首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 742 毫秒
1.
谷胱甘肽(GSH)/谷胱甘肽过氧化物酶(GPx)系统在不同微生物细胞抵抗氧胁迫中的生理功能不尽相同。该系统在真核模式微生物酿酒酵母中是必需存在的,在维持胞内氧化还原平衡和抵抗氧胁迫中发挥主要作用。然而,在原核微生物中,该系统只是条件性的,即部分胞内存在谷胱甘肽还原酶和GPx的原核微生物,如流感嗜血杆菌和乳酸乳球菌,可通过从胞外吸收GSH,形成条件性的依赖于GSH的GPx系统,参与抵抗氧胁迫。  相似文献   

2.
水分胁迫对刺槐叶和根谷胱甘肽抗氧化系统的影响   总被引:2,自引:1,他引:1  
在人工控水条件下,采用土壤最大持水量70%、55%、40%的水分处理模拟环境中的正常水分、轻度和重度水分胁迫处理,测定了刺槐叶片和根系中还原型谷胱甘肽(GSH)和还原型抗坏血酸(AsA)含量以及谷胱甘肽还原酶(GR)、谷胱甘肽过氧化物酶(GSH-Px)和超氧化物歧化酶(SOD)活性,以探讨水分胁迫条件下刺槐谷胱甘肽抗氧化系统的保护作用.结果显示:各水分处理的刺槐叶片GSH和AsA含量及GR 和SOD活性均明显高于根,根中GSH-Px活性只有在重度水分胁迫处理下大于叶片.随水分胁迫加剧,刺槐GSH含量在叶片中先升高后降低,在根中不断升高;AsA含量在叶中持续降低,在根中先升高后降低;GR活性在叶片和根系中都会降低,GSH-Px和SOD活性在叶中先升高后降低,在根中均持续升高.研究表明,刺槐谷胱甘肽抗氧化系统的GSH和GSH-Px对干旱胁迫诱发的活性氧清除起主要作用,同时提高GSH含量和GSH-Px活性是刺槐应对干旱胁迫的重要措施.  相似文献   

3.
谷胱甘肽(GSH)在生物细胞抵御外界环境条件的刺激和胁迫时起到非常重要的作用。考察了不同时间不同浓度过氧化氢胁迫和过氧化氢连续胁迫对产朊假丝酵母合成GSH的影响, 发现低浓度过氧化氢的连续胁迫对GSH的合成有明显促进作用。进一步在发酵罐上应用了低浓度过氧化氢(36 mmol/L)持续胁迫策略, 最终GSH产量为922 mg/L, 胞内GSH含量为1.64%, 比对照分别提高了7%和35%。  相似文献   

4.
谷胱甘肽(GSH)在生物细胞抵御外界环境条件的刺激和胁迫时起到非常重要的作用。考察了不同时间不同浓度过氧化氢胁迫和过氧化氢连续胁迫对产朊假丝酵母合成GSH的影响, 发现低浓度过氧化氢的连续胁迫对GSH的合成有明显促进作用。进一步在发酵罐上应用了低浓度过氧化氢(36 mmol/L)持续胁迫策略, 最终GSH产量为922 mg/L, 胞内GSH含量为1.64%, 比对照分别提高了7%和35%。  相似文献   

5.
高等植物体内的谷胱甘肽   总被引:1,自引:0,他引:1  
谷胱甘肽(GSH)在植物对生物与非生物胁迫中起着重要的作用,其作用机制仍是国内外研究的热点之一。从GSH在植物体内的结构、代谢、功能及其分子生物学领域的研究作了综述,并对该领域存在的问题及前景作了展望。  相似文献   

6.
植物谷胱甘肽的生物合成及其生物学功能   总被引:5,自引:0,他引:5  
谷胱甘肽(glutathione,GSH)是硫酸根还原同化途径中主要的含硫非蛋白终端产物,在生物中以还原型谷胱甘肽(reduced glutathione,GSH)和氧化型谷胱甘肽(oxidized glutathione,GSSG)存在。因其在植物体中的广泛存在和独特的还原能力得到广泛关注。本文从谷胱甘肽在植物体内的生物合成,谷胱甘肽的区划、运输和降解以及在非生物胁迫条件下的生物学功能等方面论述了近年来国内外对谷胱甘肽的研究进展。  相似文献   

7.
谷胱甘肽生物合成及代谢相关酶的研究进展   总被引:1,自引:0,他引:1  
谷胱甘肽是广泛存在于生物体内的一个含有γ-肽键的生物活性三肽,其中游离的巯基是其活性中心。在生物体内谷胱甘肽主要是由GSH I和GSH II两个酶依次催化合成,而GSH I和GSH II的进化过程复杂,由此衍生出多条生物合成途径,其代谢过程在不同生物体内也复杂多样。本文主要综述了谷胱甘肽生物合成及代谢相关酶的研究进展和利用基因工程手段提高胞内谷胱甘肽含量的策略。  相似文献   

8.
采用营养液培养方法,研究外源NO对铜胁迫下番茄(Lycopersicon esculentum Mill.)幼苗根系抗坏血酸(AsA)-谷胱甘肽(GSH)循环中抗氧化物质和抗氧化酶系的影响.结果表明:外施适量NO(硝普钠)可提高铜胁迫下番茄幼苗根系AsA、GSH含量和AsA/DHA(氧化型抗坏血酸)、GSH/GSSG(氧化型谷胱甘肽),降低DHA和GSSG含量.添加100 μmol·L-1 BSO(谷胱甘肽合成酶抑制剂)处理下,外源NO可提高铜胁迫下番茄幼苗根系的AsA含量、AsA/DHA及抗坏血酸酶(AAO)、单脱氢抗坏血酸还原酶(MDHAR)和脱氢抗坏血酸还原酶(DHAR)比活性,降低DHA、GSH、GSSG含量及抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)比活性;添加250 μmol·L-1 BSO处理下,外源NO提高了铜胁迫下番茄幼苗根系的AsA、GSH、GSSG含量、AsA/DHA及APX和GR比活性,降低了DHA含量及AAO、DHAR和MDHAR比活性.说明外源NO影响了铜胁迫下番茄根系的AsA-GSH代谢循环,并通过调节AsA/DHA、GSH/GSSG的变化来减轻氧化胁迫,从而缓解铜胁迫对番茄根系的伤害.  相似文献   

9.
以野生型大肠杆菌E.coliⅡ为宿主细胞,转化带有编码谷胱甘肽合成酶系的基因gshⅠ和gshⅡ的质粒pGH501,获得了一株谷胱甘肽合成活性、质粒稳定性和传代稳定性俱佳,并且能够重复使用的重组大肠杆菌E.coliⅡ\|1。该菌株经过甲苯处理后,能够在胞外积累4g/L左右的谷胱甘肽(GSH)。在合成反应体系中,提高L谷氨酸浓度可促进GSH合成,但L半胱氨酸浓度增大到20mmol/L后会抑制GSH的合成。根据GSH合成反应中能量辅因子的变化情况,提出E.coliⅡ\|1细胞控制的GSH合成反应机理:由谷胱甘肽合成酶(GSHⅡ)控制的第二步反应的能量供体是ADP而非ATP,该反应是整个GSH合成反应的限速步骤,高浓度ADP可能会抑制GSHⅡ的活性。在GSH合成反应体系中添加100mmol/L的L丝氨酸-硼酸钾混合物,可以有效地防止GSH的进一步降解,反应3 h后,GSH产量达到230mmol/L(约71g/L)。  相似文献   

10.
谷胱甘肽在植物抗逆中的作用   总被引:3,自引:0,他引:3  
麦维军  王颖  梁承邺  张明永   《广西植物》2005,25(6):570-575
在简要总结谷胱甘肽(GSH)的结构、分布、代谢和调控的基础上,概述了GSH在植物抗逆性方面的 作用,认为GSH通过植物体内螯合肽合成酶催化下聚合形成植物螯合肽来抵抗重金属的胁迫,作为抗氧化剂 参与低温伤害的保护,以亲核进攻一结合反应方式进行生物解毒等。讨论了GSH在植物抗逆性功能中的机 制,并就GSH今后在该方面的研究前景进行了展望。  相似文献   

11.
In all 5 acute viral hepatites (AVHs) and chronic viral hepatites (CVHs) there was the increase of erythrocyte activities of glutathione peroxidase (GPx) and glutathione reductase (GR), and the decrease in reduced glutathione (GSH) concentration. In blood plasma there was accumulation of GPx, glutathione S-transferase (GST), and γ-glutamyl transferase (GGT). GSH and GR increased in plasma only in AVHs. Erythrocyte GST increased in CVH C. Evidently changes in the erythrocyte glutathione system represent reactions to oxidative stress and in blood plasma they are consequences of inflammation and hepatocyte cytolysis. Changes were more pronounced in moderate than in severe disease course. These changes have pathogenic importance and can be used in addition to complex diagnostics. These changes significantly differ from the changes found in chronic gall-bladder diseases. It is important to analyze glutathione system separately in erythrocytes and blood plasma and not in the whole blood.  相似文献   

12.
This study was undertaken to investigate the inducibility of glutathione (GSH), glutathione reductase (GR) and glutathione peroxidase (GPx) by 3H-1,2-dithiole-3-thione (D3T) in beta-cells, and the resultant cytoprotection against oxidant injury. Incubation of the insulin-secreting RINm5F cells with D3T led to significant induction of GSH, GR and GPx. D3T-mediated induction of GSH was abolished by buthionine sulfoximine (BSO), suggesting a critical involvement of γ-glutamylcysteine ligase (γGCL). Consistently, incubation of RINm5F cells with D3T resulted in increased expression of γGCL protein and mRNA. Pretreatment of RINm5F cells with D3T provided remarkable protection against oxidant-elicited cytotoxicity. On the other hand, depletion of cellular GSH by BSO sensitized RINm5F cells to oxidant injury. Furthermore, cotreatment of RINm5F cells with BSO to reverse D3T-mediated GSH induction abolished the cytoprotective effects of D3T on oxidant injury. Taken together, this study demonstrates that upregulation of glutathione system by D3T is effective for protecting against oxidative beta-cell injury.  相似文献   

13.
This study was undertaken to investigate the inducibility of glutathione (GSH), glutathione reductase (GR) and glutathione peroxidase (GPx) by 3H-1,2-dithiole-3-thione (D3T) in beta-cells, and the resultant cytoprotection against oxidant injury. Incubation of the insulin-secreting RINm5F cells with D3T led to significant induction of GSH, GR and GPx. D3T-mediated induction of GSH was abolished by buthionine sulfoximine (BSO), suggesting a critical involvement of γ-glutamylcysteine ligase (γGCL). Consistently, incubation of RINm5F cells with D3T resulted in increased expression of γGCL protein and mRNA. Pretreatment of RINm5F cells with D3T provided remarkable protection against oxidant-elicited cytotoxicity. On the other hand, depletion of cellular GSH by BSO sensitized RINm5F cells to oxidant injury. Furthermore, cotreatment of RINm5F cells with BSO to reverse D3T-mediated GSH induction abolished the cytoprotective effects of D3T on oxidant injury. Taken together, this study demonstrates that upregulation of glutathione system by D3T is effective for protecting against oxidative beta-cell injury.  相似文献   

14.
We investigated the hypothesis that thallium (Tl) interactions with the glutathione-dependent antioxidant defence system could contribute to the oxidative stress associated with Tl toxicity. Working in vitro with reduced glutathione (GSH), glutathione reductase (GR) or glutathione peroxidase (GPx) in solution, we studied the effects of Tl+ and Tl3+ (1-25 μM) on: (a) the amount of free GSH, investigating whether the metal binds to GSH and/or oxidizes it; (b) the activity of the enzyme GR, that catalyzes GSH regeneration; and (c) the enzyme GPx, that reduces hydroperoxide at expense of GSH oxidation. We found that, while Tl+ had no effect on GSH concentration, Tl3+ oxidized it. Both cations inhibited the reduction of GSSG by GR and the diaphorase activity of this enzyme. In addition, Tl3+per se oxidized NADPH, the cofactor of GR. The effects of Tl on GPx activity depended on the metal charge: Tl+ inhibited GPx when cumene hydroperoxide (CuOOH) was the substrate, while Tl3+-mediated GPx inhibition occurred with both substrates. The present results show that Tl interacts with all the components of GSH/GSSG antioxidant defence system. Alterations of this protective pathway could be partially responsible for the oxidative stress associated with Tl toxicity.  相似文献   

15.
A complex study of the blood glutathione system has been carried out for the first time in patients with peptic (gastric and duodenal) ulcer. In erythrocytes and blood plasma of patients with the complicated peptic ulcer and postgastroresection syndromes there was the increase of conjugated dienes (and in the second group the increase in antioxidant activity). Under these conditions the main change was the sharp and identical decrease in glutathione peroxidase activity. In patients with uncomplicated peptic ulcer there was sharp increase in erythrocite and plasma glutathione reductase activity and plasma GSH. In operated but basically healthy patients plasma glutathione peroxidase remained decreased but plasma GSH sharply increased. Evidently complicated peptic ulcer is characterized by decreased functioning of the glutathione system. Activation of this system and the decrease or disappearance of manifestations of oxidative stress are associated with a favorable course of this disease, especially at uncomplicated peptic ulcer. The revealed changes significantly differ from those observed in patients with viral hepatitis, blle excretory diseases and strokes.  相似文献   

16.
We investigated the hypothesis that thallium (Tl) interactions with the glutathione-dependent antioxidant defence system could contribute to the oxidative stress associated with Tl toxicity. Working in vitro with reduced glutathione (GSH), glutathione reductase (GR) or glutathione peroxidase (GPx) in solution, we studied the effects of Tl+ and Tl3+ (1-25 μM) on: (a) the amount of free GSH, investigating whether the metal binds to GSH and/or oxidizes it; (b) the activity of the enzyme GR, that catalyzes GSH regeneration; and (c) the enzyme GPx, that reduces hydroperoxide at expense of GSH oxidation. We found that, while Tl+ had no effect on GSH concentration, Tl3+ oxidized it. Both cations inhibited the reduction of GSSG by GR and the diaphorase activity of this enzyme. In addition, Tl3+per se oxidized NADPH, the cofactor of GR. The effects of Tl on GPx activity depended on the metal charge: Tl+ inhibited GPx when cumene hydroperoxide (CuOOH) was the substrate, while Tl3+-mediated GPx inhibition occurred with both substrates. The present results show that Tl interacts with all the components of GSH/GSSG antioxidant defence system. Alterations of this protective pathway could be partially responsible for the oxidative stress associated with Tl toxicity.  相似文献   

17.
《Free radical research》2013,47(9):1076-1081
Abstract

Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

18.
Glutathione (GSH) forms a part of the antioxidant system that plays a vital role in preventing oxidative stress, and an imbalance in the oxidant/antioxidant system has been linked to the pathogenesis of hypertension. The aim of this study was to investigate the status of the GSH system in the kidney of spontaneously hypertensive rats (SHR). Components of the GSH system, including glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), and total GSH content, were measured in the kidneys of 4, 6, 8, 12, and 16 weeks old SHR and Wistar–Kyoto (WKY) rats. Systolic blood pressure of SHR was significantly higher from the age of 6 weeks onwards compared with age-matched WKY rats. GPx activity in the SHR was significantly lower from the age of 8 weeks onwards when compared to that in age-matched WKY rats. No significant differences were evident in the GPx-1 protein abundance, and its relative mRNA levels, GR, GST activity, and total GSH content between SHR and age-matched WKY rats. The lower GPx activity suggests of an impairment of the GSH system in the SHR, which might be due to an abnormality in its protein rather than non-availability of a cofactor. Its role in the development of hypertension in SHR however remains unclear.  相似文献   

19.
The c-Abl and Arg tyrosine kinases are activated in the cellular response to oxidative stress. The present studies demonstrate that c-Abl and Arg associate with glutathione peroxidase 1 (GPx1) and that this interaction is regulated by intracellular oxidant levels. The c-Abl and Arg SH3 domains bind directly to a proline-rich site in GPx1 at amino acids 132-145. GPx1 also functions as a substrate for c-Abl- and Arg-mediated phosphorylation on Tyr-96. The results further show that c-Abl and Arg stimulate GPx activity and that these kinases contribute to GPx-mediated protection of cells against oxidative stress. Our findings provide the first evidence that GPx1 is regulated by a signaling pathway that is activated in the oxidative stress response.  相似文献   

20.
Previously the authors have designed and synthesized a library of antioxidative glutathione analogues called UPF peptides which are superior to glutathione in hydroxyl radical elimination. This paper is a follow-up study which investigated the effects of the most promising members of the library (UPF1 and UPF17) on oxidative stress-related enzymes. At concentrations used in vivo experiments neither UPF peptide influenced the activity of glutathione peroxidase (GPx) when purified enzyme or erythrocyte lysate was used. At higher concentrations they inhibited GPx activity. UPF peptides had no effect on glutathione reductase (GR) activity. Also they, as well as glutathione itself, slightly increased MnSOD activity in human brain mitochondria and inhibited oxidative burst caused by neutrophil NAD(P)H oxidase. RT-PCR measurements showed that UPF1 and UPF17 have no effect on GPx and MnSOD expression level in human blood mononuclear cells. The results of this study confirm that investigated UPF peptides do not interfere with the enzymatic mechanisms of antioxidative defence and can be used as themselves or as a lead for the protector molecule design against excessive oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号