首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 218 毫秒
1.
Zheng QH  Li GC  Cheng J  Fang F  Wu ZH 《生理学报》2011,63(3):233-237
本研究旨在探讨cAMP-PKA通路在Ⅱ组代谢性谷氨酸受体对离体延髓脑片呼吸节律性放电的影响中的作用.制作新生大鼠离体延髓脑片标本,主要包含延髓面神经后核内侧区(medial region of the nucleus retrofacialis,mNRF),并完整保留舌下神经根,以改良Kreb's液(modified ...  相似文献   

2.
延髓嘴端包氏复合体与中枢呼吸节律形成   总被引:4,自引:0,他引:4  
Song G 《生理科学进展》1999,30(3):237-240
包氏复合体是一群位于延髓嘴端面神经后核腹内侧的呼气神经元。该群神经元为抑制性,轴突广泛投射到脑干呼吸相关结构及膈神经神经元群。本研究室动用微电刺激、逆行兴奋、WGA-HRP标记、微量注射等技术研究了该结构在呼吸时相转换及呼吸节律形成中的作用。结果显示:包氏复合体怀脑干呼吸神经元群之间存在双向纤维联系,该结构参与吸气向呼气以及呼气向吸气的时相转换,且在呼气相形成中起重要作用。  相似文献   

3.
家兔延髓面神经后核内侧区在吗啡抑制呼吸中的作用   总被引:1,自引:0,他引:1  
实验在麻醉、切断颈迷走神经、肌肉麻痹和人工通气的家兔上进行。静脉注射吗啡4mg/kg能显著地抑制呼吸,主要是使呼吸频率降低和每分钟膈神经活动减少。如果先向延髓面神经后核内侧区(mNRF)注射1μg/1μl纳洛酮,可大部分阻断静脉注射吗啡引起的呼吸抑制。向一侧mNRF注射10μg/1μl吗啡能显著地抑制呼吸,两侧注射则产生呼吸暂停。先向两侧mNRF注射1μg/1μl纳洛酮,可完全阻断mNRF注射吗啡引起的呼吸抑制。结果说明mNRF存在阿片受体,并在静脉注射吗啡引起的呼吸抑制中起重要作用。本工作还为mNRF在发生和维持呼吸节律中的重要作用提供了新的证据。  相似文献   

4.
家兔延髓区域阻滞对呼吸的影响   总被引:19,自引:3,他引:16  
实验在麻醉、切断迷走神经的家兔上进行。记录双侧膈神经放电和气管内压作为呼吸的指标。用尖端直径为70—100μm的玻璃微管接微量注射器,脑内注入1%普鲁卡因,双侧对称地阻滞闩前2.0—3.0mm,中线旁开2.0—2.5mm,背侧表面下3.5—4.5mm的区域后,38只兔都出现了可逆性呼吸停止。双侧性电损毁此区,则可造成不可逆性呼吸停止。以同法注入同量生理盐水,则对呼吸无影响。经组织学检查,此区范围相当于Meessen图谱的面后核内侧区——包括面后核(Nr.Ⅶ)内侧部、网状小细胞核(R·pc)腹侧部、网状巨细胞核(R·gc)背外侧部和外侧网状核(Rl)的内侧部分。用同样方法阻滞延髓头端区、孤束核区及疑核尾端区、对呼吸节律均无明显影响。用1%普鲁卡因局部麻醉延髓腹侧面的中枢化学感受器I(s)区,呼吸也无明显变化。结果提示,面后核内侧区的一些结构可能在形成呼吸节律中起重要作用。  相似文献   

5.
Wang JL  Wu ZH  Wang NQ 《生理学报》2005,57(1):91-96
实验旨在探讨腺苷A1受体在对基本呼吸节律调制中的可能作用。制作新生大鼠离体延髓脑片标本,主要包含面神经后核内侧区(themedial region of the nucleus retrofacialis,mNRF),并保留完整的舌下神经根。以改良Kreb‘s液灌流脑片,记录mNRF吸气神经元的电活动,并同步记录舌下神经根呼吸节律性放电(respiratory rhythmical discharge activity,RRDA)。在灌流液中先分别单独给予腺苷A1受体的特异性拮抗剂8-环戊-1,3-二丙基黄嘌呤(8-cyclopenty 1-1,3-dipropylxanthine,DPCPX)和特异性激动剂R-苯异丙基-腺苷(R-phenylisopropyl-adenosine,R-PIA);再分别先后给予R-PIA和R-PIA DPCPX,观察RRDA和吸气神经元电活动的变化。结果显示,给予腺苷A1受体拮抗剂DPCPX后,呼气时程和呼吸周期明显缩短,吸气神经元中期放电的频率和峰频率显著增大;给予腺苷Al受体激动剂R-PIA后,吸气时程、积分幅度和吸气神经元中期放电的频率和峰频率均显著降低,呼吸周期明显延长,且R-PIA的呼吸抑制作用可部分地被DPCPX逆转。实验结果提示,腺苷A1受体可能通过介导吸气神经元的抑制性突触输入参与节律性呼吸的调制。  相似文献   

6.
延髓面神经后核内侧区呼吸相关神经元的放电形式   总被引:9,自引:2,他引:7  
吴中海  张枫桐 《生理学报》1997,49(4):389-394
实验用家兔和SD大鼠,氨基甲酸乙酯麻醉。记录膈神经或膈肌放电作为呼吸的指标。在延髓面神经后核内侧区细胞外记录呼吸相关神经元放电,在家兔所记录到的249个RRNs中,吸气神经元118个,呼气神经元91个,呼吸跨时相神经元40个。在大鼠所记录到的153个RRNs中,吸气神经元68个,呼气神经元55个,呼吸跨时相神经元30个,在mNRF分布有较多的呼气-呼气跨时相神经元,这类神经元放电总是先天膈神经吸气  相似文献   

7.
本研究旨在探讨cAMP-PKA通路在Ⅱ组代谢性谷氨酸受体对离体延髓脑片呼吸节律性放电的影响中的作用。制作新生大鼠离体延髓脑片标本,主要包含延髓面神经后核内侧区(medial region of the nucleus retrofacialis,mNRF),并完整保留舌下神经根,以改良Kreb’s液(modified Kreb’s solution,MKS)恒温灌流脑片,用吸附电极记录舌下神经根呼吸节律性放电活动(respiratory rhythmical discharge activity,RRDA)。待放电活动稳定后,第1组灌流Ⅱ组代谢性谷氨酸受体特异性拮抗剂(2S)-α-ethylglutamic acid(EGLU)10min,第2组先给予cAMP-PKA通路激动剂Forskolin灌流10min,而后MKS洗脱至正常,灌流cAMP-PKA通路抑制剂Rp-cyclic3’,5’-hydrogen phosphorothioate adenosine triethylammonium salt(Rp-cAMPS)10min,第3组首先给予Rp-cAMPS10min,洗脱后联合Rp-cAMPS+EGL...  相似文献   

8.
本工作在氨基甲酸乙酯麻醉、断双侧颈迷走神经、肌松、人工呼吸的家兔上,观察了长短串电脉冲刺激面神经核背内侧区(DMNF)对孤束核腹外侧亚核(VLNTS)呼吸相关神经元(RRU)的影响。实验结果:当电刺激 DMNF 时,吸气性神经元(64.4%)放电频率增加,放电时程延长,并以递增性吸气神经元被兴奋的数量最多。呼气性神经元(35%)表现为放电停止和放电频率减少,以递减性呼气神经元被抑制的数量最多。左右两侧 VLNTS 呼吸相关神经元对电刺激 DMNF 的反应无显著性差异,P>0.05。结果提示:DMNF 兴奋可以易化 VLNTS 吸气性神经元,抑制呼气性神经元。两者之间的功能及结构联系是一个值得注意的问题。  相似文献   

9.
反射性呼吸暂停中延髓各类呼吸性神经元的放电变化   总被引:2,自引:1,他引:1  
在向家兔颈动脉窦区注入拘椽酸钠引起呼吸暂停期间,和在持续性肺充气引起延长的呼气相中,延髓大多数吸气神经元和膈神经停止放电;而大多数呼气性神经元呈连续性放电,放电频率持续地高于或接近于平静呼气时呼气神经元的高峰放电频率,并伴随肋间内肌电活动增强,直至呼气性神经元放电频率衰减或停止放电时,膈神经才恢复放电。这提示呼气性神经元的持续兴奋状态可能与呼气性呼吸暂停的维持或呼气相的延长有关。在延髓闩前部可以记录到少数放电频率渐增型的跨时相呼气-吸气神经元,在呼吸暂停期间,它们呈低频连续放电,逐渐增大放电频率,在其放电频率急剧增高时,膈神经恢复放电。这提示该类神经元可能与吸气的发动有关。本文尚就呼吸节律的发生机制做了讨论。  相似文献   

10.
损毁或阻滞面神经核腹内侧区对呼吸节律的影响   总被引:1,自引:0,他引:1  
张有青  刘磊 《生理学报》1991,43(5):499-503
实验用兔,在乌拉坦静脉麻醉,自然呼吸或三碘季铵酚麻痹,人工通气条件下进行。观察了损毁或阻滞面神经核腹内侧区(VMNF)对呼吸节律的影响。结果如下:1.单侧损毁或利多卡因局部阻滞 VMNF 区可引起双侧膈神经放电时间延长,此效应在切断双侧颈迷走神经后尤为明显;2.膈神经吸气性放电的递增速度无明显改变。上述结果提示:VMNF 区在中枢呼吸节律调制中具有重要作用,可能是吸气切断机制负反馈神经元回路中的一个重要结构。  相似文献   

11.
一氧化氮对呼吸节律性放电的调节作用   总被引:3,自引:2,他引:1  
Li ZQ  Wu ZH  Shi Y  Wang NQ 《生理学报》2003,55(5):560-564
实验旨在探讨一氧化氮(nitric oxide,NO)在基本呼吸节律产生和调节中可能的作用。制作新生大鼠离体延髓脑片标本,主要包含面神经后核内侧区,前包钦格复合体、腹侧呼吸组以及背侧呼吸组的一部分。同时保留舌下神经根,用改良Kreb′s液灌流脑片并记录与之相连的舌下神经根呼吸节律性放电(respiratory rhythmical discharge activity,RRDA),在灌流液中分别给予不同浓度的NO供体硝普钠(sodium nitroprusside,SNP),NO合成前体L—精氨酸(L—Arginine,L-Arg)以及神经元型一氧化氮合酶(neuronal nitric oxide synthase,nNOS)特异性抑制剂7-nitro indazole (7-NI),观察其对RRDA的影响。结果显示,nNOS的特异性抑制剂7-NI对吸气时程和放电强度有明显抑制,而NO合成前体L—Arg,以及NO供体SNP对呼吸放电活动没有明显的影响。这提示,在哺乳动物基本呼吸节律的产生和调节中,NO可能对吸气中止和呼吸幅度具有调节作用。  相似文献   

12.
Studies in cats have shown that, in addition to respiratory neuron groups in the dorsomedial (DRG) and ventrolateral (VRG) medulla, neural structures in the most ventral medullary regions are important for the maintenance of respiratory rhythm. The purpose of this study was to determine whether a similar superficially located ventral region was present in the dog and to assess the role of each of the other regions in the canine medulla important in the control of breathing, in 20 anesthetized, vagotomized, and artificially ventilated dogs, a cryoprobe was used to cool selected regions of the medulla to 15-20 degrees C. Respiratory output was determined from phrenic nerve or diaphragm electrical activity. Cooling in or near the nucleus of the solitary tract altered timing and produced little change in the amplitude or rate of rise of inspiratory activity; lengthening of inspiratory time was the most common timing effect observed. Cooling in ventrolateral regions affected the amplitude and rate of rise of respiratory activity. Depression of neural tidal volume and apnea could be produced by unilateral cooling in two ventrolateral regions: 1) near the nucleus ambiguus and nucleus para-ambiguus and 2) just beneath the ventral medullary surface. These findings indicate that in the dog dorsomedial neural structures influence respiratory timing, whereas more ventral structures are important to respiratory drive.  相似文献   

13.
The projections of phrenic nerve afferents to neurons in the dorsal (DRG) and ventral (VRG) respiratory group were studied in anesthetized, paralyzed, and vagotomized cats. Extracellular recordings of neuronal responses to vagal nerve and cervical phrenic nerve stimulation (CPNS) indicated that about one-fourth of the DRG respiratory-modulated neurons were excited by phrenic nerve afferents with an onset latency of approximately 20 ms. In addition, non-respiratory-modulated neurons within the DRG were recruited by CPNS. Although some convergence of vagal and phrenic afferent input was observed, most neurons were affected by only one type of afferent. In contrast to the DRG, only 3 out of 28 VRG respiratory-modulated neurons responded to CPNS. A second study determined that most of these neuronal responses were due to activation of diaphragmatic afferents since 90% of the DRG units activated by CPNS were also excited at a longer latency by thoracic phrenic nerve stimulation. The difference in onset latency of neuronal excitation indicates an afferent peripheral conduction velocity of about 10 m/s, which suggests that they are predominately small myelinated fibers (group III) making paucisynaptic connections with DRG neurons. Decerebration, decerebellation, and bilateral transection of the dorsal columns at C2 do not abolish the neuronal responses to cervical PNS.  相似文献   

14.
Electrical stimulation (50-150 microA, 0.5-ms duration, 3-300 Hz) was performed within three different regions (lateral, ventrolateral, and ventral) of the C2-C3 spinal cord of decerebrate, vagotomized, paralyzed, and artificially ventilated cats. Spinal cord stimulation sites were located by inserting monopolar or bipolar stimulating electrodes either at the dorsolateral sulcus or at least 1 mm medial or lateral to the sulcus. With stimulation at each site, alterations in respiratory rhythm, orthodromic phrenic nerve responses, and antidromic activation of medullary respiratory-modulated neurons were examined. Phrenic nerve responses to cervical spinal cord stimulation consisted of an early excitation (2-4 ms) and/or a late excitation (4-8 ms). Stimulation of the lateral region evoked the greatest amplitude early response and stimulation of the ventrolateral region produced the greatest late excitation. All three stimulus sites elicited antidromic activation of some respiratory-modulated neurons in the dorsal (DRG) and ventral respiratory groups (VRG). The lateral region was the least effective resetting site, and it had the highest incidence of antidromic activation of both DRG and VRG neurons. The ventrolateral region of the cervical spinal cord was the most effective resetting site, but it had the lowest incidence of antidromic activation of DRG respiratory-modulated neurons. In addition, resetting responses were observed with spinal cord stimulation at similar sites in the thoracic and lumbar spinal cord regions thought to be devoid of inspiratory bulbospinal axons.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
刘诗翔  魏书均 《生理学报》1997,49(2):227-229
实验在40只麻醉、制动、断双侧颈迷走神经和人工通气的家兔上进行。在孤束核腹外侧区微量注射神经元胞体兴奋剂谷氨酸钠和抑制剂甘氨酸,探讨膈神经放电的变化。结果:微量注射谷氨酸钠,可使膈神经放电脉冲数明显增加,吸气时程延长,呼气时程缩短,呼吸频率变化不明显;微量注射甘氨酸,则膈神经放电脉冲数显著减少,甚至停止,吸气时程缩短,呼气时程不规则延长,呼吸频率降低。上述结果提示:孤束核腹外侧区对呼吸节律的形成具  相似文献   

16.
Alheid  G. F.  Gray  P. A.  Jiang  M. C.  Feldman  J. L.  McCrimmon  D. R. 《Brain Cell Biology》2002,31(8-9):693-717
A column of parvalbumin immunoreactive neurons is closely associated with the location of respiratory neurons in the ventrolateral medulla of the rat. The majority (66%) of bulbospinal neurons in the medullary ventral respiratory column (VRC) that were retrogradely labeled by tracer injections in the phrenic nucleus were also positive for parvalbumin. In contrast, only 18.8% of VRC neurons retrogradely labeled after a tracer injection in the VRC, also expressed parvalbumin. The average cross-sectional area of VRC neurons retrogradely labeled after VRC injections was 193.8 μm2 ± 6.6 SE. These were significantly smaller than VRC parvalbumin neurons (271.9 μm2 ± 12.3 SE). Parvalbumin neurons were found in the Bötzinger Complex, the rostral ventral respiratory group (VRG), and the caudal VRG, areas which all contribute to the bulbospinal projection. In contrast, parvalbumin neurons were sparse or absent in the preBötzinger Complex and in the vicinity of the retrotrapezoid nucleus, areas that have few bulbospinal projections. Parvalbumin was rarely colocalized within Neurokinin-1 receptor positive (NK1R) VRC neurons, which are found in the preBötzinger complex and in the anteroventral part of the rostral VRG. Parvalbumin neurons in the Bötzinger Complex and rostral VRG help define the rostrocaudal extent of these regions. The absence of parvalbumin neurons from the intervening preBötzinger complex also helps establish the boundaries of this region. Regional boundaries described in this manner are in good agreement with earlier physiological and anatomical studies. Taken together, the distributions of parvalbumin, NK1R and bulbospinal neurons suggest that the rostral VRG may be subdivided into distinct, anterodorsal, anteroventral, and posterior subdivisions.  相似文献   

17.
家兔孤束核区微量注射羟基马桑毒素对膈神经放电的影响   总被引:4,自引:0,他引:4  
姜永青  陈新民 《生理学报》1990,42(3):295-301
实验在44只乌拉坦麻醉、肌肉麻痹、切断双侧颈迷走神经的日本大耳白兔上进行。于一侧孤束核区微量注射不同浓度(0.1μg/μl,1μg/μl,5μg/μl,10μg/μl)的羟基马桑毒素1μl,可以引起膈神经放电活动产生可逆的吸气时程和呼气时程缩短,呼吸频率加快及膈神经放电积分的峰幅度降低。羟基马桑毒素0.1μg/μl组作用最弱,1μl/μl组作用最强。5μg/μl组,10μg/μl组还可使膈神经放电活动在呼气期出现短时的吸气性放电及呼气期间歇性不规则延长等呼吸节律紊乱现象。出现上述现象时血压、心率无明显变化,脑电图也未出现异常改变。结果提示:家兔孤束核区参与呼吸时相的转换,而羟基马桑毒素可能作用于孤束核区的呼吸时相转换机制,促进呼吸时相的转换。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号