首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
PKC、PKA和TPK在血小板激活中的作用   总被引:1,自引:0,他引:1  
利用~(32)P-NaH_2PO_4标记猪血小板,然后以PMA、凝血酶、PGE_1、腺苷等处理,结果表明,随着PMA激活PKC,血小板发生聚集。35μmol/LPGE_1或1mmol/LdbcAMP不能抑制50nmol/LPMA诱导的血小板聚集,腺苷却能抑制PMA诱导的血小板聚集(EC_(50)=0.1mmol/L),db-cAMP、腺苷都不能抑制100nmol/LPMA诱导的40kD蛋白磷酸化。PKA激活不能抑制PMA激活的PKC。在PMA、凝血酶激活的血小板中,PKC、TPK都发生激活,40kD底物既是PKC的底物又是TPK的底物,PKC和TPK在血小板聚集中起着重要的调节作用。  相似文献   

2.
丹心Ⅲ号和丹心Ⅴ号对血小板聚集功能的影响   总被引:5,自引:0,他引:5  
本文观察了丹心Ⅲ号和丹心Ⅴ号对血小板聚集功能的影响,实验结果:丹心Ⅲ号和丹心Ⅴ号在体外均可显著抑制ADP和花生四烯酸诱导的人血小板聚集,其IC50分别为1.605mg/ml,2.589mg/ml,8.416mg/ml和6.606mg/ml;在体内可抑制连续给药10d大鼠血小板对ADP和花生四烯酸诱导的血小板聚集,但对凝血酶诱导的血小板聚集无明显抑制作用。上述结果提示丹心Ⅲ号和丹心Ⅴ号对血小板聚集功  相似文献   

3.
PKC,PKA和TPK在血小板激活中的作用   总被引:3,自引:0,他引:3  
利用^32P-NaH2PO4标记猪血小板,然后,以PMA,凝血酶,PGE1腺苷等处理,结果表明,随着PMA激活PKC,血小板发生聚集,35μmol/LPGE1或1mmol/LdbcAMP不能抑制50nmol/LPMA诱导的血小板聚集,腺苷却能抑制PMA诱导的血小板聚集(EC50=0.1mmol/L,db-cAMP,腺苷都不能抑制100nmol/LPMA诱导的40kD蛋白磷酸化,PKA激活不能抑制P  相似文献   

4.
本文观察了丹心Ⅲ号和丹心V号对血小板聚集功能的影响,实验结果:丹心Ⅲ号和丹心V号在体外均可显著抑制ADP和花生四烯酸诱导的人血小板聚集,其IC50分别为1.605mg/ml,2.589mg/ml,8.4l6mg/ml和6.606ng/ml;在体内可抑制连续给药(350一700mg/lkg.d)10d大鼠血小板对ADP和花生烯酸诱导的血小板聚集,但对凝血酶诱导的血小板聚集无明显抑制作用。上述结果提示丹心Ⅲ号和丹心Ⅴ号对血小板聚集功能具有明显的抑制作用。  相似文献   

5.
正常足月儿畸变产物耳声发射(DPOAEs)特性分析   总被引:3,自引:0,他引:3  
研究提出正常足月儿畸变产物耳声发射(DPOAEs) 特性分析如下:1 . DPOAEs 反应强度曲线,DP 图显示两个反应峰(f2 = 1 .6 和5 .0 kHz) 和一个反应谷(f2 = 3 .1 ~4 .0 kHz) ;2. DPOAE 本底噪声及其特性,f2 = 1.0 kHz 其测试频率点(2f1 -f2) 本底噪声最高(P< 0 .05) ,f2 = 3 .1 ,4.0 和5 .0kHz ,测试频率点(2f1 -f2) 本底噪声较低(P< 0.05) ;除f2 = 4.0 kHz 外,DPOAE 本底噪声与其反应强度均未呈现直线相关特性;3 . DPOAE SNR 特性,f2 = 1.0 kHz 其SNR 最小(P= 0.000) ,f2 =2 .0 kHz 其SNR 最大(P0 .003) ;4. DPOAE SNR 和TEOAE SNR 相关特性,除1.0 kHz 频段外,其余频段其二者间均有着非常显著的直线相关特性。  相似文献   

6.
观察血管紧张素Ⅱ(AngⅡ)对心肌肌浆网Ca2+,Mg2+-ATPase基因(SERCA2a)转录调节的影响,评价DMP811对此效应的干预作用.6周龄雄性SD大鼠随机分为3组,每组6只.组1:生理盐水输注;组2:AngⅡ输注+DMP811管饲(3mg·d-1·kg-1);组3:AngⅡ输注(200ng·min-1·kg-1.1周后称其体重,取心脏并称重,提取心脏总RNA后采用Northernblot的方法检测SER-CA2a的转录水平,采用RT-PCR检测AngⅡ1型受体(AT1)mRNA水平.实验后,组3心重(CW)、心重/体重(C/B)、AT1受体转录水平均高于组1(分别增加4.7±0.4%,4.9±0.9%和24.7±3.5%;P<0.01),而SERCA2a基因转录水平显著低于组1(降低20.1±3.0%,P<0.01),并且SERCA2amRNA水平与AT1受体mRNA水平呈负相关(r=-0.74,P<0.01).AngⅡ导致的上述改变能被DMP811完全阻断.AngⅡ通过其Ⅰ型受体的介导,诱导了SERCA2a的转录下调  相似文献   

7.
将尖吻蝮蛇毒酸性磷脂酶 A2 I( A.a A P L A2 I) 的基因克隆至表达载体p B L M V L2 , 在大肠杆菌 R R1 中成功表达。表达产物 A.a A P L A2 I约占细菌蛋白质总量的30 % , 以包含体的形式存在。纯化包含体后, 将产物变性、复性, 然后用 F P L C Superose T M12 纯化, 产物经过 S D S P A G E 检测只有单一条带。对表达的 A.a A P L A2 I进行了酶活性、抑制血小板聚集活性和溶血活性的测定。结果显示, 表达的 A.a A P L A2 I的酶活性同变性后复性江浙蝮蛇酸性磷脂酶 A2( A P L A2) 的酶活性相近, 既具有抑制血小板聚集活性也具有溶血活性。最后对磷脂酶 A2( P L A2) 的结构与这些活性的关系进行了讨论  相似文献   

8.
离体蒜苔构成一个完整的细胞内含物再分配系统。 25 ℃条件下,于黑暗中贮存时,苔茎基部细胞内含物转移到顶端珠蒜中,最后苔茎下部枯萎,顶端形成鲜嫩多汁的珠蒜。适当浓度 GA3处理苔茎基部可以有效抑制上述细胞内含物再分配过程。已有研究表明, H2O2由超氧化物歧化酶(SOD)催化产生,被过氧化物酶(POD)和过氧化氢酶(CAT)催化降解; H2O2对生物个体发育具有重要调节作用。本文主要测定GA3对离体蒜苔H2O2代谢的影响;为进一步探讨H2O2在细胞内含物再分配中的作用提供参考。 取珠蒜未明显膨大的离体蒜苔为供试材料,采用 50μg/mL GA3溶液处理蒜苔基部,用比色法和氧电极法测定珠蒜和苔茎下部H2O2水平和SOD、POD、CAT活性。结果表明:(1)在处理后48h内,珠蒜和苔茎下部H2O2代谢即产生明显差异(Fig.1-4);(2)贮存20d后对照珠蒜明显膨大,而GA3处理珠蒜光显著变化(Table1);(3)GA3处理显著提高了珠蒜H2O2水平和SOD、POD、CAT活性,相反苔茎下部H2O2水平和POD、CAT活性受到显著抑制,而SOD活性提高(Fig.5-8)。GA3处理对珠蒜和苔茎下部H2O2代谢的相反  相似文献   

9.
 W ortm annin 是肌醇磷脂 3 激酶的不可逆抑制剂.用比浊法分析血小板聚集;肌醇磷脂用32 P 磷酸钠标记,用氯仿和甲醇抽提,用 T L C和放射自显影分析,研究了 W ortm annin 对凝血酶诱导的人血小板聚集和磷脂酰肌醇三磷酸( P I P3)累积的影响.结果显示, W ortm annin 对凝血酶(500 U/ L)诱导的人血小板聚集有抑制作用,这种抑制作用在一定范围内呈剂量依赖关系(20~80μm ol/ L).凝血酶(500 U/ L)诱导人血小板 P I P3 的累积, W ortm annin 对此累积有抑制作用,这种抑制作用在一定范围内呈剂量依赖关系(40~160 μm ol/ L).结果提示: W ortm annin 可能是潜在的抗血小板药物,抑制凝血酶诱导的人血小板聚集主要与其抑制 P I P3 的累积有关.结果也提示,肌醇磷脂 3 激酶在血小板活化中起重要作用.  相似文献   

10.
尖吻蝮蛇毒内一种新的抗血小板凝集蛋白agkisacuta …   总被引:1,自引:0,他引:1  
从皖南尖吻蝮蛇毒中经阴离子交换层析和凝胶过滤层析分离纯化离纯化得到抗血小板凝集蛋白agkisacutacin,纯化的agkisacutacin由分子量为14kD和15kD的2条肽链通过二硫键连接,能有效抑制ristocetin诱导的血小板凝集(IC50为18.5mg/L),能轻微抑制凝血酶诱导的血小板聚集(IC50为1.22g/L),但对ADP、胶原诱导的血小板聚集无影响。agkisacutaci  相似文献   

11.
Thromboxane A2 (TXA2)-mediated platelet secretion and aggregation are important in thrombosis. Here, we present a novel finding that the stable TXA2 analogue, U46619, induces two waves of platelet secretion, each of which precedes a distinct wave of platelet aggregation. ADP released from platelets during the first wave of secretion played a major role in augmenting the first wave of platelet aggregation. The second wave of platelet secretion and aggregation required the first wave of both ADP secretion and aggregation and were blocked by either the integrin inhibitor RGDS or a P2Y12 receptor antagonist, indicating a requirement for both the integrin outside-in signal and ADP-activated Gi pathway. U46619 stimulated phosphoinositide 3-kinase (PI3K)-dependent phosphorylation of Akt, which was augmented by ADP but did not require integrin outside-in signaling. Platelets from PI3Kgamma knock-out mice or PI3K inhibitor-treated platelets showed an impaired second wave of platelet secretion and aggregation. However, the second wave of platelet aggregation was restored by addition of exogenous ADP to PI3Kgamma deficient or PI3K inhibitor-treated platelets. Thus, our data indicate that PI3K, together with the integrin outside-in signaling, play a central role in inducing the second wave of platelet secretion, which leads to the second wave of irreversible platelet aggregation.  相似文献   

12.
Aggrus, also called T1alpha and podoplanin, is a novel platelet aggregation-inducing factor that is expressed in various carcinoma cells. Aggrus/T1alpha/podoplanin is known to be expressed in lung type I alveolar cells or lymphatic endothelial cells. However, its physiological role has not been clarified. To assess the attribution of glycosylation to Aggrus platelet aggregation activity, recombinant molecules were stably expressed in a series of Chinese hamster ovary (CHO) cell mutants, N-glycan-deficient Lec1, CMP-sialic acid transporter-deficient Lec2, and UDP-galactose transporter-deficient Lec8. A new anti-human Aggrus monoclonal antibody, YM-1, was established to detect the expression of human Aggrus on these CHO cell mutants. Aggrus on Lec1 cells induced platelet aggregation, but those on Lec2 and Lec8 cells did not. Further, the glycans on Aggrus were analyzed by lectin blotting. Aggrus expressed in CHO and Lec1 cells showed Wheat-germ agglutinin, Jacalin, and Vicia villosa lectin bindings. Lectin blotting results indicated that sialylated core 1 structures, sialic acid plus Galbeta1,3GalNAc-Ser/Thr, were critical for the platelet aggregation activity. This oligosaccharide structure is known as tumor-associated antigen, which is potentially related to the metastasis process of cancer cells.  相似文献   

13.
血小板聚集的药理性解聚   总被引:1,自引:0,他引:1  
潘家绮  张之南 《生理学报》1989,41(5):482-488
在进行中的不可逆聚集的富血小板血浆(PRP)中,加入不同浓度的解聚剂,测定其解聚程度。以一系列作用机制不同的血小板解聚剂对ADP、胶原、花生四烯酸、U_(46619)(血栓素A_2类似物)、PAF所诱发的血小板聚集的拮抗作用的结果显示,血小板聚集作用得以维持是一个复杂的过程,涉及多种机制的参与,并和促聚剂种类有关。维持ADP诱发的聚集,需要外源性Ca~(2 )及细胞内Ca~(2 )的动员。PAF U_(46619)和花生四烯酸诱发的聚集作用的维持也需要细胞内钙的动员。但是胶原诱发的聚集作用的维持,有除Ca~(2 )、ADP以外的其他途径。维持持续的聚集并不依赖于血小板TXA_2(血栓素A_2)的持续合成,钙调节蛋白在血小板的持续聚集中起重要作用。钙调蛋白抑制剂都是有效的血小板解聚剂。各种血小板解聚剂的拮抗效果取决于(1) 采用促聚剂的种类、(2) 加入解聚剂时血小板聚集的时相、(3) 解聚剂的种类。  相似文献   

14.
Platelet aggregation is mediated by conformational change of integrin alpha(IIb)beta(3). Tyrosine-phosphorylation of cytoplasmic domain of beta(3) upon platelet activation has been demonstrated to play a critical role in this process. Recently, the adaptor protein ShcA has been shown to bind to the tyrosine-phosphorylated beta(3), while it remains open whether ShcA plays any role in platelet aggregation. Here, we show that ShcA bound to tyrosine-phosphorylated beta(3)-tail peptide through its phosphotyrosine-binding domain in vitro. Then, we examined the involvement of ShcA in platelet aggregation by a previously established in vitro assay using platelets permeabilized with streptolysin-O, where exogenous addition of platelet cytosol is required for reconstitution of the Ca(2+)-induced aggregation. When ShcA was specifically depleted with anti-ShcA antibody from the cytosol, this ShcA-depleted cytosol lost the aggregation-supporting activity, which was rescued by addition of purified recombinant ShcA. Thus, ShcA is essential for the Ca(2+)-induced platelet aggregation.  相似文献   

15.
This study was designed to explore the role of asymmetric dimethylarginine (ADMA), an endogenous inhibitor of nitric oxide synthesis, in platelet aggregation in hypertension and its possible mechanisms. Spontaneously hypertensive rats (SHR) and L-NAME-induced hypertensive rats were orally administered with L-arginine (1 g/(kg·day) for 14 days. Systolic blood pressure, platelet aggregation, and plasma tissue factor (TF) level and activity were measured. The plasma concentration of ADMA in SHR was determined. In vitro, platelet-rich plasma isolated from Wistar rats was prepared in order to observe the effect of exogenous ADMA on platelet aggregation and TF level and (or) activity in platelet-rich plasma. In both types of hypertensive rats, systolic blood pressure, platelet aggregation, and the level and activity of plasma TF were elevated compared with corresponding control animals. Plasma ADMA level was also increased in SHR. Treatment with L-arginine, a competitor of ADMA, lowered blood pressure and inhibited platelet aggregation concomitantly with a decrease in plasma TF level and activity in both types of hypertensive rats. We also found that exogenous ADMA promoted platelet aggregation and increased TF level and (or) activity in platelet-rich plasma, an effect that was inhibited by pretreatment with L-arginine. Importantly, the enhanced platelet aggregation induced by exogenous ADMA was reduced by pretreatment with anti-TF antibody. The results suggest that endogenous ADMA may be involved in platelet hyperaggregation status in hypertension, and the facilitation of platelet aggregation by ADMA is related to upregulation of the level and activity of plasma TF.  相似文献   

16.
The steroid hormone dehydroepiandrosterone (DHEA), suggested to be a cardioprotector, prevents platelet aggregation in healthy humans. This hormone is reduced in postmenopausal women by 60% of its normal value. Platelets in patients with type 2 diabetes (T2D) are more sensitive to aggregation, which has been attributed to a reduced ability to produce nitric oxide (NO). In light of these precedents and considering that DHEA is able to increase the production of NO in cultured endothelial cells, we suggest that DHEA prevents the aggregation of platelet from postmenopausal women with T2D through the activation of PKC/eNOS/NO/cGMP pathway. To determine the effect of DHEA in platelet aggregation, platelet-rich plasma (PRP) obtained from postmenopausal women with T2D was preincubated with DHEA, and aggregation induced by ADP was determined in the presence or absence of L-NNA (LNG-nitroarginine), Rottlerin, NOS, or PKC delta inhibitors, respectively. Platelet NO production was measured with the fluorescent probe DAF2DA and eNOS activation was determined by Western blot, using an anti-p-eNOS (ser 1177) antibody. DHEA 1) prevented platelet aggregation by 40% compared to control, 2) increased NO production by 63%, 3) increased p-eNOS (phosphorylated endothelial nitric oxide synthase) levels, and 4) increased cGMP production. These effects were reduced in the presence of L-NNA or Rottlerin. DHEA prevents platelet aggregation induced by ADP. This effect is mediated by the activation of the PKCδ/eNOS/NO/cGMP pathway. Our results suggest that DHEA could be considered to be a potential therapeutic tool in the prevention of atherothrombotic processes in postmenopausal women with T2D.  相似文献   

17.
Platelets play a major role in the hemostatic process following vascular injury. Chemical modification of cysteine and/or lysine residues in platelet proteins has been shown to cause loss of platelet aggregation induced by diverse agonists; however, these investigations have not addressed the identity of the specific proteins affected. o-Phthalaldehyde (OPTH) is a unique chemical modification reagent that forms and permits the identification of fluorescent isoindole derivatives with proteins by covalently and simultaneously modifying closely spaced cysteine and lysine residues. We found that OPTH inhibited platelet aggregation induced by ADP, collagen, and U46619 (an analog of prostaglandin H2), but had minimal effect on platelet aggregation induced by thrombin, plasmin, chymotrypsin, A23187 (a calcium ionophore), PMA (phorbol 12-myristate 13-acetate), and PMA + A23187. Since platelet aggregation induced by ADP, collagen, and U46619 has been shown to involve binding of endogenous or exogenous ADP to the platelet receptor, our further studies focused on platelet aggregation induced by ADP. OPTH inhibited ADP-induced shape change and aggregation in a concentration-dependent manner. The second-order rate constant for the inhibition of ADP-induced platelet shape change (Ksc = 1.0 X 10(3) M-1 s-1) was lower than that for aggregation (Kagg = 5.4 X 10(3) M-1 s-1). Fluorescence excitation and emission spectra of OPTH-platelet adduct exhibited maxima at 346 and 437 nm, respectively, consistent with the formation of an isoindole derivative(s). The nonpenetrating thiol-specific reagent, p-chloromercuribenzenesulfonate (pCMBS) (0.8 mM), is known to block the inhibition of stimulated adenylate cyclase induced by ADP but not the ADP-induced platelet shape change. The inhibition of ADP-induced platelet shape change (Ksc = 1.5 X 10(3) M-1 s-1) by OPTH was not affected by pCMBS. OPTH, at concentrations (15-50 microM) that inhibited ADP-induced platelet aggregation and shape change did not raise the intracellular levels of adenosine cyclic 3',5'-monophosphate (cAMP) in platelets nor did it impair the ability of iloprost (a stable analog of prostaglandin I2) to raise the platelet cAMP level. Thus, OPTH under these conditions did not interact with platelet adenylate cyclase. 5'-p-fluorosulfonylbenzoyladenosine (FSBA) has been previously shown to inhibit ADP-induced platelet shape change and aggregation by covalently modifying aggregin (Mr = 100 kDa), a putative ADP receptor on platelet surface.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The influence of the two antibiotics tetracycline hydrochloride (T) and penicillin G sodium (P) on PGI2 synthesis by the male rat thoracic aorta and day-20 pregnant rat myometrium was investigated in vitro using a rat platelet antiaggregatory bioassay method. Pretreatment of the tissues for 30 min at 37 degrees C with T (21-168 microM) or P (28-224 microM) significantly inhibited PGI2 synthesis in absence or presence of exogenous arachidonic acid (AA) (16.6 microM), (P less than 0.01, n = 5-6). Furthermore, pretreatment of rats with the two drugs (T 11 and P 175 mu mole kg-1 for 30 min) significantly antagonised AA (4 n mole kg-1)-induced hypotension in urethane-anaesthetised rats. They also (T 0.5-4 and P 1-6 microM) antagonised AA-induced aggregation in rabbit citrated platelet-rich plasma. T failed to affect ADP-induced aggregation to any significant level whereas P (3-6 microM) reduced ADP-induced aggregation. The drugs seemed to interfere with the action of the PG endoperoxide synthase (or PG cyclooxygenase) enzyme resulting in decreased formation of PGG2 and PGH2. Such an effect may have resulted from the induced formation of toxic [OH-] radicals and/or inhibition of O2 uptake by the tissues under the influence of the drugs. The demonstrated inherent property of these two antibiotics to inhibit the synthesis of the potent vasodilator, platelet antiaggregatory, anticonvulsant and inhibitor of gastric acid secretion--PGI2, may partly contribute towards better understanding of the biochemical mechanisms that underlie some of the previously known but poorly understood actions of these antibiotics. Furthermore, since good evidence exists for the involvement of excessive uterine prostaglandin synthesis in dysmenorrhoea and premature deliveries, it is suggested that the potential benefits of T or P in these two disorders be investigated.  相似文献   

19.
Guo RT  Chou LJ  Chen YC  Chen CY  Pari K  Jen CJ  Lo SJ  Huang SL  Lee CY  Chang TW  Chaung WJ 《Proteins》2001,43(4):499-508
Rhodostomin (Rho) is a snake venom protein isolated from Calloselasma rhodostoma. Rho is a disintegrin that inhibits platelet aggregation by blocking the binding of fibrinogen to the integrin alpha(IIb)beta3 of platelets. Rho produced in Escherichia coli inhibited platelet aggregation with a K(I) value of 263 nM. Although functional, Rho produced in E. coli is misfolded based on our 2D and 3D NMR studies. In order to correct the folding problem, Rho was expressed in Pichia pastoris. The recombinant Rho expressed in P. pastoris inhibited platelet aggregation with a resulting K(I) value of 70 nM. This is the same potency as that of native Rho. CD analysis showed that the secondary structures of Rho are pH-independent and contain 3.5-7.9% alpha-helix, 48.2-50.5% beta-structures, and 42.3-47% coil. The sequential assignment and structure analysis of Rho were obtained using 2D and 3D 15N-edited NMR spectra. These results provide the first direct evidence that highly disulfide-bonded disintegrin can be expressed in P. pastoris with the correct fold. This evidence may serve as the basis for exploring the structure and function relationships as well as the dynamics of disintegrin and its variants.  相似文献   

20.
Platelets play an important role in hemostasis, thrombosis, and antimicrobial host defense and are also involved in the induction of inflammation, tissue repair, and tumor metastasis. We have previously characterized the platelet aggregation-inducing sialoglycoprotein (Aggrus/gp44) overexpressed on the surface of tumor cells. Because a platelet aggregation-neutralizing 8F11 monoclonal antibody that could specifically recognize Aggrus suppressed tumor-induced platelet aggregation, we have previously purified Aggrus by 8F11-affinity chromatography and found that purified Aggrus possessed the ability to induce aggregation of platelets. Here we show that Aggrus is identical to the T1alpha/gp38P/OTS-8 antigen, the function of which in tumors is unknown. Expression of mouse Aggrus and its human homologue (also known as T1alpha-2/gp36) induced platelet aggregation without requiring plasma components. Using the 8F11 antibody, we identified the highly conserved platelet aggregation-stimulating domain with putative O-glycosylated threonine residues as the critical determinant for exhibiting platelet aggregation-inducing capabilities. We compared the expression level of human aggrus mRNA using an array containing 160 cDNA pair samples derived from multiple human tumorigenic and corresponding normal tissues from individual patients. We found that expression level of aggrus was enhanced in most colorectal tumor patients. To confirm the protein expression, we generated anti-human Aggrus polyclonal antibodies. Immunohistochemical analysis revealed that Aggrus expression was frequently up-regulated in colorectal tumors. These results suggest that Aggrus/T1alpha is a newly identified, platelet aggregation-inducing factor expressed in colorectal tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号