首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
Summary Segments of the Japanese quail mito-chondrial genome encompassing many tRNA and protein genes, the small and part of the large rRNA genes, and the control region have been cloned and sequenced. Analysis of the relative position of these genes confirmed that the tRNAGlu and ND6 genes in galliform mitochondrial DNA are located immediately adjacent to the control region of the molecule instead of between the cytochrome b and ND5 genes as in other vertebrates. Japanese quail and chicken display another distinctive characteristic, that is, they both lack an equivalent to the light-strand replication origin found between the tRNACys and tRNAAsn genes in all vertebrate mitochondrial genomes sequenced thus far. Comparison of the protein-encoding genes revealed that a great proportion of the substitutions are silent and involve mainly transitions. This bias toward transitions also occurs in the tRNA and rRNA genes but is not observed in the control region where transversions account for many of the substitutions. Sequence alignment indicated that the two avian control regions evolve mainly through base substitutions but are also characterized by the occurrence of a 57-bp deletion/addition event at their 5′ end. The overall sequence divergence between the two gallinaceous birds suggests that avian mitochondrial genomes evolve at a similar rate to other vertebrate mitochondrial DNAs.  相似文献   

3.
4.
A phylogenetic tree for major lineages of iguanian lizards is estimated from 1,488 aligned base positions (858 informative) of newly reported mitochondrial DNA sequences representing coding regions for eight tRNAs, ND2, and portions of ND1 and COI. Two well-supported groups are defined, the Acrodonta and the Iguanidae (sensu lato). This phylogenetic hypothesis is used to investigate evolutionary shifts in mitochondrial gene order, origin for light-strand replication, and secondary structure of tRNACys. These three characters shift together on the branch leading to acrodont lizards. Plate tectonics and the fossil record indicate that these characters changed in the Jurassic. We propose that changes to the secondary structure of tRNACys may destroy function of the origin for light-strand replication which, in turn, may facilitate shifts in gene order. Received: 28 May 1996 / Accepted: 27 December 1996  相似文献   

5.
6.
Summary Eight transfer RNA (tRNA) genes which were previously mapped to five regions of the Pisum sativum (pea) chloroplast DNA (ctDNA) have been sequenced. They have been identified as tRNAVal(GAC), tRNAAsn(GUU), tRNAArg(ACG), tRNALeu(CAA), tRNATyr(GUA), tRNAGlu(UUC), tRNAHis(GUG), and tRNAArg(UCU) by their anticodons and by their similarity to other previously identified tRNA genes from the chloroplast DNAs of higher plants or from E. gracilis. In addition,two other tRNA genes, tRNAGly (UCC) and tRNAIle(GAU), have been partially sequenced. The tRNA genes are compared to other known chloroplast tRNA genes from higher plants and are found to be 90–100% homologous. In addition there are similarities in the overall arrangement of the individual genes between different plants. The 5 flanking regions and the internal sequences of tRNA genes have been studied for conserved regions and consensus sequences. Two unusual features have been found: there is an apparent intron in the D-loop of the tRNAGly(UCC), and the tRNAGlu(UUC) contains GATTC in its T-loop.  相似文献   

7.

Background

Vertebrate mitochondrial genomes (mitogenomes) are 16–18 kbp double-stranded circular DNAs that encode a set of 37 genes. The arrangement of these genes and the major noncoding region is relatively conserved through evolution although gene rearrangements have been described for diverse lineages. The tandem duplication-random loss model has been invoked to explain the mechanisms of most mitochondrial gene rearrangements. Previously reported mitogenomic sequences for geckos rarely included gene rearrangements, which we explore in the present study.

Results

We determined seven new mitogenomic sequences from Gekkonidae using a high-throughput sequencing method. The Tropiocolotes tripolitanus mitogenome involves a tandem duplication of the gene block: tRNAArg, NADH dehydrogenase subunit 4L, and NADH dehydrogenase subunit 4. One of the duplicate copies for each protein-coding gene may be pseudogenized. A duplicate copy of the tRNAArg gene appears to have been converted to a tRNAGln gene by a C to T base substitution at the second anticodon position, although this gene may not be fully functional in protein synthesis. The Stenodactylus petrii mitogenome includes several tandem duplications of tRNALeu genes, as well as a translocation of the tRNAAla gene and a putative origin of light-strand replication within a tRNA gene cluster. Finally, the Uroplatus fimbriatus and U. ebenaui mitogenomes feature the apparent loss of the tRNAGlu gene from its original position. Uroplatus fimbriatus appears to retain a translocated tRNAGlu gene adjacent to the 5’ end of the major noncoding region.

Conclusions

The present study describes several new mitochondrial gene rearrangements from Gekkonidae. The loss and reassignment of tRNA genes is not very common in vertebrate mitogenomes and our findings raise new questions as to how missing tRNAs are supplied and if the reassigned tRNA gene is fully functional. These new examples of mitochondrial gene rearrangements in geckos should broaden our understanding of the evolution of mitochondrial gene arrangements.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-930) contains supplementary material, which is available to authorized users.  相似文献   

8.
Soybean seedlings were examined for the presence of mitochondrial tRNA. Tyrosyl transfer tRNAs from whole cells, from a well characterized mitochondrial preparation, and from a snake venom phosphodiesterase-treated mitochondrial preparation, were compared by reverse phase chromatography. It was concluded that none of the three previously reported tRNATyr species were mitochondrial. Rather, a fourth tRNATyr species, eluting somewhat later, was of mitochondrial origin. Mitochondrial tRNATyr was chromatographically similar to Escherichia coli tRNATyr.  相似文献   

9.
The complete mitochondrial genome sequence of the marbled rockfish Sebastiscus marmoratus (Scorpaeniformes, Scorpaenidae) was determined and phylogenetic analysis was conducted to elucidate the evolutionary relationship of the marbled rockfish with other Sebastinae species. This mitochondrial genome, consisting of 17301 bp, is highly similar to that of most other vertebrates, containing the same gene order and an identical number of genes or regions, including 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and one putative control region. Most of the genes are encoded on the H-strand, while the ND6 and seven tRNA genes (for Gln, Ala, Asn, Tyr, Ser (UCA), Glu, and Pro) are encoded on the L-strand. The reading frame of two pairs of genes overlapped on the same strand (the ATPase 8 and 6 genes overlapped by ten nucleotides; ND4L and ND4 genes overlapped by seven nucleotides). The possibly nonfunctional light-strand replication origin folded into a typical stem-loop secondary structure and a conserved motif (5′-GCCGG-3′) was found at the base of the stem within the tRNACys gene. An extent termination-associated sequence (ETAS) and conserved sequence blocks (CSB) were identified in the control region, except for CSB-1; unusual long tandem repeats were found at the 3′ end of the control region. Phylogenetic analyses supported the view that Sebastinae comprises four genera (Sebastes, Hozukius, Helicolenus, and Sebastiscus).  相似文献   

10.
We determined the nearly complete DNA sequence of the mitochondrial genome of Antarctic krill Euphausia superba (Crustacea: Malacostraca), one of the most ecologically and commercially important zooplankters in Antarctic waters. All of the genome sequences were purified by gene amplification using long polymerase chain reaction (PCR), and the products were subsequently used as templates for either direct sequencing using a primer-walking strategy or nested PCR with crustacea-versatile primers. Although we were unable to determine a portion of the genome owing to technical difficulties, the sequenced position, 14,606 bp long, contained all of the 13 protein-coding genes, 19 of the 22 transfer RNA genes, and the large subunit as well as a portion of the small subunit ribosomal RNA genes. Gene rearrangement was observed for 3 transfer RNA genes (tRNACys, tRNATyr, and tRNATrp) and the 2 leucine tRNA genes.  相似文献   

11.
12.
The monotremes, the duck-billed platypus and the echidnas, are characterized by a number of unique morphological characteristics, which have led to the common belief that they represent the living survivors of an ancestral stock of mammals. Analysis of new data from the complete mitochondrial (mt) genomes of a second monotreme, the spiny anteater, and another marsupial, the wombat, yielded clear support for the Marsupionta hypothesis. According to this hypothesis marsupials are more closely related to monotremes than to eutherians, consistent with a basal split between eutherians and marsupials/monotremes among extant mammals. This finding was also supported by analysis of new sequences from a nuclear gene—18S rRNA. The mt genome of the wombat shares some unique features with previously described marsupial mtDNAs (tRNA rearrangement, a missing tRNALys, and evidence for RNA editing of the tRNAAsp). Molecular estimates of genetic divergence suggest that the divergence between the platypus and the spiny anteater took place ≈34 million years before present (MYBP), and that between South American and Australian marsupials ≈72 MYBP. Received: 28 October 2000 / Accepted: 23 March 2001  相似文献   

13.
We have determined the complete mitochondrial genome sequences of the codfishes Arctogadus glacialis and Boreogadus saida (Order Gadiformes, Family Gadidae). The 16,644 bp and 16,745 bp mtDNAs, respectively, contain the same set of 37 structural genes found in all vertebrates analyzed so far. The gene organization is conserved compared to other Gadidae species, but with one notable exception. B. saida contains heteroplasmic rearrangement-mediated duplications that include the origin of light-strand replication and nearby tRNA genes. Examination of the mitochondrial control region of A. glacialis, B. saida, and four additional representative Gadidae genera identified a highly variable domain containing tandem repeat motifs in A. glacialis. Mitogenomic phylogeny based on the complete mitochondrial genome sequence, the concatenated protein-coding genes, and the derived protein sequences strongly supports a sister taxa affiliation of A. glacialis and B. saida.  相似文献   

14.
The 16,775 base-pair mitochondrial genome of the white Leghorn chicken has been cloned and sequenced. The avian genome encodes the same set of genes (13 proteins, 2 rRNAs and 22 tRNAs) as do other vertebrate mitochondrial DNAs and is organized in a very similar economical fashion. There are very few intergenic nucleotides and several instances of overlaps between protein or tRNA genes. The protein genes are highly similar to their mammalian and amphibian counterparts and are translated according to the same variant genetic code. Despite these highly conserved features, the chicken mitochondrial genome displays two distinctive characteristics. First, it exhibits a novel gene order, the contiguous tRNA(Glu) and ND6 genes are located immediately adjacent to the displacement loop region of the molecule, just ahead of the contiguous tRNA(Pro), tRNA(Thr) and cytochrome b genes, which border the displacement loop region in other vertebrate mitochondrial genomes. This unusual gene order is conserved among the galliform birds. Second, a light-strand replication origin, equivalent to the conserved sequence found between the tRNA(Cys) and tRNA(Asn) genes in all vertebrate mitochondrial genomes sequenced thus far, is absent in the chicken genome. These observations indicate that galliform mitochondrial genomes departed from their mammalian and amphibian counterparts during the course of evolution of vertebrate species. These unexpected characteristics represent useful markers for investigating phylogenetic relationships at a higher taxonomic level.  相似文献   

15.
We have begun a systematic search for potential tRNA genes in wheat mtDNA, and present here the sequences of regions of the wheat mitochondrial genome that encode genes for tRNAAsp (anticodon GUC), tRNAPro (UGG), tRNATyr (GUA), and two tRNAsSer (UGA and GCU). These genes are all solitary, not immediately adjacent to other tRNA or known protein coding genes. Each of the encoded tRNAs can assume a secondary structure that conforms to the standard cloverleaf model, and that displays none of the structural aberrations peculiar to some of the corresponding mitochondrial tRNAs from other eukaryotes. The wheat mitochondrial tRNA sequences are, on average, substantially more similar to their eubacterial and chloroplast counterparts than to their homologues in fungal and animal mitochondria. However, an analysis of regions 150 nucleotides upstream and 100 nucleotides downstream of the tRNA coding regions has revealed no obvious conserved sequences that resemble the promoter and terminator motifs that regulate the expression of eubacterial and some chloroplast tRNA genes. When restriction digests of wheat mtDNA are probed with 32P-labelled wheat mitochondrial tRNAs, <20 hybridizing bands are detected, whether enzymes with 4 bp or 6 bp recognition sites are used. This suggests that the wheat mitochondrial genome, despite its large size, may carry a relatively small number of tRNA genes.  相似文献   

16.
The complete mitochondrial (mt) genomes of five marsupial species have been sequenced. The species represent all three South American orders (Didelphimorphia, Paucituberculata, and Microbiotheria). Phylogenetic analysis of this data set indicates that Didelphimorphia is a basal marsupial lineage followed by Paucituberculata. The South American microbiotherid Dromiciops gliroides (monito del monte) groups with Australian marsupials, suggesting a marsupial colonization of Australia on two occasions or, alternatively, a migration of an Australian marsupial lineage to South America. Molecular estimates suggest that the deepest marsupial divergences took place 64-62 million years before present (MYBP), implying that the radiation of recent marsupials took place after the K/T (Cretaceous/Tertiary) boundary. The South American marsupial lineages are all characterized by a putatively non-functional tRNA for lysine, a potential RNA editing of the tRNA for asparagine, and a rearrangement of tRNA genes at the origin of light strand replication.  相似文献   

17.
Summary The nucleotide sequence of a segment of the mitochondrial DNA (mtDNA) molecule of the liver flukeFasciola hepatica (phylum Platyhelminthes, class Trematoda) has been determined, within which have been identified the genes for tRNAala, tRNAasp, respiratory chain NADH dehydrogenase subunit I (ND1), tRNAasn, tRNApro, tRNAile, tRNAlys, ND3, tRNAserAGN, tRNAtrp, and cytochromec oxidase subunit I (COI). The 11 genes are arranged in the order given and are all transcribed from the same strand of the molecule. The overall order of theF. hepatica mitochondrial genes differs from what is found in other metazoan mtDNAs. All of the sequenced tRNA genes except the one for tRNAserAGN can be folded into a secondary structure with four arms resembling most other metazoan mitochondrial tRNAs, rather than the tRNAs that contain a TψC arm replacement loop, found in nematode mtDNAs. TheF. hepatica mitochondrial tRNAserAGN gene contains a dihydrouridine arm replacement loop, as is the case in all other metazoan mtDNAs examined to date. AGA and AGG are found in theF. hepatica mitochondrial protein genes and both codons appear to specify serine. These findings concerningF. hepatica mtDNA indicate that both a dihydrouridine arm replacement loop-containing tRNAserAGN gene and the use of AGA and AGG codons to specify serine must first have occurred very early in, or before, the evolution of metazoa.  相似文献   

18.
脊椎动物线粒体DNA的基因重排   总被引:6,自引:1,他引:5  
将GenBank上已公布的321种脊椎动物mtDNA全序列,按纲整理归类,绘制基因排布图并进行比对。比对结果表明:81个物种的mtDNA中观察到基因重排现象,涉及脊椎动物各纲,其中9个物种同时存在基因顺序变化和基因倒置现象,所有的基因重排都涉及tRNA的变化。脊椎动物mtDNA基因顺序变化可分为3类:1)邻接的基因或片段的位置交换;2)接近于控制序列或轻链起始位点的基因或片段的位置变化,有时还伴随着控制序列的倍增;3)I-Q-M区域的变化。所有鸟类、蛇类、鳄类和有袋类的mtDNA具有各自独特的基因排列顺序。基因倒置现象常见于鱼类和哺乳类,且多表现为tRNA从轻链往重链上迁移。本文就这些基因重排现象、发生重排的机制和mtDNA基因重排在系统发生研究中的应用做一简要概述。  相似文献   

19.
We determined the complete nucleotide sequence of the mitochondrial genome (except for a portion of the putative control region) for a deep-sea fish, Gonostoma gracile. The entire mitochondrial genome was purified by gene amplification using long polymerase chain reaction (long PCR), and the products were subsequently used as templates for PCR with 30 sets of newly designed, fish-universal primers that amplify contiguous, overlapping segments of the entire genome. Direct sequencing of the PCR products showed that the genome contained the same 37 mitochondrial structural genes as found in other vertebrates (two ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes), with the order of all rRNA and protein-coding genes, and 19 tRNA genes being identical to that in typical vertebrates. The gene order of the three tRNAs (tRNAGlu, tRNAThr, and tRNAPro) relative to cytochrome b, however, differed from that determined in other vertebrates. Two steps of tandem duplication of gene regions, each followed by deletions of genes, can be invoked as mechanisms generating such rearrangements of tRNAs. This is the first example of tRNA gene rearrangements in a bony fish mitochondrial genome. Received August 5, 1998; accepted February 19, 1999.  相似文献   

20.
The crustacean isopod Armadillidium vulgare is characterized by an unusual ∼42-kb-long mitochondrial genome consisting of two molecules co-occurring in mitochondria: a circular ∼28-kb dimer formed by two ∼14-kb monomers fused in opposite polarities and a linear ∼14-kb monomer. Here we determined the nucleotide sequence of the fundamental monomeric unit of A. vulgare mitochondrial genome, to gain new insight into its structure and evolution. Our results suggest that the junction zone between monomers of the dimer structure is located in or near the control region. Direct sequencing indicated that the nucleotide sequences of the different monomer units are virtually identical. This suggests that gene conversion and/or replication processes play an important role in shaping nucleotide sequence variation in this mitochondrial genome. The only heteroplasmic site we identified predicts an alloacceptor tRNA change from tRNAAla to tRNAVal. Therefore, in A. vulgare, tRNAAla and tRNAVal are found at the same locus in different monomers, ensuring that both tRNAs are present in mitochondria. The presence of this heteroplasmic site in all sequenced individuals suggests that the polymorphism is selectively maintained, probably because of the necessity of both tRNAs for maintaining proper mitochondrial functions. Thus, our results provide empirical evidence for the tRNA gene recruitment model of tRNA evolution. Moreover, interspecific comparisons showed that the A. vulgare mitochondrial gene order is highly derived compared to the putative ancestral arthropod type. By contrast, an overall high conservation of mitochondrial gene order is observed within crustacean isopods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号