首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A S Rudolph 《Cryobiology》1988,25(4):277-284
In this report, the ability of carbohydrates (trehalose, sucrose, and glucose) to preserve the blood substitute liposome-encapsulated hemoglobin (LEH) in the freeze-dried state is examined. The water-free stabilization of individual components of this blood substitute and LEH is reported. Lyophilization of hemoglobin solutions in the absence of carbohydrates results in significant oxidative degradation of Hb as measured by a large increase (approximately 60%) in methemoglobin. Hb samples lyophilized in increasing carbohydrate concentrations show reduced levels of methemoglobin, and at 0.5 M trehalose, sucrose, or glucose, these levels are reduced to nearly the same levels as unlyophilized controls. Storage of lyophilized Hb samples following rehydration at 4 degrees C shows the same rate of methemoglobin formation regardless of whether carbohydrates are present. This suggests that carbohydrates prevent Hb oxidation in the dry state but are less effective at retarding oxidative damage to Hb in solution. The addition of 0.25 M trehalose or sucrose to LEH results in the maintenance of liposomal size following lyophilization. In these experiments, glucose was least effective at inhibiting dehydration-induced LEH fusion. Lyophilization of LEH in 0.25 M trehalose or sucrose also results in significantly greater retention of the encapsulated hemoglobin following lyophilization and rehydration. These results suggest that the long-term stabilization of LEH in the dry state is a realizable goal.  相似文献   

2.
Accumulation of α-synuclein (α-Syn) is a common pathology for both familiar and sporadic Parkinson's disease (PD), enhancing its clearance might be a promising strategy for treating PD. To assess the potential of trehalose in this regard, we investigated its effect on the PC12 cells overexpressing wild type (WT) or A53T mutant α-Syn and the implicated pathway it might mediated. We observed that trehalose promoted the clearance of A53T α-Syn but not WT α-Syn in PC12 cells, and confirmed the increased LC3 and Lysotracker RED positive autolysosomes by using lysotracker and LC3 staining, the enhanced expression of LC3-II in Western blot, and more autophagosomes under Transmission Electron Microscope in a dose dependent manner after the trehalose treatment. The activation of autophagy can be alleviated by applying macroautophagy inhibitor 3-methyladenine (3-MA). In addition, degradation of A53T and WT α-Syn was blocked after Ubiquitin Proteasome System (UPS) inhibitor (MG132) was applied in those PC12 cells overexpressing A53T or WT α-Syn, suggesting that A53T α-Syn could be degraded by both UPS and macroautophagy. But the effect of trehalose on A53T α-Syn is mainly mediated through the macroautophagy pathway, which is not a dominant way for WT α-Syn clearance. Further in vivo research will be needed to verify the effectiveness of trehalose in treating PD.  相似文献   

3.
S-adenosyl methionine (SAM) is a key intermediate in the metabolism of sulfur amino acids and is a major methyl donor in the cell. Although the low plasma level of SAM has been associated with atherosclerosis, the effect of SAM administration on atherosclerosis is not known. Endothelial dysfunction is an early prerequisite for atherosclerosis. This study was undertaken to investigate the possible preventive effect of SAM on endothelial dysfunction and the molecular mechanism of its action. SAM treatment prevented endothelial dysfunction in high fat diet (HFD)-fed rats. In cultured human aortic endothelial cells, linoleic acid (LA) increased and SAM decreased cell apoptosis and endoplasmic reticulum stress. Both LA and SAM increased heme oxygenase-1 (HO-1) expression in an NF-E2-related factor 2-dependent manner. However, knockdown of HO-1 reversed only the SAM-induced preventive effect of cell apoptosis. The LA-induced HO-1 expression was dependent on PPARα, whereas SAM induced HO-1 in a PPAR-independent manner. These data demonstrate that SAM treatment prevents endothelial dysfunction in HFDfed animals by inducing HO-1 in vascular endothelial cells. In cultured endothelial cells, SAM-induced HO-1 was responsible for the observed prevention of cell apoptosis. We propose that SAM treatment may represent a new therapeutic strategy for atherosclerosis.  相似文献   

4.
The structure and thermal behavior of hydrated and lyophilized dipalmitoylphosphatidylcholine (DPPC) multilayers in the presence of trehalose were investigated by differential scanning calorimetry and X-ray diffraction methods. Trehalose enters the aqueous space between hydrated bilayers and increases the interbilayer separation (from 0.36 to 1.37 nm in the different DPPC phases at 1 M trehalose). It does not affect the lipid chain packing and also the slow isothermal conversion at 4 degrees C of the metastable L beta' phase into the equilibrium crystalline Lc phase. Addition of trehalose leads to a slight upward shift (about 1 degrees C at 1 M trehalose) of the three phase transitions (sub-, pre-, and main transition) in fully hydrated DPPC while their other properties (enthalpy, excess specific heat, and transition width) remain unchanged. The effect of trehalose on the thermal behavior of DPPC multilayers freeze-dried from an initially completely hydrated state is qualitatively similar to that of water. These data support the "water replacement" hypothesis about trehalose action. It is suggested that trehalose prevents the formation of direct interbilayer hydrogen bonds in states of low hydration.  相似文献   

5.
The residual water and dry matter condition in the lyophilized biomass of the yeast Saccharomyces cerevisiae was studied by NMR-relaxation technique. It was shown that the slow component of the transverse magnetization NMR signal spectrum corresponding to the so-called "isolated mobile water" was caused in fact by the interaction of the disaccharide trehalose with the cell biopolymers. The big amount of hydrogen bonds formed by trehalose and their three-dimensional orientation closed to the orientation in water clusters assure the valuable functioning of this disaccharide during the process of removing water out of cells. When stationary phase yeast biomass containing a lot of trehalose was dried the cell organelles condition remained practically unchanged what led to the high resistance of such cells to dehydration.  相似文献   

6.
In the yeast, Saccharomyces cerevisiae, the disaccharide trehalose is a stress-related metabolite that accumulates upon exposure of cells to heat shock or a variety of non-heat inducers of the stress response. Here, we describe the influence of mutations in individual heat-shock-protein genes on trehalose metabolism. A strain mutated in three proteins of the SSA subfamily of 70-kDa heat-shock proteins (hsp70) overproduced trehalose during heat shock at 37 degrees C or 40 degrees C and showed abnormally slow degradation of trehalose upon temperature decrease from 40 degrees C to 27 degrees C. The mutant cells were unimpaired in the induction of thermotolerance; however, the decay of thermotolerance during recovery at 27 degrees C was abnormally slow. Since both a high content of trehalose and induced thermotolerance are associated with the heat-stressed state of cells, the abnormally slow decline of trehalose levels and thermotolerance in the mutant cells indicated a defect in recovery from the heat-stressed state. A similar albeit minor defect, as judged from measurements of trehalose degradation during recovery, was detected in a delta hsp104 mutant, but not in a strain deleted in the polyubiquitin gene, UB14. In all our experiments, trehalose levels were closely correlated with thermotolerance, suggesting a thermoprotective function of trehalose. In contrast, heat-shock proteins, in particular hsp70, appear to be involved in recovery from the heat-stressed state rather than in the acquisition of thermotolerance. Cells partially depleted of hsp70 displayed an abnormally low activity of neutral trehalase when shifted to 27 degrees C after heat shock at 40 degrees C. Trehalase activity is known to be under positive control by cAMP-dependent protein kinases, suggesting that hsp70 directly or indirectly stimulate these protein-kinase activities. Alternatively, hsp70 may physically interact with neutral trehalase, thereby protecting the enzyme from thermal denaturation.  相似文献   

7.
Cutaneous melanomas frequently metastasize to the brain, with temozolomide (TMZ) plus radiotherapy (RT) offering little control of these lesions. We tested whether trehalose, a natural glucose disaccharide proved to induce autophagy, could enhance the effect of TMZ and ionizing radiation (IR). In two melanoma cell lines (A375 and SK-Mel-28), which greatly differ in chemosensitivity and radiosensitivity, trehalose significantly inhibited short-term cell proliferation and also enhanced IR-induced cytostasis. Interestingly, in TMZ-resistant SK-Mel-28 cells, trehalose was more effective than TMZ, and combined trehalose + TMZ further reduced cell proliferation. In long-term experiments, colony-forming capacity was dramatically reduced by trehalose, and even more by combined trehalose + TMZ or trehalose + IR. In resistant SK-Mel-28 cells, although growth was inhibited most with trehalose + TMZ + IR-6 Gy combined treatment, it is notable that trehalose + TMZ treatment was also very effective. Along with a direct antiproliferative effect, two further mechanisms may explain how trehalose potentiates TMZ- and IR-induced effects: the remarkable trehalose-stimulated autophagy in A375 cells, which were sensitive to TMZ- and IR-induced apoptosis; and the notable trehalose-stimulated premature senescence in SK-Mel-28 cells, which were resistant to apoptosis and less prone to autophagy. In normal melanocytes, trehalose induced a minor autophagy and cell proliferation inhibition, without affecting cell viability; moreover, when trehalose was used in combination with TMZ, the slight TMZ-induced cytotoxicity was not significantly reinforced. Together, our results suggest that trehalose, a safe nutrient supplement able to cross the blood–brain barrier, is a promising candidate, worthy to be further explored in vivo, to augment the therapeutic efficacy of TMZ and RT in melanoma brain metastases.  相似文献   

8.
《Biologicals》2014,42(6):322-333
Development studies were performed to design a pharmaceutical composition that allows the stabilization of a parenteral rhEGF formulation in a lyophilized dosage form. Unannealed and annealed drying protocols were tested for excipients screening. Freeze-dry microscopy was used as criterion for excipients and formulation selection; as well as to define freeze-drying parameters. Excipients screening were evaluated through their effect on freeze-drying recovery and dried product stability at 50 °C by using a comprehensive set of analytical techniques assessing the chemical stability, protein conformation and bioactivity. The highest stability of rhEGF during freeze-drying was achieved by the addition of sucrose or trehalose. After storing the dried product at 50 °C, the highest stability was achieved by the addition of dextran, sucrose, trehalose or raffinose. The selected formulation mixture of sucrose and dextran could prevent protein degradation during the freeze-drying and delivery processes. The degradation rate assessed by RP-HPLC could decrease 100 times at 37 °C and 70 times at 50 °C in dried with respect to aqueous formulation. These results indicate that the freeze-dried formulation represents an appropriate technical solution for stabilizing rhEGF.  相似文献   

9.
《Autophagy》2013,9(4):588-602
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder caused by selective motor neuron degeneration. Abnormal protein aggregation and impaired protein degradation pathways may contribute to the disease pathogenesis. Although it has been reported that autophagy is altered in patients and animal model of ALS, little is known about the role of autophagy in motor neuron degeneration in this disease. Our previous study shows that rapamycin, an MTOR-dependent autophagic activator, accelerates disease progression in the SOD1G93A mouse model of ALS. In the present report, we have assessed the role of the MTOR-independent autophagic pathway in ALS by determining the effect of the MTOR-independent autophagic inducer trehalose on disease onset and progression, and on motor neuron degeneration in SOD1G93A mice. We have found that trehalose significantly delays disease onset prolongs life span, and reduces motor neuron loss in the spinal cord of SOD1G93A mice. Most importantly, we have documented that trehalose decreases SOD1 and SQSTM1/p62 aggregation, reduces ubiquitinated protein accumulation, and improves autophagic flux in the motor neurons of SOD1G93A mice. Moreover, we have demonstrated that trehalose can reduce skeletal muscle denervation, protect mitochondria, and inhibit the proapoptotic pathway in SOD1G93A mice. Collectively, our study indicated that the MTOR-independent autophagic inducer trehalose is neuroprotective in the ALS model and autophagosome-lysosome fusion is a possible therapeutic target for the treatment of ALS.  相似文献   

10.
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disorder caused by selective motor neuron degeneration. Abnormal protein aggregation and impaired protein degradation pathways may contribute to the disease pathogenesis. Although it has been reported that autophagy is altered in patients and animal model of ALS, little is known about the role of autophagy in motor neuron degeneration in this disease. Our previous study shows that rapamycin, an MTOR-dependent autophagic activator, accelerates disease progression in the SOD1G93A mouse model of ALS. In the present report, we have assessed the role of the MTOR-independent autophagic pathway in ALS by determining the effect of the MTOR-independent autophagic inducer trehalose on disease onset and progression, and on motor neuron degeneration in SOD1G93A mice. We have found that trehalose significantly delays disease onset prolongs life span, and reduces motor neuron loss in the spinal cord of SOD1G93A mice. Most importantly, we have documented that trehalose decreases SOD1 and SQSTM1/p62 aggregation, reduces ubiquitinated protein accumulation, and improves autophagic flux in the motor neurons of SOD1G93A mice. Moreover, we have demonstrated that trehalose can reduce skeletal muscle denervation, protect mitochondria, and inhibit the proapoptotic pathway in SOD1G93A mice. Collectively, our study indicated that the MTOR-independent autophagic inducer trehalose is neuroprotective in the ALS model and autophagosome-lysosome fusion is a possible therapeutic target for the treatment of ALS.  相似文献   

11.
We have adapted hydrogen/deuterium (H/D) exchange with electrospray ionization mass spectrometry (ESI-MS) to study protein conformation and excipient interactions in lyophilized solids. Using calmodulin (CaM, 17 kD) as a model protein, we demonstrate that trehalose and calcium exert site-specific effects on protein conformation. The effects of calcium are observed primarily in the calcium binding loops, while those of trehalose are observed primarily in non-terminal alpha-helical regions. To our knowledge, this is the first demonstration of site-specificity in the effects of excipients on protein structure in the solid state, and of the utility of H/D exchange with ESI-MS to characterize proteins in amorphous solids.  相似文献   

12.
Quality control of anti-D immunoglobulins intended for in vivo clinical use requires in vitro assay of potency. A lyophilized biotinylated monoclonal anti-D (biotinylated Brad-5; 99/698) has been evaluated for its suitability to serve as a working reagent in a competitive enzyme-linked immunoassay (EIA) for anti-D quantitation. The reagent demonstrated acceptable stability in accelerated degradation tests and following reconstitution. Twelve international laboratories obtained comparable potencies for each of nine anti-D samples using 99/698 in a standardized assay procedure using erythrocytes fixed to microtitre plates. We also describe the use of trehalose for stabilization of dried erythrocyte-coated microtitre plates.  相似文献   

13.
The alpha-glucosidase of Bacillus sp. strain SAM1606 is a member of glycosyl hydrolase family 13, and shows an extraordinarily broad substrate specificity and is one of very few alpha-glucosidases that can efficiently hydrolyze the alpha-1,1-glucosidic linkage of alpha,alpha'-trehalose (trehalose). Phylogenetic analysis of family-13 enzymes suggests that SAM1606 alpha-glucosidase may be evolutionally derived from an alpha-1,6-specific ancestor, oligo-1,6-glucosidase (O16G). Indeed, replacement of Pro(273*) and Thr(342*) of B. cereus O16G by glycine and asparagine (the corresponding residues in the SAM1606 enzyme), respectively, was found to cause 192-fold enhancement of the relative catalytic efficiency for trehalose, suggesting that O16G may easily "evolved" into an enzyme with an extended substrate specificity by substitution of a limited number of amino acids, including that at position 273* (an asterisk indicates the amino-acid numbering of the SAM1606 sequence). To probe the role of the amino acid at position 273* of alpha-glucosidase in determination of the substrate specificity, the amino acid at position 273 of SAM1606 alpha-glucosidase was replaced by all other naturally occurring amino acids, and the resultant mutants were kinetically characterized. The results showed that substitution of bulky residues (e.g., isoleucine and methionine) for glycine at this position resulted in large increases in the K(m) values for trehalose and maltose, whereas the affinity to isomaltose was only minimally affected by such an amino-acid substitution at this position. Three-dimensional structural models of the enzyme-substrate complexes of the wild-type and mutant SAM1606 alpha-glucosidases were built to explore the mechanism responsible for these observations. It is proposed that substitution by glycine at position 273* could eliminate steric hindrance around subsite +1 that originally occurred in parental O16G and is, at least in part, responsible for the acquired broad substrate specificity of SAM1606 alpha-glucosidase.  相似文献   

14.
15.
The improvement of cell specific productivities for the formation of therapeutic proteins is an important step towards intensified production processes. Among others, the induction of the desired production phenotype via proper media additives is a feasible solution provided that said compounds adequately trigger metabolic and regulatory programs inside the cells. In this study, S-(5′-adenosyl)- l -methionine (SAM) and 5′-deoxy-5′-(methylthio)adenosine (MTA) were found to stimulate cell specific productivities up to approx. 50% while keeping viable cell densities transiently high and partially arresting the cell cycle in an anti-IL-8-producing CHO-DP12 cell line. Noteworthy, MTA turned out to be the chemical degradation product of the methyl group donor SAM and is consumed by the cells.  相似文献   

16.
In the present study, Methylobacterium sp. FD1 utilizing formaldehyde was isolated from soil. The resting cells of FD1 degraded high concentrations of formaldehyde (~2.7 M) and produced formic acid and methanol that were molar equivalents of one-half of the degraded formaldehyde. This result suggests that formaldehyde degradation by FD1 is caused by formaldehyde dismutase. The optimal temperature and pH for formaldehyde degradation by the resting cells of FD1 were 40 °C and 5–7, respectively. The lyophilized cells of FD1 also degraded high concentrations of formaldehyde. The formaldehyde degradation activity of the lyophilized cells was maintained as the initial activity at 25 °C for 287 days. These results suggest that the lyophilized cells of FD1 are useful as formaldehyde degradation materials.  相似文献   

17.
Calcium phosphate (Ca-P) scaffolds have been widely employed as a supportive matrix and delivery system for bone tissue engineering. Previous studies using osteoinductive growth factors loaded Ca-P scaffolds via passive adsorption often experience issues associated with easy inactivation and uncontrolled release. In present study, a new delivery system was fabricated using bone morphogenetic protein-2 (BMP-2) loaded calcium-deficient hydroxyapatite (CDHA) scaffold by lyophilization with addition of trehalose. The in vitro osteogenesis effects of this formulation were compared with lyophilized BMP-2/CDHA construct without trehalose and absorbed BMP-2/CDHA constructs with or without trehalose. The release characteristics and alkaline phosphatase (ALP) activity analyses showed that addition of trehalose could sufficiently protect BMP-2 bioactivity during lyophilization and achieve sustained BMP-2 release from lyophilized CDHA construct in vitro and in vivo. However, absorbed BMP-2/CDHA constructs with or without trehalose showed similar BMP-2 bioactivity and presented a burst release. Quantitative real-time PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA) demonstrated that lyophilized BMP-2/CDHA construct with trehalose (lyo-tre-BMP-2) promoted osteogenic differentiation of bone marrow stromal cells (bMSCs) significantly and this formulation could preserve over 70% protein bioactivity after 5 weeks storage at 25°C. Micro-computed tomography, histological and fluorescent labeling analyses further demonstrated that lyo-tre-BMP-2 formulation combined with bMSCs led to the most percentage of new bone volume (38.79% ±5.32%) and area (40.71% ±7.14%) as well as the most percentage of fluorochrome stained bone area (alizarin red S: 2.64% ±0.44%, calcein: 6.08% ±1.37%) and mineral apposition rate (4.13±0.62 µm/day) in critical-sized rat cranial defects healing. Biomechanical tests also indicated the maximum stiffness (118.17±15.02 Mpa) and load of fracture (144.67±16.13 N). These results lay a potential framework for future study by using trehalose to preserve growth factor bioactivity and optimize release profile of Ca-P based delivery system for enhanced bone regeneration.  相似文献   

18.
In a previous report [Z. T?r?k, G. Satpathy, M. Banerjee, R. Bali, E. Little, R. Novaes, H. Van Ly, D. Dwyre, A. Kheirolomoom, F. Tablin, J.H. Crowe, N.M. Tsvetkova, Preservation of trehalose loaded red blood cells by lyophilization, Cell Preservation Technol. 3 (2005) 96-111.], we presented a method for preserving human red blood cells (RBCs) by loading them with trehalose and then freeze-drying. We have now improved that method, based on the discovery that addition of phospholipid vesicles to the lyophilization buffer substantially reduces hemolysis of freeze-dried RBCs after rehydration. The surviving cells synthesize 2,3-DPG, have low levels of methemoglobin, and have preserved morphology. Among the lipid species we studied, unsaturated PCs were found to be most effective in suppressing hemoglobin leakage. RBC-vesicle interactions depend on vesicle size and structure; unilamellar liposomes with average diameter of less than 300 nm were more effective in reducing the hemolysis than multilamellar vesicles. Trehalose loaded RBCs demonstrated high survival and low levels of methemoglobin during 10 weeks of storage at 4 degrees C in the dry state when lyophilized in the presence of liposomes.  相似文献   

19.
Elucidating protein structure in amorphous solids is central to the rational design of stable lyophilized protein drugs. Hydrogen/deuterium (H/D) exchange with electrospray ionization mass spectrometry was applied to lyophilized powders containing calmodulin (17 kDa) and exposed to D(2)O vapor at controlled relative humidity (RH) and temperature. H/D exchange was influenced by RH and by the inclusion of calcium chloride and/or trehalose in the solid. The effects were not exhibited uniformly along the protein backbone but occurred in a site-specific manner, with calcium primarily influencing the calcium-binding loops and trehalose primarily influencing the alpha-helices. The results demonstrate that the method can provide quantitative and site-specific structural information on proteins in amorphous solids and on changes in structure induced by protein cofactors and formulation excipients. Such information is not readily available with other techniques used to characterize proteins in the solid state, such as Fourier transform infrared, Raman, and near-infrared spectroscopy.  相似文献   

20.
Accumulation of trehalose has been implicated in the tolerance of yeast cells to several forms of stress, including heat-shock and high ethanol levels. However, yeast lacking trehalase, the enzyme that degrades trehalose, exhibit poor survival after exposure to stress conditions. This suggests that optimal cell viability also depends on the capacity to rapidly degrade the high levels of trehalose that build up under stress. Here, we initially examined the effects of trehalose on the activity of an important antioxidant enzyme, glutathione reductase (GR), from Saccharomyces cerevisiae. At 25 degrees C, GR was inhibited by trehalose in a dose-dependent manner, with 70% inhibition at 1.5M trehalose. The inhibition was practically abolished at 40 degrees C, a temperature that induces a physiological response of trehalose accumulation in yeast. The inhibition of GR by trehalose was additive to the inhibition caused by ethanol, indicating that enzyme function is drastically affected upon ethanol-induced stress. Moreover, two other yeast enzymes, cytosolic pyrophosphatase and glucose 6-phosphate dehydrogenase, showed temperature dependences on inhibition by trehalose that were similar to the temperature dependence of GR inhibition. These results are discussed in terms of the apparent paradox represented by the induction of enzymes involved in both synthesis and degradation of trehalose under stress, and suggest that the persistence of high levels of trehalose after recovery from stress could lead to the inactivation of important yeast enzymes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号