首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study was carried out to investigate the cryoprotective efficacy of Equex STM Paste on the quality of canine post-thaw epididymal spermatozoa. Following castration, spermatozoa were flushed from the cauda epididymides. Epididymal spermatozoa from 13 of 16 dogs with a sperm motility of >70% were frozen in an egg yolk-Tris extender, supplemented with Equex STM Paste (0.5%, v/v); the extender free of Equex STM Paste served as a control cryoprotective diluent. The quality of spermatozoa, judged by its motility, plasma membrane integrity and acrosome integrity, was evaluated on four occasions, immediately after collection, after equilibration and at 0 and 2h post-thaw. Reducing the temperature to 4 degrees C for 2h prior to freezing decreased sperm motility (P=0.001), but had no effects on membrane integrity or acrosome integrity. Immediately after thawing, the percentage of acrosome-intact spermatozoa significantly decreased in samples frozen without Equex STM Paste compared to freshly collected or Equex-treated samples. After incubation at 37 degrees C for 2h post-thaw, a greater percentage of motile spermatozoa (P=0.018) and spermatozoa with intact acrosomes (P=0.001) were observed in Equex-treated samples compared with the control. The percentage of membrane-intact spermatozoa did not differ significantly between Equex-treated and control samples at any time. Supplementation with Equex STM Paste in the semen extender was effective for freezing canine epididymal spermatozoa because it protected acrosome integrity against damage induced by cryopreservation and it prolonged post-thaw sperm motility during in vitro incubation at 37 degrees C.  相似文献   

2.
Yildiz C  Kaya A  Aksoy M  Tekeli T 《Theriogenology》2000,54(4):579-585
Influence of different sugars supplemented to the extender on the motility, viability and intact acrosome rates of dog spermatozoa during dilution, equilibration and freezing was studied. The ejaculate was divided into 10 aliquots, which were diluted 1:3 with TRIS-citric acid extender containing 240 mMTRIS, 63 mM citric acid, 8% (v/v) glycerol, 20% (v/v) egg yolk and 70 mM sugar, which was either fructose, galactose, glucose, xylose (monosaccharide), lactose, trehalose, maltose, sucrose (disaccharide) or raffinose (trisaccharide). No sugar was added to the extender in the control group. Extended semen samples were cooled to 5 degrees C over 45 min, packaged in 0.25-mL straws, equilibrated for 2 h at 5 degrees C and frozen in liquid nitrogen vapor. Samples were thawed by placing straws into 37 degrees C water for 30 sec. Motility, viable sperm and intact acrosome rates decreased gradually in all groups after equilibration and consecutively freezing (P<0.001). The type of sugar significantly effected motility, viability and acrosomal integrity during equilibration and freezing (P<0.05). Galactose, lactose, trehalose, maltose and sucrose reduced damaged acrosome percentages in equilibrated samples (P<0.05). Sugar supplementation did not enhance motility and viability during equilibration. The disaccharides, except lactose, reduced post-thaw dead sperm and/or damaged acrosome percentages without promoting post-thaw motility (P<0.01), whereas monosaccharides, especially fructose and xylose, improved motility (P<0.05) along with viability and intact acrosome rates (P<0.05). Trehalose, xylose and fructose significantly increased total active sperm rates (motility x live sperm rate x normal acrosome rate) compared to other sugars (P<0.01) and control (P<0.0001) in frozen thawed samples. Therefore, sugar supplementation of the extender influenced post-equilibration and post-thaw sperm quality, and the type or locality of protective impact of the sugar on dog spermatozoa vary according to type of the sugar.  相似文献   

3.
The supplementation of the freezing diluent with 3 amino acids (glutamine, proline and histidine) and 1 amino acid-related compound (betaine) in preserving stallion spermatozoa diluted in INRA82 extender containing 2.5% (v/v) glycerol and 2% (v/v) egg yolk (control extender) during freezing and thawing was studied at 0, 40, 80, 120 and 160 mM in 20 split ejaculates (10 stallions x 2 ejaculates; Experiment 1). Glutamine and proline were studied at 0, 10, 20, 30, 40, 50, 60, 70 and 80 mM in 20 split ejaculates (10 stallions x 2 ejaculates; Experiment 2). In each experiment, spermatozoa were evaluated after thawing by computer automated sperm analyzer. The percentage of motile spermatozoa (faster than 30 microns/sec) was assessed. In addition, the velocity of the average path (VAP), the straight line velocity (VSL), the curvilinear velocity (VCL) and the amplitude of the lateral head displacement (ALH) were also measured. In Experiment 1, only glutamine (40 mM) significantly improved sperm motility (56.0% +/- 3.0 vs 49.7% +/- 1.6; P < 0.05) compared with the control extender, while velocities were unaffected at concentrations of 40 to 120 mM. However, at 160 mM, a significant decrease in motility and velocity was observed for all amino acids. In Experiment 2, motility in glutamine (range 41.1% +/- 3.8%; 42.4% +/- 3.6) and proline (43.0% +/- 3.7; 45.6% +/- 3.8) extenders compared with the control (34.7% +/- 1.6) was improved significantly (P < 0.05). Sperm velocity was improved at concentrations higher than 40 mM glutamine and 50 mM proline.  相似文献   

4.
In an attempt to find a suitable freezing method for goat semen, two experiments were conducted to study the influence of trehalose on the cryopreservation of goat spermatozoa. In experiment 1, goat spermatozoa were frozen in trehalose extender (0.375 M) alone (100%) or at different combinations of trehalose with Tris-citric acid-glucose (TCG) extender (0%, 25%, 50%, 75%). Final concentrations of 20% (v:v) egg yolk and 4% (v:v) glycerol were employed in the extenders (osmolality = 370, pH = 7). Sperm motility was assessed using a computer-assisted sperm analysis system and acrosome integrity was assessed using fluorescein isothiocyanate-labeled peanut agglutinin (FITC-PNA). The sperm-motility parameters improved significantly by increasing the concentration of trehalose (P < 0.05) and significantly high recovery rates for the motility parameters were also achieved by a high concentration of trehalose (P < 0.05). Motility of the frozen-thawed spermatozoa after a 3-h incubation improved significantly with increasing concentrations of trehalose in the extender (P < 0.05). The 75% and 100% trehalose extenders yielded a significant increase in the percentage of spermatozoa with intact acrosome (P < 0.05). In experiment 2, merocyanine 540/Yo-Pro staining was used to study the influence of trehalose on membrane fluidity compared with that of sucrose and TCG. Percentage of cells with high merocyanine fluorescence was significantly higher in spermatozoa treated with trehalose than sucrose or TCG (P < 0.05), indicating a significantly highest membrane fluidity of sperm samples extended with trehalose solution. We thus conclude that the substitution of a Tris-citric acid diluent composition with trehalose significantly improves the freezability of goat spermatozoa. Furthermore, the cryoprotective effects of trehalose observed in this study may be due to enhanced sperm membrane fluidity before freezing.  相似文献   

5.
Two experiments were conducted to determine the effect of sodium dodecyl sulfate (SDS) added to a trehalose-egg yolk extender on the cryopreservation of goat spermatozoa. In Experiment 1, semen from four goats was frozen in trehalose extender (osmolality = 370, pH = 7) containing 4 and 20% (v/v) glycerol and egg yolk, respectively, and 0.035-0.2% SDS. After thawing, sperm motility and acrosome integrity were assessed using a computer-assisted sperm analysis (CASA) system and fluorescein isothiocyanate-conjugated peanut agglutinin (FITC-PNA). Both motility and progressive motility were improved (P < 0.05) by increasing the concentration of SDS in the trehalose-egg yolk extender, with the best results obtained with SDS at 0.1% (80.0 +/- 1.5% and 65.0 +/- 1.7%, respectively). There were no significant differences in path velocity when spermatozoa were frozen in a diluent containing 0.035, 0.05, 0.075, or 0.1% SDS, but path velocity decreased significantly with 0.2% SDS. The percentage of acrosome-intact sperm were highest (P < 0.05) when 0.05% (74.0 +/- 1.1) and 0.075% (70.0 +/- 1.2) SDS were used. In Experiment 2, the effect of diluent storage time (6, 24, or 48 h) before freezing on the cryoprotective effect of SDS was investigated. Prolonged storage of the diluent had slight cryoprotective effects when 0.2% SDS is used, while motility and the acrosome integrity of the cryopreserved spermatozoa improved slightly when the extender was stored for 48 h at 5 degrees C before use. In conclusion, goat sperm freezability was significantly improved when sperm were frozen in a trehalose-egg yolk extender containing an adequate concentration of SDS.  相似文献   

6.
K.M. Morton  G. Evans 《Theriogenology》2010,74(2):311-1133
Two experiments were conducted to determine the effects of glycerol concentration and Equex STM® paste on the post-thaw motility and acrosome integrity of epididymal alpaca sperm. In Experiment 1, epididymal sperm were harvested from male alpacas, diluted, and cooled to 4 °C in a Lactose cooling extender, and pellet-frozen in a Lactose cryodiluent containing final glycerol concentrations of 2, 3, or 4%. In Experiment 2, epididymal sperm were diluted in Biladyl®, cooled to 4 °C, stored at that temperature for 18-24 h, and further diluted with Biladyl® without or with Equex STM® paste (final concentration 1% v:v) before pellet freezing. In Experiment 1, sperm motility was not affected by glycerol concentration immediately (2%: 16.1 ± 4.6%; 3%: 20.5 ± 5.9% and 4%: 18.5 ± 6.6%; P > 0.05) or 3h post thaw (< 5% for all groups; P > 0.05). Post-thaw acrosome integrity was similar for sperm frozen in 2% (83.6 ± 1.6%), 3% (81.3 ± 2.0%) and 4% glycerol (84.8 ± 2.0%; P > 0.05) but was higher 3h post-thaw for sperm frozen in 3% (75.7 ± 3.8%) and 4% (77.2 ± 4.1%) than 2% glycerol (66.9 ± 2.7%; P < 0.05). In Experiment 2, sperm motility was higher immediately after thawing for sperm frozen in the presence of Equex STM® (Equex®: 21.5 ± 3.5%; control: 14.4 ± 2.1%; P < 0.05) but was similar at 3h post-thaw (P > 0.05). Acrosome integrity was similar for sperm frozen with or without Equex STM® paste immediately (control: 89.6 ± 1.2%; Equex®: 91.1 ± 1.4%; P > 0.05) and 3 h post-thaw (control: 69.3 ± 3.7%; Equex®: 59.9 ± 5.8%; P > 0.05). Sperm cryopreserved in medium containing 3-4% glycerol and 1% Equex STM® retained the best motility and acrosome integrity, even after liquid storage for 18-24 h at 4 °C prior to cryopreservation.  相似文献   

7.
The aim of this study was to evaluate the cryoprotective effect of different freezing extenders against cryopreservation injuries on Iberian boar sperm. The sperm-rich fraction was collected and pooled from six sexually mature Iberian boars, and was frozen in different extenders containing glucose, lactose or fructose as sugar source and including Orvus ES Paste only in the freezing extender-2 (Glucose; Lactose and Fructose) or in both freezing extenders (Glucose2; Lactose2 and Fructose2). During the cryopreservation process, the supernatant was removed after the centrifugation step, then was extended with freezing extender-1 for the equilibration period and with freezing extender-2 immediately before freezing. Post-thaw sperm characteristics, such as plasma membrane integrity (SYBR-14/PI), mitochondrial function (Rhodamine 123) and acrosome integrity (NAR), were monitored. Overall sperm motility and the individual kinematic parameters of motile spermatozoa (assessed by the computer-aided sperm analysis system Sperm Class Analyzer [SCA]) were recorded in the different experimental treatments. Measurements were taken at 30 and 150 min post-thaw. The state of the acrosome after thawing did not show significant differences between the freezing extenders studied. Freezing–thawing caused a significant decrease (P < 0.001) in plasma membrane integrity and in mitochondrial activity in the spermatozoa frozen with Orvus ES Paste in both freezing extenders. Furthermore, spermatozoa frozen with Orvus ES Paste in both freezing extenders exhibited lower (P < 0.05) motility and kinematic parameters than those frozen in the absence of Orvus ES Paste in the first freezing extender. The spermatozoa frozen with the Lactose extender and with Orvus ES Paste only in the second freezing extender showed a better evolution of the motility and kinematic characteristics (P < 0.05) over time. The deterioration in post-thaw sperm motility and kinematic parameters were concurrent with reduced sperm characteristics. It can be suggested that in the Iberian pig, the beneficial effects of Orvus ES Paste during the freezing process of spermatozoa is time dependent. The analysis of different sperm characteristics such as motility, plasma membrane integrity and mitochondrial function, determined that the extenders studied in the present experiment affected the quality of frozen-thawed semen in Iberian boar.  相似文献   

8.
Aboagla EM  Maeda T 《Theriogenology》2011,76(3):538-546
Arbutin (4-hydroxyphenyl-glucopyranoside) is a glycosylated hydroquinone present in high concentrations in the leaves of several plants capable of surviving prolonged, extreme dehydration. Two experiments were conducted to determine the effects of arbutin on cryopreservation of goat sperm. In Experiment 1, goat sperm were frozen in extenders with various ratios of Tris-citric acid-glucose (TCG) and arbutin; concentrations of the latter were 0.0 (only TCG), 0.1, 0.2, 0.3, and 0.4 M (only arbutin)]. All extenders had 20% (v/v) egg yolk (EY) and 4% (v/v) glycerol (osmolality = 370 mOsm, pH = 7.0). Sperm motility and acrosome integrity were assessed using CASA, and fluorescein isothiocyanate-labeled peanut agglutinin (FITC-PNA), respectively. Percentages of motile and progressively motile sperm improved with the addition of arbutin; results were optimal (89.0 and 70.0%, respectively; P < 0.05), with 0.4 M arbutin. Furthermore, arbutin improved (P < 0.05) post-thaw recovery rates for both motility and progressive motility. After incubation for 3 h, motility of frozen-thawed washed sperm improved (70%, P < 0.05) with arbutin in the extender. The percentage of sperm with an intact acrosome peaked (77.2%, P < 0.05) with 0.4 M arbutin in the extender. In Experiment 2, the percentage of cells with merocyanine 540/Yo-Pro staining was higher in sperm treated with arbutin than with TCG (P < 0.05), with the best result (58.0%) with 0.4 M arbutin; therefore, arbutin increased membrane fluidity. In conclusion, substitution of a TCG-EY diluent composition with arbutin improved freezability of goat sperm (apparently due to increased membrane fluidity). Furthermore removal of arbutin by centrifugation after freezing and thawing increased sperm longevity.  相似文献   

9.
The objective was to develop a method for cryopreserving microencapsulated canine sperm. Pooled ejaculates from three beagle dogs were extended in egg yolk tris extender and encapsulated using alginate and poly-L-lysine at room temperature. The microcapsules were cooled at 4 °C, immersed in pre-cooled extender (equivalent in volume to the microcapsules) to reach final concentration of 7% (v/v) glycerol and 0.75% (v/v) Equex STM paste, and equilibrated for 5, 30 and 60 min at 4 °C. Thereafter, microcapsules were loaded into 0.5 mL plastic straws and frozen in liquid nitrogen. In Experiment 1, characteristics of microencapsulated canine sperm were evaluated after glycerol addition at 4 °C. Glycerol exposure for 5, 30 and 60 min did not significantly affect progressive motility, viability, or acrosomal integrity of microencapsulated sperm compared with pre-cooled unencapsulated sperm (control). In Experiment 2, characteristics of frozen-thawed canine microencapsulated sperm were evaluated at 0, 3, 6, and 9 h of culture at 38.5 °C. Pre-freeze glycerol exposure for 5, 30, and 60 min at 4 °C did not influence post-thaw quality in unencapsulated sperm. Post-thaw motility and acrosomal integrity of microencapsulated sperm decreased more than those of unencapsulated sperm (P < 0.05) following glycerol exposure for 5 min. However, motility, viability and acrosomal integrity of microencapsulated sperm after 30 and 60 min glycerol exposure were higher than unencapsulated sperm cultured for 6 or 9 h (P < 0.05). In conclusion, since microencapsulated canine sperm were successfully cryopreserved, this could be a viable alternative to convention sperm cryopreservation in this species.  相似文献   

10.
Cryopreservation of spermatozoa is a pivotal tool in assisted reproduction, and studies aiming to establish optimal freezing/thawing protocols are essential to enhance sperm survival. The objectives of the present study were to (1) compare the cryoprotective efficiency of three different glycerol concentrations (3%, 5%, and 7%) on the basis of post-thaw sperm quality and (2) investigate whether the incidence of morphologically abnormal sperm in fresh samples is related to cryodamage sensitivity. Semen was collected from six tomcats using an artificial vagina (total 18 ejaculates). Each ejaculate was diluted using Tris-egg yolk–based extender (TEY), evaluated, equally divided into three aliquots, and rediluted using TEY with and without glycerol to achieve final concentrations of 3%, 5%, and 7%. Samples were loaded into 0.25 mL straws, equilibrated for 60 minutes at 5 °C, frozen, and then thawed at 46 °C for 12 seconds. Fresh and frozen-thawed samples were evaluated for sperm motion parameters (computer-assisted sperm analysis), plasma membrane integrity (PMI; propidium iodide and carboxyfluorescein diacetate), and DNA integrity (acridine orange). Plasma and acrosomal membrane integrity were assessed by flow cytometry (propidium iodide and fluorescein isothiocyanate–conjugated pea (Pisum sativum) agglutinin) immediately after thawing. Sperm motion parameters were also evaluated at 30 and 60 minutes of postincubation. For all treatment groups, cryopreservation significantly impaired the PMI and sperm motion parameters, except for straightness and amplitude of lateral head displacement. DNA integrity showed a slight reduction (P < 0.05) when 3% glycerol was used. The percentage of total motility, progressive motility, and rapid spermatozoa were significantly lower immediately after thawing and up to 60 minutes of incubation for the 3% glycerol group when compared with 5% and 7%. No difference (P > 0.05) was found for PMI, acrosome integrity, and DNA integrity among post-thaw groups. However, higher (P < 0.05) incidence of viable cells with reacted acrosome and dead cells with intact acrosome were observed with 7% and 3% glycerol, respectively. Percentage of morphologically abnormal spermatozoa in fresh sample was positively correlated with PMI only in the 3% glycerol group and negatively correlated with sperm motility in the 5% and 7% groups. In conclusion, the final concentration of 5% glycerol offered better cryoprotective effect for ejaculated cat sperm, and the relationship found between prefreezing sperm morphology and post-thaw sperm quality showed to be dependent on final glycerol concentration.  相似文献   

11.
不同渗透压的稀释液对猕猴精子低温冷冻保存的影响   总被引:3,自引:0,他引:3  
以稀释液TTE(382mOsm/kg)为对照,研究了5种渗透压(688、389、329、166、43mOsm/kg)的TEST稀释液(TEST、mTEST1、mTEST2、mTEST3、mTEST4)在冷冻过程中对猕猴精子功能的影响。精液一步稀释于含甘油的防冻液中,甘油的终浓度为5%(v/v)。在冷冻前后分别检测精子的运动度和质膜完整性,后者用Hoechst33342和碘化丙锭双色标记流式细胞术分析。结果表明:冷冻之前,与鲜精相比,用TEST和mTEST4稀释的精子运动度和质膜完整性显著降低(P<0·001),其余组中除mTEST2稀释的精子质膜完整性显著降低(P<0·05)外,精子运动度无差异;冷冻复苏后,TTE、mTEST3和mTEST1冻存精子的运动度和质膜完整性最高,其次是mTEST2,TEST和mTEST4冷冻效果最差(P<0·05)。提示等渗、适当高渗或低渗的稀释液适合猕猴精子的冷冻保存;对精子产生高渗毒害作用是导致猕猴精子用TEST冷冻存活率低的主要原因。  相似文献   

12.
The composition of the extender in which semen is diluted before freezing plays a major role in successful cryopreservation of spermatozoa. Substances of high osmolarity, like glycerol, protect sperm cells during the freezing process and energy-rich compounds, like pyruvate provide extra energy during capacitation and fertilization. Since cryopreservation procedures for Buffalo spermatozoa have not been adequately defined, the aim of the study was to improve the survival rate of buffalo (Bubalus bubalis) spermatozoa after cryopreservation by optimizing the timing for adding glycerol and by enriching the cryoprotectant extender with an energy source substrate. Semen was collected with an artificial vagina from 5 bulls and the ejaculates were immediately evaluated for motility, forward progressive motility and for viability, pooled and held at room temperature (28 degrees C) for 1 h. Then aliquots of pooled semen were subjected to dilution and equilibration in triplicate as follows: Experiment 1. Glycerol (3%) in a commercial extender was added to the semen at 28 degrees C and cooled to 5 degrees C for 1 h; then extender with 11% glycerol was added before further equilibration (initial glycerol addition; IGA) and the samples held at 5 degrees C for 1, 3 or 5 additional hours (IGA 1, n = 24; IGA 3, n = 24; IGA 5, n = 24) before freezing. Experiment 2. Glycerol (3%) was added and the mixture brought to 5 degrees C as described above. Then extender with 11% glycerol was added (late glycerol addition; LGA) and after equilibration for 1, 3 and 5 h (LGA 1, n= 24; LGA 3, n = 24; LGA 5, n = 24) the samples were frozen. In Experiments 3 and 4 Na pyruvate (1.25 mM) was added to the extender as described for IGA and LGA above (IPA and LPA samples). The effect of addition time (initial vs late) of glycerol and pyruvate was evaluated by measuring sperm motility, progressively forward motility and viability. After freezing-thawing the percentage of motile spermatozoa was significantly higher (0.001相似文献   

13.
The aims of this study were to test the presence of discrete sperm subpopulations in Florida goat ejaculates using a computer-assisted sperm analysis (CASA) system and to establish the relationship between the distribution of the subpopulations found and individual buck, total motility, and sperm concentration. Clustering methods and discriminant analysis were applied to identify motile sperm subpopulations within the semen samples. Principal component analysis revealed that three principal components represented more than the 88% of the variance. After the cluster analysis was performed four motile sperm subpopulations were identified. Subpopulation 1 consisted of rapid and linear sperm (39.84%), Subpopulation 2 consisted of slow but linear spermatozoa (33.23%), Subpopulation 3 consisted of rapid, high ALH but non-linear spermatozoa (14.63%), and Subpopulation 4 consisted of slow and non-linear spermatozoa (12.31%). There were significant differences in the distribution of the four subpopulations (P < 0.001) as well as in the percentage of total motility and the overall sperm concentration (P < 0.05) in fresh ejaculates among the four bucks tested. In conclusion, four well-defined motile sperm subpopulations were identified in Florida goat ejaculates. The relationship between the distribution of the sperm subpopulations and individual buck, total motility, and sperm concentration shows that the spermatozoa of each have different motility patterns. Therefore, the study of discrete subpopulations of motile spermatozoa could lead to a substantial increase in information acquired during caprine semen analysis.  相似文献   

14.
Z. Nur  B. Zik  H. Sagirkaya 《Theriogenology》2010,73(9):1267-350
This study investigates the effects of glycerol, 1,2 propanediol, sucrose, and trehalose on post-thaw motility, morphology, and genome integrity of Awassi ram semen. Ejaculates of thick consistency with rapid wave motion (>+++) and >70% initial motility were pooled. Sperm were diluted to a final concentration of 1/5 (semen/extender) in 0% cryoprotectant, 6% glycerol, 6% 1,2 propanediol, 62.5 mM sucrose or 62.5 mM trehalose using a two-step dilution method. The equilibrated semen was frozen in 0.25-ml straws. Semen samples were examined for sperm motility, defective acrosomes (FITC-Pisum sativum agglutinin (FITC PSA)), DNA integrity (acridine orange staining (AO)) and apoptotic activity (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) and Caspase-3 activity) at four time points: after dilution with extender A, after cooling to 5 °C, after equilibration and post-thaw. Freezing and thawing procedures (cooling at 5 °C, dilution, equilibration, and thawing) had negative effects on motility (P < 0.001), acrosome integrity (P < 0.001), and DNA integrity as determined by AO (P < 0.001) and TUNEL (P < 0.001) assays. There were positive correlations between sperm with defective acrosomes and apoptotic (AO- and TUNEL-positive) spermatozoa. In contrast, a significant negative correlation was found between sperm motility and defective acrosomes and AO- and TUNEL positivity (P < 0.01). The cryopreservation process acts as an apoptotic inducer in ram semen; all cryoprotectants used in the present study allowed apoptosis to some extent, with negative effects on sperm morphology and DNA integrity. The glycerol group performed better than the propanediol, sucrose, trehalose, and control groups in terms of post-thaw sperm motility but not DNA integrity.  相似文献   

15.
The objective of this study was to evaluate the effects of two commercially available semen extenders on the motility of cryopreserved goat sperm and to simplify the cryopreservation protocol. Individual goat ejaculates were split and processed in parallel for freezing in either commercially available soy-based extender (Bioxcell®) or egg yolk-based extender (Irvine TYB). Sperm quality was assessed using total and progressive sperm motility, measured by computer-assisted sperm analysis (CASA). Total motility was higher for samples processed in soy-based extender, both at pre-freeze (P = 0.002) and at post-thaw (P < 0.0001). Progressive motility was higher for semen processed in soy extender at post-thaw (P < 0.0001). Approximately 10% of samples processed in egg yolk-based extender had a large (> 50%) reduction in total motility prior to freezing. However, this type of extreme reduction in pre-freeze motility did not occur in semen samples processed in soy extender. In addition, the use of soy-based extender eliminated the need for a time-consuming sperm washing protocol. We concluded that a commercially available soy-based extender was superior to an egg yolk-based extender in preserving motility of cryopreserved goat sperm, using a two-step method.  相似文献   

16.
Aboagla EM  Terada T 《Theriogenology》2004,62(6):1160-1172
Four experiments were conducted to investigate the effects of egg yolk during the freezing step of cryopreservation (namely, the process except for the cooling step), on the viability of goat spermatozoa. The effects of egg yolk on sperm motility and acrosome integrity during the freezing step were investigated in Experiment 1. Spermatozoa diluted with Tris-citric acid-glucose (TCG) solution containing 20% (v/v) egg yolk were cooled to 5 degrees C, washed, and then frozen in TCG with egg yolk (TCG-Y), TCG without egg yolk (TGG-NY), 0.370 M trehalose with egg yolk (TH-Y), or trehalose without egg yolk (TH-NY). All extenders contained glycerol. In frozen-thawed spermatozoa, the inclusion of egg yolk in the freezing extenders increased (P<0.05) percentages of motile sperm, progressively motile sperm, and the recovery rate (ratio of post-thaw to pre-freeze values), but decreased (P<0.05) acrosomal integrity. Moreover, extenders with trehalose had better (P<0.05) post-thaw sperm viability. In Experiment 2, the effects of egg yolk on acrosome status before and after freezing were studied. Egg yolk significantly decreased the proportion of intact acrosomes before freezing, leading to fewer (P<0.05) intact acrosomes post-thaw and lower (P<0.05) recovery rates for intact acrosomes. In Experiment 3, including sodium dodecyl sulfate (SDS) in a diluent containing egg yolk tended to preserve the acrosome compared with the egg yolk containing diluent free of SDS, however, spermatozoa had a lower (P<0.05) proportion of intact acrosomes than those in a yolk-free diluent. However, after cooling, spermatozoa were diluted with a glycerolated extender containing egg yolk. Therefore, the objective of Experiment 4 was to explore whether the egg yolk or glycerol was responsible for the reduced intact acrosome percentage. In this experiment, after cooling and washing the spermatozoa were diluted in TCG with glycerol and/or egg yolk. The combination of glycerol and egg yolk in the extender reduced (P<0.05) the proportion of intact acrosomes compared with egg yolk or glycerol alone. In conclusion, the inclusion of egg yolk significantly improved sperm motility, indicating its beneficial effects during the freezing step of cryopreservation; trehalose appeared to synergistically increase its cryoprotective effects. Furthermore, although neither glycerol nor egg yolk per se affected the proportion of intact acrosomes, the combination of the two significantly reduced the proportion of acrosome-intact spermatozoa.  相似文献   

17.
Research was conducted to characterize seminal traits and to develop a sperm cryopreservation method using directional freezing (DF) for the killer whale (Orcinus orca). Experiments evaluated effects of: (i) freezing rate (SLOW, MED, FAST) by diluent (BF5F, Biladyl®, EYC) in 0.5 mL straws; and (ii) freezing method (straw or DF) by glycerol (3, 6, or 9% final concentration, v:v) on in vitro sperm quality. Fresh ejaculates (n = 161) were (mean ± SD) 7.8 ± 7.4 mL at 740 × 106 sperm/mL with 92.2 ± 6.3% total motility (TM), 85.4 ± 6.9% progressive motility (PM), 89.6 ± 9.0% viability and 89.8 ± 9.2% acrosome integrity. Samples frozen using straws by the MED or SLOW method were improved (P < 0.05) over FAST across all diluents. At 3 h post thaw (PT), TM, PM, Rapid motility (RM), VAP, VCL, ALH and viability for 3% and 6% glycerol were improved (P < 0.05) over 9% glycerol. Directional freezing samples at 0 h and 3 h PT, at all glycerol concentrations, displayed higher (P < 0.001) TM, PM, RM, VAP, VSL, VCL and viability /intact acrosomes (PI/FITC-PNA) than straw. These data provided the first information on ejaculate characteristics and the development of a semen cryopreservation method using DF in the killer whale.  相似文献   

18.
Computer-assisted sperm analyzers (CASA) have become the standard tool for evaluating sperm motility because they provide objective results for thousands of mammalian spermatozoa. Mammalian spermatozoa experience osmotic stress when the glycerol is added to the cells prior to freezing and removal from the cells after thawing. In order to minimize osmotic damage, cryoprotectants having lower molecular weights and greater membrane permeability than glycerol, were evaluated to determine their effectiveness for cryopreserving bull spermatozoa. The aim of this study was to compare the cryopreservation effects of low molecular weight cryoprotectants (ethylene glycol and methanol) to glycerol, on post-thaw CASA sperm parameters. Bull semen was diluted with tris-egg yolk extender containing 3% glycerol, 3, 2 and 1% ethylene glycol or 3, 2 and 1% methanol. Bull semen was frozen in 0.5 straws. Bull spermatozoa exhibited higher percentages (p<0.01) for total (Mot, 72.4%) and progressively (Prog, 29.5%) motilities when frozen in extender containing 3% glycerol compared to 3, 2 and 1% ethylene glycol or 3, 2 and 1% methanol. In conclusion, no advantages were found in using ethylene glycol or methanol to replace glycerol in bull semen freezing. Glycerol provided the best sperm characteristics for bull spermatozoa after freezing and thawing. The possibility of using ethylene glycol or methanol as permeating cryoprotectants for bull semen deserves further investigation, and these cryoprotectants should also be evaluated in extenders that contain disaccharides or cholesterol.  相似文献   

19.
Plant-derived lecithin has been used as a more sanitary alternative to avian egg yolk in livestock sperm cryopreservation protocols but its efficacy for cryopreserving fish sperm has not previously been tested comparatively. Here various concentrations of soybean lecithin were evaluated for the cryopreservation of carp (Cyprinus carpio) sperm. Sexually mature fish were induced to spermiation and ovulation with ovopel. The extenders were prepared by using 300 mM glucose, 10% DMSO, supplemented with different ratios of lecithin (5%, 10%, 15%, and 20%) and 10% egg yolk (control I). Negative control was made without egg yolk and soybean lecithin (control II). The pooled semen was diluted separately at ratio of 1:3 (v/v) by using egg yolk and soybean-based extenders. Diluted semen placed into 0.25 ml straws were equilibrated at 4 °C for 15 min and frozen in liquid nitrogen vapor. Fertilization was conducted using a ratio of 1 × 105 spermatozoa/egg. Supplementation of 10% lecithin to extender showed the best cryoprotective effect for sperm motility and duration of motility against freezing damage compared to 15%, 20% and control II groups (p < 0.05). Cryopreserved sperm with extender containing 10% lecithin provided a greater result in terms of fertilization success when compared to extenders containing 20% lecithin or control II (p < 0.05).  相似文献   

20.
This study was performed to evaluate the effectiveness of quercetin as a non-enzymatic antioxidant in combination with glycerol or Dimethylacetamide (DMA), on freezability of goat semen. Ejaculates from four healthy mature Mahabadi goats were collected using an artificial vagina. After primary processing, semen was pooled and extended by egg yolk based extender supplemented with different concentrations of quercetin (10 or 20 μM) along with 5% glycerol or DMA. The extended semen was frozen and sperm motility parameters, viability, abnormality, membrane integrity and lipid peroxidation were assessed after thawing. Results showed that sperm viability, total motility, progressive motility, straightness (STR) and linearity (LIN) were higher (P < 0.05), and abnormality percentage and MDA concentration were lower (P < 0.05) in extender containing DMA. Similarly, higher (P < 0.05) total motility, progressive motility, viability and membrane integrity along with lower (P < 0.05) MDA level were noted in Q10 group. The lowest (P < 0.05) MDA level was observed in DMA extender containing moderate level of quercetin (Q10D). Also the STR was higher (P < 0.05) in Q10D compared to Q10G and Q20G groups. In conclusion, supplementation of extender with 10 μM quercetin in combination with DMA improves the goat sperm motion kinetics and suppresses lipid peroxidation after freezing and thawing. Furthermore, DMA is more effective cryoprotectant for the freezing of goat sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号