest Penthaleus spp. in Australia and built ecological niche models for each species using the correlative modelling software, maxent . Predictor variables useful for describing the climate space of each species were determined and the models were projected into a range of future climate change scenarios to assess how climate change may alter species‐specific distribution patterns in Australia.
  • 3 The distributions of the three cryptic Penthaleus spp. are best described with different sets of climatic variables. Suitable climate space for all species decreases under the climate change scenarios investigated in the present study. The models also indicate that the assemblage of Penthaleus spp. is likely to change across Australia, particularly in Western Australia, South Australia and Victoria.
  • 4 These results show the distributions of the three Penthaleus spp. are correlated with different climatic variables, and that regional control of mite pests is likely to change in the future. A further understanding of ecological and physiological processes that may influence the distribution and pest status of mites is required.
  相似文献   

11.
《Journal of Asia》2019,22(3):666-674
Climate change and land-use change are the most powerful drivers for the invasion of alien species. To understand the integrated effects of these two drivers on pest invasion risk in the future, this study assessed how they impact the invasion risk of Thrips palmi Karny, which is the most serious invasive species in the Korean peninsula. The potential distribution of T. palmi was projected with a MaxEnt model for current and future climate change scenarios (RCP 4.5 and 8.5) based on occurrence records. The potential distribution extends to the north over time, except the eastern high mountainous area, for both RCPs in 2075. The MaxEnt outputs were filtered with agricultural area using data from three land-use change scenarios derived from the Shared Socio-economic Pathways (SSPs), because T. palmi populations can only be sustained in agricultural areas. The potential risk of T. palmi, based on the potential distribution probability in the future agricultural area, increased over time under all RCPs-SSPs combinations. The total area of T. palmi occurrence increased under RCPs-SSP1 and -SSP2 but decreased under RCPs-SSP3, due to agricultural areas being converted to urban areas. In conclusion, based on future climate change scenarios, T. palmi could be distributed throughout the Korean peninsula in the future. The invasion risk in agricultural areas will increase substantially; thus, intensive control measures for T. palmi are required in the future. Our research suggests that using both climate change and land-use change in pest risk mapping study can provide informative data for management strategy.  相似文献   

12.
The negative effects of climate change are already evident for many of the 25 million coffee farmers across the tropics and the 90 billion dollar (US) coffee industry. The coffee berry borer (Hypothenemus hampei), the most important pest of coffee worldwide, has already benefited from the temperature rise in East Africa: increased damage to coffee crops and expansion in its distribution range have been reported. In order to anticipate threats and prioritize management actions for H. hampei we present here, maps on future distributions of H. hampei in coffee producing areas of East Africa. Using the CLIMEX model we relate present-day insect distributions to current climate and then project the fitted climatic envelopes under future scenarios A2A and B2B (for HADCM3 model). In both scenarios, the situation with H. hampei is forecasted to worsen in the current Coffea arabica producing areas of Ethiopia, the Ugandan part of the Lake Victoria and Mt. Elgon regions, Mt. Kenya and the Kenyan side of Mt. Elgon, and most of Rwanda and Burundi. The calculated hypothetical number of generations per year of H. hampei is predicted to increase in all C. arabica-producing areas from five to ten. These outcomes will have serious implications for C. arabica production and livelihoods in East Africa. We suggest that the best way to adapt to a rise of temperatures in coffee plantations could be via the introduction of shade trees in sun grown plantations. The aims of this study are to fill knowledge gaps existing in the coffee industry, and to draft an outline for the development of an adaptation strategy package for climate change on coffee production. An abstract in Spanish is provided as Abstract S1.  相似文献   

13.
To restore the human-disturbed natural ecology and to assess the impact of the projected future climatic change on the natural ecology at a plant community level or at a plant species level, we need to understand the potential distribution of the community or the species under current climate conditions. Many methods have recently been developed to simulate the potential distribution of a particular community or a particular species, but very little has been done to assess the potential distribution of Qinghai spruce (Picea crassifolia) in Qilian Mountains where the spruce forests are extremely important ecologically and hydrologically. This study used maximum entropy model to simulate the potential distribution of Qinghai spruce under current climate conditions and the validity of the model was verified by statistically comparing the simulated potential distribution with the observed actual distribution of the spruce. We then applied this verified model to assess the impact of the projected future climatic changes on the spruce and the simulated results show that the areal extent of the potential distribution of Qinghai spruce may increase by 1% under the projected future climate change scenario. In addition, this study revealed that among the 19 environmental and climatic factors used in this model, the most important factors are the mean maximum temperature in the warmest month and the mean temperature of the wettest quarter in controlling the potential distribution of Qinghai spruce, these two factors accounting for as much as 75.6% of the variations.  相似文献   

14.
Xu Z L  Zhao C Y  Feng Z D 《农业工程》2009,29(5):278-285
To restore the human-disturbed natural ecology and to assess the impact of the projected future climatic change on the natural ecology at a plant community level or at a plant species level, we need to understand the potential distribution of the community or the species under current climate conditions. Many methods have recently been developed to simulate the potential distribution of a particular community or a particular species, but very little has been done to assess the potential distribution of Qinghai spruce (Picea crassifolia) in Qilian Mountains where the spruce forests are extremely important ecologically and hydrologically. This study used maximum entropy model to simulate the potential distribution of Qinghai spruce under current climate conditions and the validity of the model was verified by statistically comparing the simulated potential distribution with the observed actual distribution of the spruce. We then applied this verified model to assess the impact of the projected future climatic changes on the spruce and the simulated results show that the areal extent of the potential distribution of Qinghai spruce may increase by 1% under the projected future climate change scenario. In addition, this study revealed that among the 19 environmental and climatic factors used in this model, the most important factors are the mean maximum temperature in the warmest month and the mean temperature of the wettest quarter in controlling the potential distribution of Qinghai spruce, these two factors accounting for as much as 75.6% of the variations.  相似文献   

15.
The butterfly Ascia monuste L. (Lepidoptera: Pieridae) is a specialist pest of brassica crops in neotropical regions where it significantly impacts crop production. Understanding the actual and potential distribution of the pest and its hosts in current and future climates may help government agencies to mitigate and manage potential incursions. Here, we use MaxEnt algorithm to model the current distribution of both A. monuste and its host, Brassica oleracea var. capitata L. (cabbage) and then model the likely impact of projected climate change (RCP 4.5 and 8.5 scenarios) on their potential future distributions. While A. monuste is currently restricted to the American continent, we show that under current conditions the potential distribution of both the butterfly and cabbage includes areas of Africa, Asia, Oceania and Europe to some extent. The annual temperature range and mean annual temperature were the strongest predictors of the distribution of both species. Under a projected climate change scenario, suitable areas in the tropical climate zone are expected to decrease for both species. However, in temperate regions, the suitable area for cabbage is expected to increase but will remain unsuitable for the pest. Our results highlight the need for strategies to prevent the introduction of A. monuste to other areas of the tropical climate zone and for the development of management practices in the neotropical region.  相似文献   

16.
Climate change is likely to have major impacts on the distribution of planted and natural forests. Herein, we demonstrate how a process‐based niche model (CLIMEX) can be extended to globally project the potential habitat suitable for Douglas‐fir. Within this distribution, we use CLIMEX to predict abundance of the pathogen P haeocryptopus gaeumannii and severity of its associated foliage disease, Swiss needle cast. The distribution and severity of the disease, which can strongly reduce growth rate of Douglas‐fir, is closely correlated with seasonal temperatures and precipitation. This model is used to project how climate change during the 2080s may alter the area suitable for Douglas‐fir plantations within New Zealand. The climate change scenarios used indicate that the land area suitable for Douglas‐fir production in the North Island will be reduced markedly from near 100% under current climate to 36–64% of the total land area by 2080s. Within areas shown to be suitable for the host in the North Island, four of the six climate change scenarios predict substantial increases in disease severity that will make these regions at best marginal for Douglas‐fir by the 2080s. In contrast, most regions in the South Island are projected to sustain relatively low levels of disease, and remain suitable for Douglas‐fir under climate change over the course of this century.  相似文献   

17.
Thrips palmi Karny, melon thrips was introduced and first recorded in 1993 in Korea. This species has become a serious pest of vegetable and ornamental crops. The CLIMEX simulation was applied to T. palmi to predict its potential geographic distribution in Korea under the Representative Concentration Pathway (RCP) 8.5 climate change scenario. In the CLIMEX simulation, the ecoclimatic index was calculated, and compared in each simulated year and each simulated location. The map comparisons show good agreements between simulated and present distributions of T. palmi, indicating that the CLIMEX model has promising potential for prediction of future distributions of this species in Korea. In the near future, until the year 2020, all the western and eastern parts of Korea show favorable to marginal suitability for T. palmi populations in the fields. After the year 2040, potential distributions shift from no persistence to favorable for establishment and persistence from coastal to interior regions of the Korean peninsula, except for a north‐eastern interior region which is the northernmost part of a high mountainous (Baekdu‐Daegan) area in Korea. Based on the simulation results, the geographical distribution of T. palmi will expand over its current weather restrictions in the near future under a severe climate change scenario. Thus, pest management measures and strategies should be re‐evaluated in Korea, and should include further studies on interspecific competition and ecosystem changes due to climate changes.  相似文献   

18.

Aim

Climate change is affecting the distribution of species and subsequent biotic interactions, including hybridization potential. The imperiled Golden-winged Warbler (GWWA) competes and hybridizes with the Blue-winged Warbler (BWWA), which may threaten the persistence of GWWA due to introgression. We examined how climate change is likely to alter the breeding distributions and potential for hybridization between GWWA and BWWA.

Location

North America.

Methods

We used GWWA and BWWA occurrence data to model climatically suitable conditions under historical and future climate scenarios. Models were parameterized with 13 bioclimatic variables and 3 topographic variables. Using ensemble modeling, we estimated historical and modern distributions, as well as a projected distribution under six future climate scenarios. We quantified breeding distribution area, the position of and amount of overlap between GWWA and BWWA distributions under each climate scenario. We summarized the top explanatory variables in our model to predict environmental parameters of the distributions under future climate scenarios relative to historical climate.

Results

GWWA and BWWA distributions are projected to substantially change under future climate scenarios. GWWA are projected to undergo the greatest change; the area of climatically suitable breeding season conditions is expected to shift north to northwest; and range contraction is predicted in five out of six future climate scenarios. Climatically suitable conditions for BWWA decreased in four of the six future climate scenarios, while the distribution is projected to shift east. A reduction in overlapping distributions for GWWA and BWWA is projected under all six future climate scenarios.

Main Conclusions

Climate change is expected to substantially alter the area of climatically suitable conditions for GWWA and BWWA, with the southern portion of the current breeding ranges likely to become climatically unsuitable. However, interactions between BWWA and GWWA are expected to decline with the decrease in overlapping habitat, which may reduce the risk of genetic introgression.  相似文献   

19.
A framework for identifying species that may become invasive under future climate conditions is presented, based on invader attributes and biogeography in combination with projections of future climate. We illustrate the framework using the CLIMEX niche model to identify future climate suitability for three species of Hawkweed that are currently present in the Australian Alps region and related species that are present in the neighbouring region. Potential source regions under future climate conditions are identified, and species from those emerging risk areas are identified. We use dynamically downscaled climate projections to complement global analyses and provide fine-scale projections of suitable climate for current and future (2070–2099) conditions at the regional scale. Changing climatic conditions may reduce the suitability for some invasive species and improve it for others. Invasive species with distributions strongly determined by climate, where the projected future climate is highly suitable, are those with the greatest potential to be future invasive species in the region. As the Alps region becomes warmer and drier, many more regions of the world become potential sources of invasive species, although only one additional species of Hawkweed is identified as an emerging risk. However, in the longer term, as the species in these areas respond to global climate change, the potential source areas contract again to match higher altitude regions. Knowledge of future climate suitability, based on species-specific climatic tolerances, is a useful step towards prioritising management responses such as targeted eradication and early intervention to prevent the spread of future invasive species.  相似文献   

20.
未来气候变化下黑沙蒿在中国的潜在地理分布及变迁   总被引:1,自引:0,他引:1  
黑沙蒿是我国荒漠草原防风固沙的先驱植物,在生态系统恢复和重建中有非常重要的作用,然而其在发挥重要生态功能之余,也给我国北方地区人类的健康带来了一定影响。本研究基于黑沙蒿当前在中国分布的89条有效数据和典型19个气候环境因子,通过MaxEnt模型,模拟了当前和未来(2050s、2070s)2种情景下(RCP 4.5、RCP 8.5)黑沙蒿在中国的潜在分布区,利用ArcGIS软件中SDM工具箱分析黑沙蒿的潜在分布范围及其变化,综合贡献率、刀切法及环境变量响应曲线评估了关键气候因子的重要性,并使用检验受试者工作特征(ROC)曲线下面积(AUC)对模型精度检验和评估。结果表明: MaxEnt模型模拟效果极好(AUC=0.980),预测显示黑沙蒿主要集中分布在毛乌素沙地及周边地区,该结果与当前实际分布范围相吻合;黑沙蒿在未来2种情景下的潜在高适生区分布面积与当前相比减少了5.2%~26.8%,气候变化对黑沙蒿的分布有一定的负面影响,其中,温度季节变化、最冷季度降水量及年平均温度的影响最大;黑沙蒿未来在中国潜在分布核心区位于毛乌素沙地,且有向东北部(吉林、黑龙江、辽宁及河北部分地区)扩散趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号