首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We determined the complete nucleotide sequence of the mitochondrial genome (except for a portion of the putative control region) for a deep-sea fish, Gonostoma gracile. The entire mitochondrial genome was purified by gene amplification using long polymerase chain reaction (long PCR), and the products were subsequently used as templates for PCR with 30 sets of newly designed, fish-universal primers that amplify contiguous, overlapping segments of the entire genome. Direct sequencing of the PCR products showed that the genome contained the same 37 mitochondrial structural genes as found in other vertebrates (two ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes), with the order of all rRNA and protein-coding genes, and 19 tRNA genes being identical to that in typical vertebrates. The gene order of the three tRNAs (tRNAGlu, tRNAThr, and tRNAPro) relative to cytochrome b, however, differed from that determined in other vertebrates. Two steps of tandem duplication of gene regions, each followed by deletions of genes, can be invoked as mechanisms generating such rearrangements of tRNAs. This is the first example of tRNA gene rearrangements in a bony fish mitochondrial genome. Received August 5, 1998; accepted February 19, 1999.  相似文献   

2.
The complete nucleotide sequence of the mitochondrial genome was determined for a conger eel, Conger myriaster (Elopomorpha: Anguilliformes), using a PCR-based approach that employs a long PCR technique and many fish-versatile primers. Although the genome [18,705 base pairs (bp)] contained the same set of 37 mitochondrial genes [two ribosomal RNA (rRNA), 22 transfer RNA (tRNA), and 13 protein-coding genes] as found in other vertebrates, the gene order differed from that recorded for any other vertebrates. In typical vertebrates, the ND6, tRNAGlu, and tRNAPro genes are located between the ND5 gene and the control region, whereas the former three genes, in C. myriaster, have been translocated to a position between the control region and the tRNAPhe gene that are contiguously located at the 5′ end of the 12S rRNA gene in typical vertebrates. This gene order is similar to the recently reported gene order in four lineages of birds in that the latter lack the ND6, tRNAGlu, and tRNAPro genes between the ND5 gene and the control region; however, the relative position of the tRNAPro to the ND6–tRNAGlu genes in C. myriaster was different from that in the four birds, which presumably resulted from different patterns of tandem duplication of gene regions followed by gene deletions in two distantly related groups of organisms. Sequencing of the ND5–cyt b region in 11 other anguilliform species, representing 11 families, plus one outgroup species, revealed that the same gene order as C. myriaster was shared by another 4 families, belonging to the suborder Congroidei. Although the novel gene orders of four lineages of birds were indicated to have multiple independent origins, phylogenetic analyses using nucleotide sequences from the mitochondrial 12S rRNA and cyt b genes suggested that the novel gene orders of the five anguilliform families had originated in a single ancestral species. Received: 13 July 2000 / Accepted: 30 November 2000  相似文献   

3.
The complete mitochondrial DNA sequence contains useful information for phylogenetic analyses of metazoa. In this study, the complete mitochondrial DNA sequence of sea cucumber Stichopus horrens (Holothuroidea: Stichopodidae: Stichopus) is presented. The complete sequence was determined using normal and long PCRs. The mitochondrial genome of Stichopus horrens is a circular molecule 16257 bps long, composed of 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes. Most of these genes are coded on the heavy strand except for one protein-coding gene (nad6) and five tRNA genes (tRNA Ser(UCN) , tRNA Gln , tRNA Ala , tRNA Val , tRNA Asp ) which are coded on the light strand. The composition of the heavy strand is 30.8% A, 23.7% C, 16.2% G, and 29.3% T bases (AT skew=0.025; GC skew=−0.188). A non-coding region of 675 bp was identified as a putative control region because of its location and AT richness. The intergenic spacers range from 1 to 50 bp in size, totaling 227 bp. A total of 25 overlapping nucleotides, ranging from 1 to 10 bp in size, exist among 11 genes. All 13 protein-coding genes are initiated with an ATG. The TAA codon is used as the stop codon in all the protein coding genes except nad3 and nad4 that use TAG as their termination codon. The most frequently used amino acids are Leu (16.29%), Ser (10.34%) and Phe (8.37%). All of the tRNA genes have the potential to fold into typical cloverleaf secondary structures. We also compared the order of the genes in the mitochondrial DNA from the five holothurians that are now available and found a novel gene arrangement in the mitochondrial DNA of Stichopus horrens.  相似文献   

4.
褶纹冠蚌线粒体基因组全序列分析   总被引:1,自引:0,他引:1  
蒋文枰  李家乐  郑润玲  汪桂玲 《遗传》2010,32(2):153-162
采用LA-PCR(Long amplification polymerase chain reaction )扩增方法首次获得褶纹冠蚌(Cristaria plicata)线粒体基因组全序列。分析表明:序列全长15 712 bp, 包括13个蛋白质基因、22个tRNA基因、2个rRNA基因和26个长度为2~328 bp的非编码区。A、T、C、G碱基组成分别为36.54%、27.22%、23.22%、13.02%。大部分基因在L链编码, 其中ND3~ND5、ND4L、COI~COIII、ATP6、ATP8、tRNAAsp和tRNAHis在H链编码。基因排列与同科的射线佩饰真珠蚌(Lampsilis ornata)一致, 与三角帆蚌(Hyriopsis cumingii)在COII和12S rRNA之间存在差异。13个蛋白质基因具有I(AUU、AUC)、V(GUG)、M (AUA、AUG)3种起始密码子, 除ND2终止密码子为不完整的T, 其余基因均为典型的UAA或UAG。22个tRNA中, 除tRNAThr、tRNALys、tRNASer(UCN)、tRNAAsp、tRNAArg、tRNATyr和tRNAMet之外, 其他15个tRNA都具有典型三叶草结构。与其他淡水双壳贝类一样, 褶纹冠蚌具有ATP8基因, 该基因可能与细胞质的渗透压平衡有关。  相似文献   

5.
The mackerel icefish (Champsocephalus gunnari Lönnberg, 1905) is a ray‐finned fish living in the Southern Ocean around Antarctica. We sequenced the complete mitochondrial (mt) genome of the mackerel icefish and a segment from cytochrome b to the control region (CR) in 32 individuals. The mt genome of the mackerel icefish was rearranged, containing two nicotinamide adenine dinucleotide (reduced form) dehydrogenase subunit 6 (ND6), two tRNAGlu, and two CRs. However, variations in numbers of ND6 and tRNAGlu were observed amongst individuals. These variations included type 1 (containing two ND6 and two tRNAGlu), type 2 (containing one ND6, one incomplete ND6, and one tRNAGlu), and type 3 (containing one ND6 and one tRNAGlu). The gene orders of types 1 and 2, and variations in numbers of ND6 and tRNAGlu were not previously found in any Antarctic notothenioids, whereas type 3 is the same as that of Racovitzia glacialis. Phylogenetic analyses of CR DNA sequences showed that duplicated CRs of the same species formed a monophyletic group, suggesting that duplication of CRs occurred in each species. The frequent duplication of mt genomes in Antarctic notothenioids is an unusual feature in vertebrates. We propose that interspecific hybridization and impairment of mismatch repair might account for the high frequency of gene duplications and rearrangement of mt genomes in Antarctic notothenioids.  相似文献   

6.
In Xenopus laevis, genes encoding tRNAPhe, tRNATyr, tRNA 1 Met , tRNAAsn, tRNAAla, tRNALeu, and tRNALys are clustered within a 3.18-kb (kilobase) fragment of DNA. This fragment is tandemly repeated some 150 times in the haploid genome and its components are found outside the repeat only to a limited extent. The fragment hybridizes in situ to a single site very near the telomere on the long arm of one of the acrocentric chromosomes of the group comprising chromosomes 13–18. All the chromosomes of this group also hybridize with DNA coding for oocyte-specific 5S RNA. The tRNA gene cluster is slightly proximal to the cluster of 5S RNA genes.We respectfully dedicate this paper to Prof. H. Bauer on the occasion of his 80th birthday.  相似文献   

7.
The complete nucleotide sequence of the urochordate Ciona savignyi (Ascidiacea, Enterogona) mitochondrial (mt) genome (14,737 bp) was determined. The Ciona mt genome does not encode a gene for ATP synthetase subunit 8 but encodes an additional tRNAGly gene (anticodon UCU), as is the case in another urochordate, Halocynthia roretzi (Ascidiacea, Pleurogona), mt genome. In addition, the Ciona mt genome encodes two tRNAMet genes; anticodon CAT and anticodon TAT. The tRNACys gene is thought to lack base pairs at the D-stem. Thus, the Ciona mt genome encodes 12 protein, 2 rRNA, and 24 tRNA genes. The gene arrangement of the Ciona mt genome differs greatly from those of any other metazoan mt genomes reported to date. Only three gene boundaries are shared between the Halocynthia and the Ciona mt genomes. Molecular phylogenetic analyses based on amino acid sequences of mt protein genes failed to demonstrate the monophyly of the chordates.  相似文献   

8.
Given the commercial and ecological importance of the Asian paddle crab, Charybdis japonica, there is a clearly need for genetic and molecular research on this species. Here, we present the complete mitochondrial genome sequence of C. japonica, determined by the long-polymerase chain reaction and primer walking sequencing method. The entire genome is 15,738 bp in length, encoding a standard set of 13 protein-coding genes, two ribosomal RNA genes, and 22 transfer RNA genes, plus the putative control region, which is typical for metazoans. The total A+T content of the genome is 69.2%, lower than the other brachyuran crabs except for Callinectes sapidus. The gene order is identical to the published marine brachyurans and differs from the ancestral pancrustacean order by only the position of the tRNA His gene. Phylogenetic analyses using the concatenated nucleotide and amino acid sequences of 13 protein-coding genes strongly support the monophyly of Dendrobranchiata and Pleocyemata, which is consistent with the previous taxonomic classification. However, the systematic status of Charybdis within subfamily Thalamitinae of family Portunidae is not supported. C. japonica, as the first species of Charybdis with complete mitochondrial genome available, will provide important information on both genomics and molecular ecology of the group.  相似文献   

9.
We have isolated three independent clones for nuclear elongator tRNAMet genes from an Arabidopsis DNA library using a tRNAMet-specific probe generated by PCR. Each of the coding sequences for tRNAMet in these clones is identical and is interrupted by an identical 11 bp long intervening sequence at the same position in the anticodon loop of the tRNA. Their sequences differ at two positions from the intron in a soybean counterpart. Southern analysis of Arabidopsis DNA demonstrates that a gene family coding for tRNAMet is dispersed at at least eight loci in the genome. The unspliced precursor tRNAMet intermediate was detected by RNA analysis using an oligonucleotide probe complementary to the putative intron sequence. In order to know whether introns commonly interrupt plant tRNAMet genes, their coding sequences were PCR-amplified from the DNAs of eight phylogenetically separate plant species. All 53 sequences determined contain 10 to 13 bp long intervening sequences, always positioned one base downstream from the anticodon. They can all be potentially folded into the secondary structure characteristic for plant intron-containing precursor tRNAs. Surprisingly, GC residues are always present at the 5-distal end of each intron.  相似文献   

10.
Summary The nucleotide sequence of a segment of the mitochondrial DNA (mtDNA) molecule of the liver flukeFasciola hepatica (phylum Platyhelminthes, class Trematoda) has been determined, within which have been identified the genes for tRNAala, tRNAasp, respiratory chain NADH dehydrogenase subunit I (ND1), tRNAasn, tRNApro, tRNAile, tRNAlys, ND3, tRNAserAGN, tRNAtrp, and cytochromec oxidase subunit I (COI). The 11 genes are arranged in the order given and are all transcribed from the same strand of the molecule. The overall order of theF. hepatica mitochondrial genes differs from what is found in other metazoan mtDNAs. All of the sequenced tRNA genes except the one for tRNAserAGN can be folded into a secondary structure with four arms resembling most other metazoan mitochondrial tRNAs, rather than the tRNAs that contain a TψC arm replacement loop, found in nematode mtDNAs. TheF. hepatica mitochondrial tRNAserAGN gene contains a dihydrouridine arm replacement loop, as is the case in all other metazoan mtDNAs examined to date. AGA and AGG are found in theF. hepatica mitochondrial protein genes and both codons appear to specify serine. These findings concerningF. hepatica mtDNA indicate that both a dihydrouridine arm replacement loop-containing tRNAserAGN gene and the use of AGA and AGG codons to specify serine must first have occurred very early in, or before, the evolution of metazoa.  相似文献   

11.
12.
Total tRNA of Chlamydomonas reinhardii was fractionated by 2-dimensional gel electrophoresis. Sixteen tRNAs specific for eleven amino acids could be identified by aminoacylation with Escherichia coli tRNA synthetases. Hybridization of these tRNAs with chloroplast restriction fragments allowed for the localization of the genes of tRNATyr, tRNAPro, tRNAPhe (2 genes), tRNAIle (2 genes) and tRNAHis (2 genes) on the chloroplast genome of C. reinhardii. The genes for tRNAAla (2 genes), tRNAAsn and tRNALeu were mapped by using individual chloroplast tRNAs from higher plants as probes.  相似文献   

13.
Liriomyza trifolii (Diptera: Agromyzidae) is one of the most economically significant pests in the world. In this paper we present sequence data for the complete mitochondrial genome of L. trifolii. The circular genome is 16,141 bp long and contains one encoding region including 37 genes and one non-coding A+T-rich region. Gene numbers and organization is similar to that of the typical insect mitochondrial genomes except that two additional tRNA genes are found in the A+T-rich region (tRNAThr and tRNALeu(UUR)). All of the protein initiation codons are ATN, except ND1 which begins with GTG and COI which is initiated by the quadruplet ATCA. The 22 tRNA anticodons of L. trifolii match those observed in Drosophila yakuba, and all of tRNAs form the typical cloverleaf structure except for tRNASer(AGN), which has lost the DHU-arm. The A+T-rich region of L. trifolii also contains two previously noted Diperan features—a highly conserved polyT stretch and a (TA)n stretch.  相似文献   

14.
Summary Eight transfer RNA (tRNA) genes which were previously mapped to five regions of the Pisum sativum (pea) chloroplast DNA (ctDNA) have been sequenced. They have been identified as tRNAVal(GAC), tRNAAsn(GUU), tRNAArg(ACG), tRNALeu(CAA), tRNATyr(GUA), tRNAGlu(UUC), tRNAHis(GUG), and tRNAArg(UCU) by their anticodons and by their similarity to other previously identified tRNA genes from the chloroplast DNAs of higher plants or from E. gracilis. In addition,two other tRNA genes, tRNAGly (UCC) and tRNAIle(GAU), have been partially sequenced. The tRNA genes are compared to other known chloroplast tRNA genes from higher plants and are found to be 90–100% homologous. In addition there are similarities in the overall arrangement of the individual genes between different plants. The 5 flanking regions and the internal sequences of tRNA genes have been studied for conserved regions and consensus sequences. Two unusual features have been found: there is an apparent intron in the D-loop of the tRNAGly(UCC), and the tRNAGlu(UUC) contains GATTC in its T-loop.  相似文献   

15.
Transfer RNA 5; Asn , tRNA ; His , and tRNAAla were isolated from Drosophila melanogaster by means of Sepharose 4B chromatography and 2-dimensional polyacrylamide gel electrophoresis. The tRNAs were iodinated in vitro with Na125I and hybridized in situ to salivary gland chromosomes from Drosophila. Subsequent autoradiography allowed the localization of the genes for tRNA 5; Asn in the regions 42A, 59F, 60C, and 84F; for tRNAHis in the regions 48F and 56E; and for tRNAAla in the regions 63A and 90C. From these and our previous results it can be concluded that the genes for the Q-base containing tRNAs (tRNAAsn, tRNAAsp, and tRNAHis, are not clustered in the Drosophila melanogaster genome.  相似文献   

16.
The complete mitochondrial genome sequence of the marbled rockfish Sebastiscus marmoratus (Scorpaeniformes, Scorpaenidae) was determined and phylogenetic analysis was conducted to elucidate the evolutionary relationship of the marbled rockfish with other Sebastinae species. This mitochondrial genome, consisting of 17301 bp, is highly similar to that of most other vertebrates, containing the same gene order and an identical number of genes or regions, including 13 protein-coding genes, two ribosomal RNAs, 22 transfer RNAs, and one putative control region. Most of the genes are encoded on the H-strand, while the ND6 and seven tRNA genes (for Gln, Ala, Asn, Tyr, Ser (UCA), Glu, and Pro) are encoded on the L-strand. The reading frame of two pairs of genes overlapped on the same strand (the ATPase 8 and 6 genes overlapped by ten nucleotides; ND4L and ND4 genes overlapped by seven nucleotides). The possibly nonfunctional light-strand replication origin folded into a typical stem-loop secondary structure and a conserved motif (5′-GCCGG-3′) was found at the base of the stem within the tRNACys gene. An extent termination-associated sequence (ETAS) and conserved sequence blocks (CSB) were identified in the control region, except for CSB-1; unusual long tandem repeats were found at the 3′ end of the control region. Phylogenetic analyses supported the view that Sebastinae comprises four genera (Sebastes, Hozukius, Helicolenus, and Sebastiscus).  相似文献   

17.
The scaly-sided merganser (Mergus squamatus) is an endangered bird species on the IUCN Red List with the estimated global population of less than 2,500 individuals at present. In the present study, we studied the complete mitochondrial genome (mtDNA) and the phylogenetic of M. squamatus by PCR amplification and GenBank data. The genome was 16,595 bp in length and contained 37 genes (13 protein coding genes, two rRNAs, and 22 tRNAs) and a non-coding control region (D-loop). All protein-coding genes of M. squamatus mtDNA start with a typical ATG codon, except ND1, COI, and COII uses GTG as their initial codon. TAA, T- and TAG as the terminate codon occurred very commonly in the sequence. All tRNA genes can be folded into canonical cloverleaf secondary structure except for tRNASer (AGY) and tRNALeu (CUN), which lose ‘‘DHU’’ arm. The genome sequences had been deposited in GenBank under accession number HQ833701. Based on the concatenated nucleotide sequences of mtDNA genes (Cyt b and D-loop), we reconstructed phylogenetic trees and discussed the phylogenetic relationships among ten Anatidae species. The results are different from the present classification, and we support Lophodytes cucullatus and Mergullus albellus to be members of the genus Mergus.  相似文献   

18.
The complete mitochondrial genome of Zhikong scallop Chlamys farreri is 21,695 bp in length and contains 12 protein-coding genes (the atp8 gene is absent, as in most bivalves), 2 ribosomal RNA genes, and 22 transfer RNA genes. The heavy strand has an overall A+T content of 58.7%. GC and AT skews for the mt genome of C. farreri are 0.337 and ?0.184, respectively, indicating the nucleotide bias against C and A. The mitochondrial gene order of C. farreri differs drastically from the scallops Argopecten irradians, Mimachlamys nobilis and Placopecten magellanicus, which belong to the same family Pectinidae. 6623 bp non-coding nucleotides exist intergenically in the mitogenome of C. farreri, with a large continuous sequence (4763 bp) between tRNA Val and tRNA Asn . Two repeat families are found in the large continuous sequence, which seems to be a common feature of scallops. Phylogenetic analysis based on 12 concatenated amino acid sequences of protein-coding genes supports the monophyly of Pectinidae and paraphyletic Pteriomorphia with respect to Heteroconchia.  相似文献   

19.
Summary Two bean mitochondria methionine transfer RNAs, purified by RPC-5 chromatography and two-dimensional gel electrophoresis, have been sequenced usingin vitro post-labeling techniques.One of these tRNAsMet has been identified by formylation using anE. coli enzyme as the mitochondrial tRNAF Met. It displays strong structural homologies with prokaryotic and chloroplast tRNAF Met sequences (70.1–83.1%) and with putative initiator tRNAm Met genes described for wheat, maize andOenothera mitochondrial genomes (88.3–89.6%).The other tRNAMet, which is the mitochondrial elongator tRNAF Met, shows a high degree of sequence homology (93.3–96%& with chloroplast tRNAm Met, but a weak homology (40.7%) with a sequenced maize mitochondrial putative elongator tRNAm Met gene.Bean mitochondrial tRNAF Met and tRNAm Met were hybridized to Southern blots of the mitochondrial genomes of wheat and maize, whose maps have been recently published (15, 22), in order to locate the position of their genes.  相似文献   

20.
The 15,338-bp long complete mitochondrial genome (mitogenome) of the Japanese oak silkmoth, Antheraea yamamai (Lepidoptera: Saturniidae) was determined. This genome has a gene arrangement identical to those of all other sequenced lepidopteran insects, but differs from the most common type, as the result of the movement of tRNAMet to a position 5′-upstream of tRNAIle. No typical start codon of the A. yamamai COI gene is available. Instead, a tetranucleotide, TTAG, which is found at the beginning context of all sequenced lepidopteran insects was tentatively designated as the start codon for A. yamamai COI gene. Three of the 13 protein-coding genes (PCGs) harbor the incomplete termination codon, T or TA. All tRNAs formed stable stem-and-loop structures, with the exception of tRNASer(AGN), the DHU arm of which formed a simple loop as has been observed in many other metazoan mt tRNASer(AGN). The 334-bp long A + T-rich region is noteworthy in that it harbors tRNA-like structures, as has also been seen in the A + T-rich regions of other insect mitogenomes. Phylogenetic analyses of the available species of Bombycoidea, Pyraloidea, and Tortricidea bolstered the current morphology-based hypothesis that Bombycoidea and Pyraloidea are monophyletic (Obtectomera). As has been previously suggested, Bombycidae (Bombyx mori and B. mandarina) and Saturniidae (A. yamamai and Caligula boisduvalii) formed a reciprocal monophyletic group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号