首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study compares a protocol that mimics freezing of ram semen in static nitrogen vapor with two protocols with an initial low cooling rate in the first step, followed by higher cooling rates where ice nucleation occurs. Semen ejaculates, obtained from twelve adults rams, were diluted with TEST-based extender and frozen with either Protocol 1 (three-step decelerating cooling): from +5 °C to −35 °C (40 °C/min), from −35 °C to −65 °C (17 °C/min), and then from −65 °C to −85 °C (3 °C/min); or Protocol 2 (three-step accelerating cooling): from +5 °C to −5 °C (4 °C/min), from −5 °C to −110 °C (25 °C/min), and then from −110 °C to −140 °C (35 °C/min); or Protocol 3 (two-step accelerating cooling), from +5 °C to −10 °C (5 °C/min), and then from −10 °C to −130 °C (60 °C/min). Post-thaw sperm quality was reduced for all protocols (p < .05) compared with fresh semen. Post-thaw percentages of sperm motility characteristics and sperm with intact plasma membrane, intact acrosome, and intact mitochondrial membrane were greater using Protocol 3 than Protocol 2 (p < .05) and Protocol 1 (p < .01). In addition, the post-thaw percentage of sperm with fragmented DNA was lower (p < .05) using Protocol 3 compared with Protocol 1. The present results indicate that a cooling rate of 60 °C/min around and after the time point of ice nucleation provided better post thaw survival and function of ram sperm than lower (and/or decelerating) cooling rates.  相似文献   

2.
Although lung transplant remains the only option for patients with end-stage lung failure, short preservation times result in an inability to meet patient demand. Successful cryopreservation may ameliorate this problem; however, very little research has been performed on lung cryopreservation due to the inability to prevent ice nucleation or growth. Therefore, this research sought to characterize the efficacy of a small-molecule ice recrystallization inhibitor (IRI) for lung cryopreservation given its well-documented ability to control ice growth.Sprague-Dawley heart-lung blocks were perfused at room temperature using a syringe-pump. Cytotoxicity of the IRI was assessed through the subsequent perfusion with 0.4% (w/v) trypan blue followed by formalin-fixation. Ice control was assessed by freezing at a chamber rate of −5 °C/min to −20 °C and cryofixation using a low-temperature fixative. Post-thaw cell survival was determined by freezing at a chamber rate of −5 °C/min to −20 °C and thawing in a 37 °C water bath before formalin-fixation. In all cases, samples were paraffin-embedded, sliced, and stained with eosin.The IRI studied was found to be non-toxic, as cell membrane integrity following perfusion was not significantly different than controls (p = 0.9292). Alveolar ice grain size was significantly reduced by the addition of this IRI (p = 0.0096), and the addition of the IRI to DMSO significantly improved post-thaw cell membrane integrity when compared to controls treated with DMSO alone (p = 0.0034).The techniques described here provide a low-cost solution for rat ex vivo lung perfusion which demonstrated that the ice control and improved post-thaw cell survival afforded by IRI-use warrants further study.  相似文献   

3.
《Cryobiology》2009,58(3):304-307
Alternative techniques for the cryopreservation of kangaroo spermatozoa that reduced or eliminated the need for glycerol were investigated including; (1) freezing spermatozoa with 20% glycerol in pre-packaged 0.25 mL Cassou straws to enable rapid dilution of the glycerol post-thaw, (2) investigating the efficacy of 20% (v/v) dimethyl sulphoxide (DMSO) and dimethylacetamide (DMA—10%, 15% and 20% v/v) as cryoprotectants and (3) vitrification of spermatozoa with or without cryoprotectant (20% v/v glycerol, 20% v/v DMSO and 20% v/v DMA). Immediate in-straw post-thaw dilution of 20% glycerol and cryopreservation of spermatozoa in 20% DMSO produced no significant improvement in post-thaw viability of kangaroo spermatozoa. Spermatozoa frozen in 20% DMA showed post-thaw motility and plasma membrane integrity of 12.7 ± 1.9% and 22.7 ± 5.4%, respectively, while kangaroo spermatozoa frozen by ultra-rapid freezing techniques showed no evidence of post-thaw viability. The use of 10–20% DMA represents a modest but significant improvement in the development of a sperm cryopreservation procedure for kangaroos.  相似文献   

4.
The effect of thawing velocities ranging from 10°C/min to 1.800°C/min on the motility and acrosomal integrity of boar spermatozoa frozen at 1°C/min (suboptimal), 5°C/min, and 30°C/min (optimal) rate was studied with the sperm suspended for freezing in diluent containing 2, 4, or 6% of glycerol (v/v). The influence of thawing on sperm survival depends on the rate at which the sperm had been frozen. In semen frozen at a suboptimal rate of 1°C/min, the percentage of motile sperm (FMP) initially fell to 3.5–4.0% when the thawing rose to 200°C/ min, but, with further increases in thawing rate, increased and reached peak values (10.3–11.0% FMP) after thawing at 1,800°C/min. The percentage of sperm with normal apical ridge (NAR) also increased moderately with thawing rate, but the degree of improvement decreased as the glycerol level was increased. In semen frozen at 1°C/min, acrosomal integrity (NAR) was best maintained in 2% glycerol, reaching 22.9% NAR after thawing at 1,800°C/min. In semen frozen at the optimal rate of 30°C/min, the increases in thawing rates above 200°C/min substantially improved motility. Motility was generally higher in semen protected by 4 or 6% glycerol, with the peak values of 44 or 46% FMP, respectively, after thawing at 1,200°C/min. The proportion of sperm with NAR also increased with thawing rate, but as in the case of suboptimally frozen sperm it was influenced negatively by the glycerol concentration. The peak value 53% NAR was recorded in semen protected by 2% glycerol, frozen at 30°C/min, and thawed at 1,200°C/min. In view of the inverse relationship between FMP and NAR, selection of optimal conditions from among the interacting variables, freezing rate, glycerol concentration, and thawing rate requires compromising between maximal FMP and maximal NAR. Accordingly, we have adopted as optimal a protocol with a thawing rate of 1,200°C/min, a freezing rate of 30°C/min and concentrations of 3% glycerol. © 1993 Wiley-Liss, Inc.  相似文献   

5.
Reproduction in captive elephants is low and infant mortality is high, collectively leading to possible population extinction. Artificial insemination was developed a decade ago; however, it relies on fresh-chilled semen from just a handful of bulls with inconsistent sperm quality. Artificial insemination with frozen–thawed sperm has never been described, probably, in part, due to low semen quality after cryopreservation. The present study was designed with the aim of finding a reliable semen freezing protocol. Screening tests included freezing semen with varying concentrations of ethylene glycol, propylene glycol, trehalose, dimethyl sulfoxide and glycerol as cryoprotectants and assessing cushioned centrifugation, rapid chilling to suprazero temperatures, freezing extender osmolarity, egg yolk concentration, post-thaw dilution with cryoprotectant-free BC solution and the addition of 10% (v/v) of autologous seminal plasma. The resulting optimal freezing protocol uses cushioned centrifugation, two-step dilution with isothermal 285 m Osm/kg Berliner Cryomedium (BC) with final glycerol concentration of 7% and 16% egg yolk, and freezing in large volume by the directional freezing technique. After thawing, samples are diluted 1:1 with BC solution. Using this protocol, post-thaw evaluations results were: motility upon thawing: 57.2 ± 5.4%, motility following 30 min incubation at 37 °C: 58.5 ± 6.0% and following 3 h incubation: 21.7 ± 7.6%, intact acrosome: 57.1 ± 5.2%, normal morphology: 52.0 ± 5.8% and viability: 67.3 ± 6.1%. With this protocol, good quality semen can be accumulated for future use in artificial inseminations when and where needed.  相似文献   

6.
The post-thaw motility and the acrosome integrity of semen from 4 boars frozen with a programmable freezing machine, in mini (0.25 ml) and maxi (5 ml) plastic straws and in 10 × 5 cm TeflonR FEP-plastic bags (0.12 mm thick, 5 ml), were compared. The freezing of the semen was monitored by way of thermocouples placed in the straws and the bags. Three freezing programmes were used, namely A: from + 5° C, at a rate of 3° C/min, to −6° C, held for 1 min at –6° C, and followed by a cooling rate of 20° C/min to −100° C; B: a similar curve except that there was no holding time at −6° C and that the cooling rate was 30° C/min, and C: from +5°C to −100° C, with a cooling rate of 35° C/min, followed by storage in liquid N2. Despite the treezing curve assayed, both the mini-straws and the bags depicted much shorter freezing point plateaus as compared to the maxi-straws. Post-thaw sperm motility as well as the amount of normal apical ridges were equally significantly higher when semen was frozen in mini-straws or in bags than in maxi-straws. Significant differences in these post-thawing parameters were obtained between the freezing curves used. The stepwise freezing procedure A appeared as the best alternative for boar semen, considering this in vitro evaluation.  相似文献   

7.
Ram spermatozoa are sensitive to extreme changes in temperature during the freeze-thaw process. The degree of damage depends on a combined effect of various factors including initial freezing temperature. The present study was conducted to observe the effect of initial freezing temperature on post-thawing motility of ram spermatozoa of native and crossbred rams maintained in a semi-arid tropical environment. Good quality semen obtained from native Malpura and crossbred Bharat Merino rams were pooled within breed and diluted at a rate of 1000 million spermatozoa per milliliter in TEST—yolk–glycerol extender. Diluted semen samples were loaded in 0.25 ml straws and cooled to −25, −75 or −125 °C freezing temperature at the rate of −25 °C/min under controlled conditions before plunging into liquid nitrogen for storage. The thawing of straws was performed at 50 °C in a water bath for 10 s and motility characteristics of the frozen-thawed spermatozoa were assessed by a computer-assisted spermatozoa analysis technique. Initial freezing temperature significantly affected the post-thawing motility of sperm in both the breeds. The post-thawing % motility and rapid motile spermatozoa were significantly higher at initial freezing temperature of −125 °C and lower at −25 or −75 °C. The percentage medium motile sperm were similar at all three initial freezing temperatures. The percentage of slow motile and linearity of sperm varied (P<0.01) between the different freezing temperatures. The curvilinear velocity, average path velocity and straight line velocity of spermatozoa were higher (P<0.01) at −125 °C than −25 or −75 °C. Although the lateral head displacement of spermatozoa did not vary significantly between the different initial freezing temperatures, the stroke frequency was significantly lower at −25 °C than −75 or −125 °C. Except for % linearity, the average path velocity and straight line velocity, other spermatozoa characteristics were not significantly different between breeds. The interaction between freezing temperature and breed was significant only for the % motility and linearity of the spermatozoa. The study indicates that initial freezing temperature has a significant effect on spermatozoa motility and velocity following post-thawing. The best motile spermatozoa following thawing were achieved at −125 °C freezing temperature.  相似文献   

8.
Failure of cervical insemination with cryopreserved semen is hindering implementation of AI in sheep in field condition. Here the effect of equilibration time and catalase on post-thaw qualities of ram semen was investigated. Pooled semen was diluted (800 × 106 sperm mL−1) with a TES-Tris-fructose extender with 6% glycerol, 15% egg yolk and supplemented with 0, 50, 100 and 200 U mL−1 catalase and packaged into 0.25 mL straws. In experiment 1, straws were equilibrated at 5 °C either for 3 h in a cold cabinet (E3) or for 10 (E10) and 22 h (E22) inside a refrigerator. In experiment 2, all straws were equilibrated for 22 h inside refrigerator. Straws were frozen at −25 °C min−1 up to −125 °C using a cell freezer and finally plunged into liquid nitrogen. The post-thaw total and rapid motility were higher (P < 0.05) in E22 compared to E3 and E10. Sperm kinetics was comparable between E3 and E22, but lower in E10. Similarly, acrosome integrity, functional membrane integrity, percent high cholesterol (mCHO) and live-high mitochondrial membrane potential (MMP) were higher (P < 0.05) while live-high intracellular calcium and acrosome-reacted sperm were lower in E22 compared to E3 and E10. The percent rapid motile, high mCHO and live-high MMP were significantly (P < 0.05) lower in catalase-treated samples compared to the control, while the membrane integrity was comparable within the groups. In conclusion, pre-freezing equilibration for 22 h compared to 3 or 10 h resulted in higher post-thaw sperm functions while catalase had negative impact on cryopreservation of ram semen.  相似文献   

9.
A multifactorial study analyzed the effects of freezing method, cryoprotective diluent, semen to diluent ratio, and thawing velocity on post-thaw motility, progressive status, and acrosomal integrity of ram spermatozoa. Although semen to diluent ratio (1:3 vs 1:6, v/v) had no effect (P greater than 0.05), overall post-thaw spermatozoal viability was highly dependent on freezing method and cryoprotectant. Improved results were obtained by freezing semen in 0.5-ml French straws compared to dry ice pelleting. Manually freezing straws 5 cm above liquid nitrogen (LN2) was comparable to cooling straws in an automated, programmable LN2 unit. Of the two cryoprotective diluents tested, BF5F (containing the surfactant component sodium and triethanolamine lauryl sulfate) yielded approximately 50% fewer (P less than 0.05) spermatozoa with loose acrosomal caps compared to TEST. Thawing straws in a water bath at a higher velocity (60 degrees C for 8 sec) had no effect (P greater than 0.05) on spermatozoal motility, progressive status ratings, or acrosomal integrity when compared to a lower rate (37 degrees C for 20 sec). For the TEST group, thawing pellets in a dry, glass culture tube promoted (P less than 0.05) percentage sperm motility at 3 and 6 hr post-thawing, but for BF5F diluted semen this approach decreased the % of spermatozoa with normal apical ridges. The results suggest that the poor fertility rates often experienced using thawed ram semen likely result not only from reduced sperm motility, but also from compromised ultrastructural integrity. This damage is expressed by an increased loosening of the acrosomal cap, a factor which appears insensitive to freezing method but markedly influenced by the cryoprotective properties of the diluents tested.  相似文献   

10.
Sustainability of channel catfish, Ictalurus punctatus ♀ × blue catfish, Ictalurus furcatus ♂ hybrid aquaculture relies on new innovative technologies to maximize fry output. Transplanting spermatogonial stem cells (SSCs) from blue catfish into channel catfish hosts has the potential to greatly increase gamete availability and improve hybrid catfish fry outputs. Cryopreservation would make these cells readily accessible for xenogenesis, but a freezing protocol for blue catfish testicular tissues has not yet been fully developed. Therefore, the objectives of this experiment were to identify the best permeating [dimethyl sulfoxide (DMSO), ethylene glycol (EG), glycerol, methanol] and non-permeating (lactose or trehalose with egg yolk or BSA) cryoprotectants, their optimal concentrations, and the best freezing rates (−0.5, −1.0, −5.0, −10 °C/min until −80 °C) that yield the highest number of viable type A spermatogonia cells. Results showed that all of these factors had significant impacts on post-thaw cell production and viability. DMSO was the most efficient permeating cryoprotectant at a concentration of 1.0 M. The optimal concentration of each cryoprotectant depended on the specific cryoprotectant due to interactions between the two factors. Of the non-permeating cryoprotectants, 0.2 M lactose with egg yolk consistently improved type A spermatogonia production and viability beyond that of the 1.0 M DMSO control. The overall best freezing rate was consistent at −1 °C/min, but similar results were obtained using −0.5 °C/min. Overall, we recommend cryopreserving blue catfish testicular tissues in 1.0 M DMSO with 0.2 M lactose and egg yolk at a rate of either -0.5 or −1 °C/min to achieve the best cryopreservation outcomes. Continued development of cryopreservation protocols for blue catfish and other species will make spermatogonia available for xenogenic applications and genetic improvement programs.  相似文献   

11.
Ram semen, collected by artificial vagina, was diluted and processed for long-term storage as described by P. S. Fiser, L. Ainsworth, and R. W. Fairfull (Canad. J. Anim. Sci. 62, 425-428, 1982). The concentration of the cryoprotectant, glycerol, was adjusted to 4% in the diluted semen prior to freezing by a one-step addition at 30 degrees C (Method 1), by cooling the semen to 5 degrees C and addition of the glycerol gradually over 30 min (Method 2), by one-step addition of glycerol prior to equilibration for 2 hr (Method 3), or by cooling to 5 degrees C, followed by a holding period of 2 hr at 5 degrees C, and the one-step addition of glycerol just prior to freezing (Method 4). After thawing, the glycerol concentration of the semen was reduced by stepwise dilution from 4 to 0.4% over 15 or 30 min or by a one-step ten-fold dilution. The average post-thaw percentage of motile spermatozoa was significantly lower after addition of glycerol by Method 1 (39.9%) than when the glycerol was added by the other three methods (range, 44.0-46.4% averaged over the glycerol dilution). The average post-thaw percentage of intact acrosomes (61.2%), highest in semen in which the glycerol was added by Method 2, was not significantly different from those in which glycerol was added to semen by Methods 3 and 4, but it was significantly higher than that found in semen in which the glycerol was added by Method 1 (54.4%). However, when averaged over the method of glycerolation, the post-thaw percentage of motile spermatozoa (range, 43.7-44.2%) and the percentage of intact acrosomes (range, 56.8-59.5%) did not differ significantly in semen subjected to gradual decrease in glycerol concentration and diluent osmolality (over 15 and 30 min) or by a one-step, 10-fold dilution. These data indicate that post-thaw survival of spermatozoa can be influenced by the way in which glycerol is added prior to freezing. However, post-thaw spermatozoa motility and acrosomal integrity can be maintained even after a rapid decrease in glycerol concentration such as that which accompanies insemination or dilution of semen for assessment of motility.  相似文献   

12.
《Theriogenology》2013,79(9):2120-2128
The objective was to compare a proprietary egg yolk-based cryopreservation medium with a chemically defined soy-based medium, as well as to examine effects of temperature of glycerol addition on sperm parameters and IVF after freezing and thawing of domestic cat sperm. Semen was collected from adult cats (four males and three ejaculates per male), divided in four equal aliquots, and extended in either egg yolk with 4% glycerol added before (EYG) or after (EY) cooling to 5 °C, or soy-lecithin with 4% glycerol added before (SLG) or after (SL) cooling to 5 °C. Extended sperm were frozen in straws over liquid nitrogen vapor. Sperm progressive motility (%) and rate of progressive movement (scale of 0–5) were evaluated at 0, 1, 3, 6, and 24 h post-thaw. Sperm capacitation, acrosome integrity, and DNA integrity were assessed at 15 min post-thaw. Effects of media (EY or SL) on IVF success was also examined (three males and three ejaculates per male). Sperm motility was greater (P < 0.05) in soy-based compared with egg yolk-based media at 3, 6, and 24 h post-thaw. A higher (P < 0.05) percentage of noncapacitated sperm (pattern F) were present in soy-based (SLG, 63.7 ± 9.2%; and SL, 64.1 ± 9.2%) compared with egg yolk-based (EYG, 49.9 ± 7.9%; and EY, 52.4 ± 18.6%) cryopreservation media, regardless of temperature of glycerol addition. Addition of glycerol at 5 °C increased (P < 0.05) percentage of sperm motility at 6 h (EYG 16.3 ± 8.3% vs. EY, 24.0 ± 11.7%; SLG, 36.7 ± 6.5% vs. SL, 42.9 ± 10.1%) and 24 h (EYG, 2.1 ± 3.3% vs. EY, 8.3 ± 3.9%; SLG, 11.3 ± 8.3% vs. SL, 18.8 ± 7.4%) post-thaw in both media. There were no differences (P > 0.05) between cryodiluents in embryo cleavage, percentage of embryos reaching blastocyst, or cell number per blastocyst. The chemically defined, soy-based medium resulted in better preservation of long-term motility and capacitation status of frozen-thawed domestic cat sperm compared with a commercial egg yolk-based extender, without compromising fertilizing ability.  相似文献   

13.
Mesenchymal stromal cells (MSCs) have been demonstrated to possess anti-inflammatory and antimicrobial properties and are of interest in biotechnologies that will require cryopreservation. Recently, MSC-like cells were isolated from colostrum and milk. We used an interrupted slow freezing procedure to examine cryoinjury incurred during slow cooling and rapid cooling of MSC-like cells from swine colostrum. Cells were loaded with either dimethyl sulfoxide (Me2SO) or glycerol, cooled to a nucleation temperature, ice-nucleated, and further cooled at 1 °C/min. At several temperatures along the cooling path, cells were either thawed directly, or plunged into liquid nitrogen for storage and later thawed. The pattern of direct-thaw and plunge-thaw responses was used to guide optimization of cryopreservation protocol parameters. We found that both 5% Me2SO (0.65 M, loaded for 15 min on ice) or 5% glycerol (0.55 M, loaded for 1 h at room temperature) yielded cells with high post-thaw membrane integrity when cells were cooled to at least −30 °C before being plunged into, and stored in, liquid nitrogen. Cells cultured post-thaw exhibited osteogenic differentiation similar to fresh unfrozen control. Fresh and cryopreserved MSC-like cells demonstrated antimicrobial activity against S. aureus. Also, the antimicrobial activity of cell-conditioned media was higher when both fresh and cryopreserved MSC-like cells were pre-exposed to S. aureus. Thus, we were able to demonstrate cryopreservation of colostrum-derived MSC-like cells using Me2SO or glycerol, and show that both cryoprotectants yield highly viable cells with osteogenic potential, but that cells cryopreserved with glycerol retain higher antimicrobial activity post-thaw.  相似文献   

14.
This prospective study aimed to determine the effects of dry nitrogen cryostorage on human sperm characteristics in comparison with liquid nitrogen cryostorage. For this purpose, 42 men undergoing routine semen analysis (21 normozoospermia and 21 with altered semen parameters) were analyzed. After slow freezing, half of the straws of each sample were randomly stored in liquid and dry tanks, at the top and bottom levels of the latter. After 6 months storage, thawed samples were treated by density gradient centrifugation and sperm characteristics were compared. There was no difference in sperm progressive motility (15.1% ± 14.2% vs. 15.1% ± 12.7%; p = 0.76), sperm vitality (25.5% ± 17.7% vs. 26.2% ± 19%; p = 0.71), percentages of acrosome-reacted spermatozoa (38% ± 8.5% vs. 38.5% ± 7.4%; p = 0.53) and DNA fragmentation spermatozoa (27.3% ± 12.4% vs. 28.5% ± 12.9%, p = 0.47) after cryostorage in the dry or the liquid nitrogen tank. Moreover, we did not observe differences between either cryostorage system for normal and altered sperm samples. This lack of difference was also observed whatever the floor level of cryostorage in the dry tank. The temperature measurement of the dry tank showed a stable temperature at −194 °C throughout storage whatever the storage floor level, guaranteeing the stability of the low temperatures suitable for human sperm storage. Because of its greater safety, dry storage without contact with the liquid phase should be preferred and can be a useful alternative for the cryostorage of human sperm samples.  相似文献   

15.
Improving aspects of platelet cryopreservation would help ease logistical challenges and potentially expand the utility of frozen platelets. Current cryopreservation procedures damage platelets, which may be caused by ice recrystallization. We hypothesized that the addition of a small molecule ice recrystallization inhibitor (IRI) to platelets prior to freezing may reduce cryopreservation-induced damage and/or improve the logistics of freezing and storage. Platelets were frozen using standard conditions of 5–6% dimethyl sulfoxide (Me2SO) or with supplementation of an IRI, N-(2-fluorophenyl)-d-gluconamide (2FA), prior to storage at −80 °C. Alternatively, platelets were frozen with 5–6% Me2SO at −30 °C or with 3% Me2SO at −80 °C with or without 2FA supplementation. Supplementation of platelets with 2FA improved platelet recovery following storage under standard conditions (p = 0.0017) and with 3% Me2SO (p = 0.0461) but not at −30 °C (p = 0.0835). 2FA supplementation was protective for GPVI expression under standard conditions (p = 0.0011) and with 3% Me2SO (p = 0.0042). Markers of platelet activation, such as phosphatidylserine externalization and microparticle release, were increased following storage at −30 °C or with 3% Me2SO, and 2FA showed no protective effect. Platelet function remained similar regardless of 2FA, although functionality was reduced following storage at −30 °C or with 3% Me2SO compared to standard cryopreserved platelets. While the addition of 2FA to platelets provided a small level of protection for some quality parameters, it was unable to prevent alterations to the majority of in vitro parameters. Therefore, it is unlikely that ice recrystallization is the major cause of cryopreservation-induced damage.  相似文献   

16.
The aim of this study was to examine effects of polyvinyl alcohol (PVA) on buck semen quality. Seventy-five ejaculates were collected and diluted in Tris-egg yolk extender containing one of three PVA co-polymers of 9, 18 and 100 kDa. Five different concentrations 0.001, 0.01, 0.1, 1 and 2% of the PVA co-polymers were added to the extender with respected to the decreasing glycerol concentrations of 5, 4, 3, 3, 2% respectively. Following freeze-thaw, sperm motility, viability, acrosome-intact spermatozoa and mitochondrial membrane potentials were analysed. During freezing, sperm seeding temperature were recorded with a cryo-thermometer. PVA 2% glycerol group gained 8.2 ± 1 °C latent heat plateau difference comparing to control. Highest motility was found in PVA 18 kDa with regardless of the dosage (P < 0.001). All PVA copolymers gained higher motility independently in all other dosage groups (except PVA 2%) comparing to control (P < 0.001). Live spermatozoa rate between treatment groups were statistically insignificant (P = 0.953), however, when moribund sperm were gated out PVA 9 induced better protection with respect to other groups (P < 0.05). Intact acrosome rate was statically higher in PVA groups (P < 0.002) and subgroups (P < 0.001). Mitochondrial membrane potential was higher in all experimental groups comparing to control group (P < 0.001). PVA co-polymer concentrations of 0.01, 0.1, 1 and 2% v/v (PBS: PVA) decreased the concentration of glycerol required for freezing in a 100 ml volume by 0, 1, 2, 2, and 3% v/v from the control dose (5%), respectively. In conclusion, synthetic PVA-derived ice blocking agents offer new opportunities for improving the post-thaw buck sperm quality.  相似文献   

17.
The objective of this study was to compare the effects of different concentrations of two different cryoprotectants (glycerol, G and ethylene glycol, EG) and trehalose (T), added to the semen extender, on post-thaw ram sperm parameters. Ejaculates, collected from 6 Merino rams, were pooled and evaluated at 37 °C. The pooled samples were divided into six equal aliquots, and diluted in Tris-based extenders containing 5% G, 3% G + 60 Mm T, 1.5% G + 100 Mm T, 5% EG, 3% EG + 60 mM T, and 1.5% EG + 100 Mm T. Subsequently, the samples were cooled to 5 °C, frozen in 0.25-ml French straws, and stored in liquid nitrogen (LN2). Frozen samples were thawed individually, at 37 °C for 25 s in a water bath, for evaluation. Sperm motility was assessed using a phase-contrast microscope with a warm stage maintained at 37 °C. Acrosome integrity (FITC/PNA-PI), sperm viability (SYBR-14/PI), mitochondrial activity (JC-1/PI), DNA damage (COMET assay) and DNA fragmentation (TUNEL test) were determined. The group of samples diluted in an extender containing 5% of glycerol (Group 5% G) displayed higher percentages of subjective motility, viability and mitochondrial activity of sperm, compared to the other groups (P < 0.05). On the other hand, Group 3% G + 60 mM T yielded the second-best results for subjective motility, viability and mitochondrial activity of sperm, when compared to the other groups. The post-thaw sperm parameters of Group 3% G + 60 Mm T did not show any statistically significant difference from those of Group 5% G. There were no statistically significant differences between the groups for acrosome integrity (P > 0.05).The results of the COMET assay showed that the use of low concentrations of cryoprotectants in combination with trehalose decreased sperm DNA damage. Accordingly, Group 1.5% G + 100 mM T and Group 3% EG + 60 mM T benefited from a significantly stronger cryoprotective effect on DNA integrity, in comparison to Group 5% G (P < 0.05). According to the results of the TUNEL test, the combined use of low concentrations of cryoprotectants with trehalose decreased sperm DNA damage, when compared to the use of 5% glycerol, but this difference was statistically insignificant (P > 0.05).In conclusion, G and EG concentrations can be reduced by adding various amounts of T (60 mM, 100 mM) to the semen extender. The addition of 5% of glycerol and 3% G + 60 mM T to the semen extender did not yield statistically different post-thaw sperm parameters, when compared for protection against cryoinjury. Post-thaw sperm parameters can be improved by the supplementation of the semen extender with 3% G + 60 mM T. Thus, we recommend the use of freezing extenders containing low cryoprotectant concentrations (3% G) combined with trehalose to avoid the high level of toxic and osmotic damage caused by 5% G.  相似文献   

18.
Genus Chirostoma belongs to Atherinopsidae family and it is an endemic species from the Mesa Central in Mexico. Abundance of its species have decreased and some ones have been placed on the threatened species list, because of overfishing, urbanization, industrialization, destruction, habitat fragmentation, pollution and exotic species introduction. Chirostoma jordani (Woolman, 1894) is a freshwater fish with biological, ecological, cultural, and commercial importance. It has a broad distribution in Lerma drainage, Durango and Mexico City. In this last locality, their populations, although small, still persist in Xochimilco Lake; it is necessary to implement biotechnologies for their conservation, because of these causes and their basic biology. The aim was to standardize a sperm cryopreservation protocol in C. jordani, to determine extender solution, cryoprotective agent type and concentration, equilibrium time, freezing and thawed rate to be applied in assisted reproduction and conservation of genus Chirostoma. Chirostoma jordani adult males were collected in Atlangatepec Dam, Tlaxcala State, Mexico, to fresh seminal evaluation and cryopreservation protocol standardization. Four cryoprotectants effect was evaluated: dimethylsulfoxide (DMSO), methanol (MeOH), ethylene glycol (EG), and glycerol (GL) at five concentrations: 2%, 6%, 10%, 14% and 16% v/v. Higher and lower DMSO and MeOH 10% and EG 14%, decreased post-thaw motility percentage. Both DMSO and MeOH 10% and EG 14% had the highest post-thaw motility percentages, 48.8 ± 1.5%, 54.5 ± 1.0% and 53.5 ± 1.0%, at 15, 10, and 5 min equilibrium times, respectively, thawed at 40°C. Chirostoma jordani sperm can be cryopreserved with both DMSO and MeOH 10%, and EG 14%. These ones can be used for assisted reproduction. GL was not efficient, since it presented a post-thaw motility percentage very low.  相似文献   

19.
Alternative techniques for the cryopreservation of kangaroo spermatozoa that reduced or eliminated the need for glycerol were investigated including; (1) freezing spermatozoa with 20% glycerol in pre-packaged 0.25 mL Cassou straws to enable rapid dilution of the glycerol post-thaw, (2) investigating the efficacy of 20% (v/v) dimethyl sulphoxide (DMSO) and dimethylacetamide (DMA—10%, 15% and 20% v/v) as cryoprotectants and (3) vitrification of spermatozoa with or without cryoprotectant (20% v/v glycerol, 20% v/v DMSO and 20% v/v DMA). Immediate in-straw post-thaw dilution of 20% glycerol and cryopreservation of spermatozoa in 20% DMSO produced no significant improvement in post-thaw viability of kangaroo spermatozoa. Spermatozoa frozen in 20% DMA showed post-thaw motility and plasma membrane integrity of 12.7 ± 1.9% and 22.7 ± 5.4%, respectively, while kangaroo spermatozoa frozen by ultra-rapid freezing techniques showed no evidence of post-thaw viability. The use of 10–20% DMA represents a modest but significant improvement in the development of a sperm cryopreservation procedure for kangaroos.  相似文献   

20.
Results on procedures for freezing stallion semen and the subsequent fertility during 20 years are presented. The present system applied in French National Stud includes: (1) a freezing protocol (dilution in milk, centrifugation and addition of freezing extender (INRA82+egg yolk (2%, v/v)+glycerol (2.5%, v/v) at 22 degrees C, a moderate cooling rate to 4 degrees C and freezing at -60 degrees C/min in 0.5-ml straws); (2) selection of ejaculates showing post-thaw rapid motility >35%; and (3) an insemination protocol (mares examined once daily, two AI of 400 x 10(6) spermatozoa 24 h apart before ovulation, sufficient number of straws to have the possibility to perform six AI of 400 x 10(6) total spermatozoa, i.e. 2.4 x 10(9) total spermatozoa available per mare per season). This system was applied to >110 stallions per year, the average post-thaw motility of ejaculates was 50% (>1800 ejaculates) before selection. The semen freezability was defined as the number of selected ejaculates divided by the total number of ejaculates frozen. Of the stallions, 5, 4, 5, 21 and 64% had semen freezability of 0-10, 10-33, 33-60, 60-90 and over 90%, respectively. Per-cycle pregnancy rate was 45-48% (>1500 mares per year, 1.8 cycles per mare) and foaling rate 64%. In comparison, per-cycle pregnancy rate and foaling rate of mares hand-mated to stallions were 57-59% and 64%, respectively. The average number of straws used was 32-35 (1.75 x 10(9) total spermatozoa) per mare per season. According to our results and the literature, the most important factors for improving fertility of frozen equine semen include: (1) a low concentration of glycerol (2-3.5% final concentration); (2) a suitable base extender for freezing like Lactose-Glucose EDTA or INRA82; (3) a post-thaw motility >30-35%; and (4) a sufficient number of spermatozoa per mare per season (1.5-2 x 10(9) total spermatozoa for two to three cycles) divided into small units. Numbers of spermatozoa, lower than 750.10(6) total spermatozoa per cycle, could result in lower per-cycle pregnancy rate with higher additional costs for management of mares. Because there are no particular regulations on quality and quantity of equine semen in the European Community, there is a need for the uniformity of information about frozen semen. A codification is suggested, based on the number of spermatozoa available per mare per season, the post-thaw motility and the final glycerol concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号