首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Erwinia uredovora crtB, crtE, crtI, and crtY genes required for beta-carotene biosynthesis were introduced by conjugal transfer into an ethanol-producing bacterium, Zymomonas mobilis, and a phytopathogenic bacterium, Agrobacterium tumefaciens, in which no carotenoid is synthesized. The transconjugants of Z. mobilis and A. tumefaciens carrying these genes appeared as yellow colonies and produced 220 and 350 micrograms of beta-carotene per g of dry weight, respectively, in the stationary phase in liquid culture.  相似文献   

2.
The bacterium Zymomonas mobilis is a potentially useful organism for the commercial production of ethanol as it is capable of more than double the rate of alcohol production by yeast. However, industrial application of this bacterium has been restricted in part due to the disadvantages of its limited substrate range (glucose, fructose and sucrose) and by-product formation. Progress in strain improvement and genetic manipulation of this ethanologen is reviewed. Methodologies for gaining reproducible gene transfer in Z. mobilis have recently been developed. Genetic modification has led to its growth on the additional substrates lactose and mannitol. Additionally, a range of by-product negative mutants have also been isolated. Further interest has focused on transfer of Z. mobilis genes to other fermentive organisms in order to gain enhanced product formation. Overall, these genetic approaches should lead to development of novel strains of Z. mobilis and other genera, capable of the use of starch, cellulose and xylan in a manner attractive for industrial ethanol production, besides facilitating over production of products from E. coli strains with enhanced capability to grow at high density.  相似文献   

3.
Genetic engineering of ethanol production in Escherichia coli   总被引:16,自引:0,他引:16  
The genes encoding essential enzymes of the fermentative pathway for ethanol production in Zymomonas mobilis, an obligately ethanologenic bacterium, were inserted into Escherichia coli under the control of a common promoter. Alcohol dehydrogenase II and pyruvate decarboxylase from Z. mobilis were expressed at high levels in E. coli, resulting in increased cell growth and the production of ethanol as the principal fermentation product from glucose. These results demonstrate that it is possible to change the fermentation products of an organism, such as E. coli, by the addition of genes encoding appropriate enzymes which form an alternative system for the regeneration of NAD+.  相似文献   

4.
Genetic engineering of ethanol production in Escherichia coli.   总被引:7,自引:0,他引:7       下载免费PDF全文
The genes encoding essential enzymes of the fermentative pathway for ethanol production in Zymomonas mobilis, an obligately ethanologenic bacterium, were inserted into Escherichia coli under the control of a common promoter. Alcohol dehydrogenase II and pyruvate decarboxylase from Z. mobilis were expressed at high levels in E. coli, resulting in increased cell growth and the production of ethanol as the principal fermentation product from glucose. These results demonstrate that it is possible to change the fermentation products of an organism, such as E. coli, by the addition of genes encoding appropriate enzymes which form an alternative system for the regeneration of NAD+.  相似文献   

5.
Strain T1K, reported to be Rhizobium trifolii strain T1 carrying the drug resistance plasmid RU-1drd, was able to transfer a cluster of nif+ genes to Escherichia coli K-12. Additional genetic material, resembling the gal-chlA region of E. coli, was also transferred from strain T1K. The segregation pattern of these transferred genes suggested that they were on a plasmid. Although strain TIK was able to nodulate red and white clover, it also formed very slow-growing galls on tomato stems and shared many physiological properties with Agrobacterium tumefaciens, to which it seemed more closely related than to R. trifolii. The R. trifolii hybrid T1 (R1-19drd), constructed by conjugation, did not share any of these properties of both A. tumefaciens. Thus, strain T1K appears to be a bacterium with properties of both A. tumefaciens and R. trifolii and with the capacity to transfer nif+ genes and other functions which it may have "cloned" from another bacterium such as Klebsiella.  相似文献   

6.
Li A  Geng J  Cui D  Shu C  Zhang S  Yang J  Xing J  Wang J  Ma F  Hu S 《Journal of bacteriology》2011,193(19):5531
Agrobacterium tumefaciens F2 is an efficient bioflocculant-producing bacterium. But the genes related to the metabolic pathway of bioflocculant biosynthesis in strain F2 are unknown. We present the draft genome of A. tumefaciens F2. It could provide further insight into the biosynthetic mechanism of polysaccharide-like bioflocculant in strain F2.  相似文献   

7.
Zymomonas mobilis is a very important gram-negative bacterium having a potential application to simultaneous co-production of biofuel and other high value-added products through biorefinery process technology development. Up to now, pLOI193 has been used as the plasmid of choice for Z. mobilis strains. However, its application has been limited due to its relatively low transformation efficiency, a large plasmid size (13.4 kb), and limited choice of cloning sites for gene manipulations. Some of these limitations can be overcome by the newly designed and constructed plasmid pHW20a, which provides significantly higher transformation efficiency (about two orders of magnitude greater), better stability (for at least 120 generation times), and an ease of gene manipulations. The pHW20a contains three complete cis-acting genes (repA, repB, and repC) encoding the Rep proteins for primosome formation. It has the origin of replication (oriV) to ensure replication in gram-negative bacteria, two mob genes that enhances transformation efficiency, a screening marker (lacZα), expanded multiple cloning sites (MCS) that enables easy gene manipulation, and the tetracycline resistance gene (tc(r) ). The utility of screening marker, lacZα with MCS, was confirmed by the blue-white screening test. Several examples of applications of gene expression in Z. mobilis ZM4 have been demonstrated in this article by using several new pHW20a-derived plasmids and expressing the homologous genes (gfo and ppc) and the heterologous genes (bglA, mdh, and fdh1). The results show that pHW20a is a very useful new vector for construction of new Z. mobilis recombinant strains that will enable simultaneous co-production of biofuel and high value added products.  相似文献   

8.
An ethanologenic microorganism capable of fermenting all of the sugars released from lignocellulosic biomass through a saccharification process is essential for secondary bioethanol production. We therefore genetically engineered the ethanologenic bacterium Zymomonas mobilis such that it efficiently produced bioethanol from the hydrolysate of wood biomass containing glucose, mannose, and xylose as major sugar components. This was accomplished by introducing genes encoding mannose and xylose catabolic enzymes from Escherichia coli. Integration of E. coli manA into Z. mobilis chromosomal DNA conferred the ability to co-ferment mannose and glucose, producing 91 % of the theoretical yield of ethanol within 36 h. Then, by introducing a recombinant plasmid harboring the genes encoding E. coli xylA, xylB, tal, and tktA, we broadened the range of fermentable sugar substrates for Z. mobilis to include mannose and xylose as well as glucose. The resultant strain was able to ferment a mixture of 20 g/l glucose, 20 g/l mannose, and 20 g/l xylose as major sugar components of wood hydrolysate within 72 h, producing 89.8 % of the theoretical yield. The recombinant Z. mobilis also efficiently fermented actual acid hydrolysate prepared from cellulosic feedstock containing glucose, mannose, and xylose. Moreover, a reactor packed with the strain continuously produced ethanol from acid hydrolysate of wood biomass from coniferous trees for 10 days without accumulation of residual sugars. Ethanol productivity was at 10.27 g/l h at a dilution rate of 0.25 h(-1).  相似文献   

9.
New strains of Beijerinckia mobilis and Clostridium sp. isolated from the pea rhizosphere were studied with respect to their promoting effect on the growth and development of some agricultural crops. Seed soaking in bacterial suspensions followed by the soil application of the suspensions or their application by means of foliar spraying was found to be the most efficient method of bacterization. The application of B. mobilis and Clostridium sp. cultures in combination with mineral fertilizers increased the crop production by 1.5-2.5 times. The study of the population dynamics of B. mobilis by the method of genetic marking showed that this bacterium quickly colonized the rhizoplane of plants and, therefore, had characteristics of an r-strategist. At the same time, Clostridium sp. was closer to K-strategists, since this bacterium slowly colonized the econiches studied. The introduction of the bacteria into soil did not affect the indigenous soil bacterial complex. The presence of Clostridium sp. slowed down the colonization of roots by the fungal mycelium. The possible mechanisms of the plant growth-promoting activity of B. mobilis and Clostridium sp. are discussed.  相似文献   

10.
11.
The Zymomonas mobilis gene encoding acid phosphatase, phoC, has been cloned and sequenced. The gene spans 792 base pairs and encodes an Mr 28,988 polypeptide. This protein was identified as the principal acid phosphatase activity in Z. mobilis by using zymograms and was more active with magnesium ions than with zinc ions. Its promoter region was similar to the -35 "pho box" region of the Escherichia coli pho genes as well as the regulatory sequences for Saccharomyces cerevisiae acid phosphatase (PHO5). A comparison of the gene structure of phoC with that of highly expressed Z. mobilis genes revealed that promoters for all genes were similar in degree of conservation of spacing and identity with the proposed Z. mobilis consensus sequence in the -10 region. The phoC gene contained a 5' transcribed terminus which was AT rich, a weak ribosome-binding site, and less biased codon usage than the highly expressed Z. mobilis genes.  相似文献   

12.
Swimming against the tide: chemotaxis in Agrobacterium.   总被引:1,自引:0,他引:1  
Chemotaxis in bacteria is an excellent model for signal transduction processes. In Agrobacterium tumefaciens, the causative agent of crown gall tumour on wounded plants, it is a vital part of the organism's biology. A chromosomally-determined chemotaxis system causes the bacterium to be attracted into the rhizosphere by chemoattractants in plant exudates. By interfacing with this system, the multifunctional products of two Ti-plasmid encoded genes, virA and virG, allow the sensing of specific wound phenolics such as acetosyringone. This attracts Ti-plasmid harbouring A. tumefaciens to wound sites, where the higher acetosyringone concentrations lead to virA and virG-mediated induction of the vir-genes. The products of the induced genes, act in concert to effect transfer of the T-DNA to the plant cell.  相似文献   

13.
Abstract The enzyme glucose-fructose oxidoreductase (GFOR) from the Gram-negative ethanologenic bacterium Zymomonas mobilis was purified to homogeneity and was shown to be a tetrameric protein with a subunit size of M r 42 500. Using immunogold-labelling in combination with electron microscopy, ultrathin sections of Z. mobilis wild type cells showed that the enzyme GFOR is located in the periplasm off the bacterial cells. Z. mobilis strains which carried the cloned gfo gene on plasmid pSUP104, had 5–6-fold increased GFOR enzyme activities. Moreover, these cells accumulated large amounts of a presumable unprocessed pre-GFOR protein ( M r 48 000).  相似文献   

14.
In addition to a unique tumor-inducing (Ti) plasmid, the plant pathogenic bacterium Agrobacterium tumefaciens has an unconventional chromosomal organization. Our previous studies on A. tumefaciens MAFF301001 revealed that it possesses a 2 Mb linear and a 2.8 Mb circular chromosome plus a 206.479 kbp Ti plasmid (pTi-SAKURA). In this study, a linkage map for the left half of its linear chromosome covering a 900 kbp region was constructed and the number of potential genes existing in the region was estimated. The linkage map consists of 31 BAC and 8 lambda phage recombinants without any gaps. It confirmed the size and all the structural landmarks indicated in the corresponding region of our previously constructed physical map for the linear chromosome. Sequencing analysis of the end-regions of each linking clone led to the identification of 6 genes and another 27 potential genes or ORFs, including genes and/or gene clusters responsible for homologous recombination (ruvB), trehalose/maltose sugar transport (thuR, thuG) and alanine catabolism (dadR). Two virulence-related gene homologues (attK and celB), previously reported in the circular chromosome of a different strain of A. tumefaciens were found in this region. These findings will provide a ready-to-use linkage map for further functional analysis of the linear chromosome.  相似文献   

15.
D Parke 《Journal of bacteriology》1993,175(11):3529-3535
An Escherichia coli system for generating a commercially unavailable catabolite in vivo was developed and was used to facilitate molecular genetic studies of phenolic catabolism. Introduction of the plasmid-borne Acinetobacter pcaHG genes, encoding the 3,4-dioxygenase which acts on protocatechuate, into E. coli resulted in bioconversion of exogenously supplied protocatechuate into beta-carboxy-cis,cis-muconate. This compound has been shown to be an inducer of the protocatechuate (pca) genes required for catabolism of protocatechuate to tricarboxylic acid cycle intermediates in Rhizobium leguminosarum biovar trifolii. The E. coli bioconversion system was used to explore regulation of the pca genes in a related bacterium, Agrobacterium tumefaciens. The pcaD gene, which encodes beta-ketoadipate enol-lactone hydrolase, from A. tumefaciens A348 was cloned and was shown to be adjacent to a regulatory region which responds strongly to beta-carboxy-cis,cis-muconate in E. coli. Site-specific insertional mutagenesis of the regulatory region eliminated expression of the pcaD gene in E. coli. When the mutation was incorporated into the A. tumefaciens chromosome, it eliminated expression of the pcaD gene and at least three other pca genes as well. The regulatory region was shown to activate gene expression in trans. The novel regulatory gene was termed pcaQ to differentiate it from pca regulatory genes identified in other microbes, which bind different metabolites.  相似文献   

16.
C K Eddy  O H Smith    K D Noel 《Journal of bacteriology》1988,170(7):3158-3163
A library of Zymomonas mobilis genomic DNA was constructed in the broad-host-range cosmid pLAFR1. The library was mobilized into a variety of Escherichia coli and Pseudomonas putida trp mutants by using the helper plasmid pRK2013. Five Z. mobilis trp genes were identified by the ability to complement the trp mutants. The trpF, trpB, and trpA genes were on one cosmid, while the trpD and trpC genes were on two separate cosmids. The organization of the Z. mobilis trp genes seems to be similar to the organization found in Rhizobium spp., Acinetobacter calcoaceticus, and Pseudomonas acidovorans. The trpF, trpB, and trpA genes appeared to be linked, but they were not closely associated with trpD or trpC genes.  相似文献   

17.
K Suzuki  K Iwata  K Yoshida 《DNA research》2001,8(4):141-152
The phytopathogenic bacterium Agrobacterium tumefaciens is unique in that it possesses both linear and circular DNA chromosomes in addition to a plant-tumor-inducing (Ti) plasmid. We analyzed the two chromosomal DNA molecules in strain MAFF301001, whose Ti plasmid has already been sequenced completely. Physical maps of the chromosomal DNAs were constructed by Southern hybridization experiments using Pme I and Swa I fragments and short fragments bridging the Swa I fragments with special care to avoid any missing fragment. Hybridization with 16S rDNA probe showed one rDNA locus on the linear chromosome and two loci on the circular chromosome. For this bacterium to be pathogenic, not only Ti plasmid but also chromosomal genes are required. The chromosomal virulence (chv) genes (chvA, chvB, chvD, chvE, chvG, chvH, and chvI) and the chromosomal genes affecting the virulence [acvB, pgm(exoC), glgP, miaA, and ros] were successfully mapped onto 5 different regions in the chromosomal physical maps. These chv genes and the chromosomal genes affecting the virulence other than pgm and glgP were found on the circular chromosome, whereas the pgm and glgP genes were located on the linear chromosome. In contrast to the large terminal inverted repeats of Streptomyces linear chromosomal DNA, no hybridization signal was detected between left and right terminal fragments of the linear A. tumefaciens chromosome. Quantitative analysis of DNA fragments indicated that the copy numbers of the two chromosomal DNAs and the Ti plasmid are identical.  相似文献   

18.
K Deanda  M Zhang  C Eddy    S Picataggio 《Applied microbiology》1996,62(12):4465-4470
The substrate fermentation range of the ethanologenic bacterium Zymomonas mobilis was expanded to include the pentose sugar, L-arabinose, which is commonly found in agricultural residues and other lignocellulosic biomass. Five genes, encoding L-arabinose isomerase (araA), L-ribulokinase (araB), L-ribulose-5-phosphate-4-epimerase (araD), transaldolase (talB), and transketolase (tktA), were isolated from Escherichia coli and introduced into Z. mobilis under the control of constitutive promoters that permitted their expression even in the presence of glucose. The engineered strain grew on and produced ethanol from L-arabinose as a sole C source at 98% of the maximum theoretical ethanol yield, based on the amount of consumed sugar. This indicates that arabinose was metabolized almost exclusively to ethanol as the sole fermentation product, with little by-product formation. Although no diauxic growth pattern was evident, the microorganism preferentially utilized glucose before arabinose, apparently reflecting the specificity of the indigenous facilitated diffusion transport system. This microorganism may be useful, along with the previously developed xylose-fermenting Z. mobilis (M. Zhang, C. Eddy, K. Deanda, M. Finkelstein, and S. Picataggio, Science 267:240-243, 1995), in a mixed culture for efficient fermentation of the predominant hexose and pentose sugars in agricultural residues and other lignocellulosic feedstocks to ethanol.  相似文献   

19.
Transport of nonmetabolizable opines by Agrobacterium tumefaciens.   总被引:5,自引:4,他引:1       下载免费PDF全文
We have examined the uptake of [14C]octopine and [14C]nopaline by Agrobacterium tumefaciens strains containing the C58 chromosomal background in medium suitable for the induction of vir genes. All strains tested could transport both of these opines, regardless of the presence or type of Ti plasmid (octopine or nopaline) present in the bacterium. The transport of these opines required active cellular metabolism. Nonradioactive octopine, nopaline, and arginine competed effectively with [14C]octopine and [14C]nopaline for transport into A. tumefaciens A136, suggesting that the transport of these opines occurs via an arginine transport pathway not encoded by the Ti plasmid.  相似文献   

20.
The ethanol-producing bacterium Zymomonas mobilis is of great interest from a bioenergetic perspective because, although it has a very high respiratory capacity, the respiratory system does not appear to be primarily required for energy conservation. To investigate the regulation of respiratory genes and function of electron transport branches in Z. mobilis, several mutants of the common wild-type strain Zm6 (ATCC 29191) were constructed and analyzed. Mutant strains with a chloramphenicol-resistance determinant inserted in the genes encoding the cytochrome b subunit of the bc (1) complex (Zm6-cytB), subunit II of the cytochrome bd terminal oxidase (Zm6-cydB), and in the catalase gene (Zm6-kat) were constructed. The cytB and cydB mutants had low respiration capacity when cultivated anaerobically. Zm6-cydB lacked the cytochrome d absorbance at 630 nm, while Zm6-cytB had very low spectral signals of all cytochromes and low catalase activity. However, under aerobic growth conditions, the respiration capacity of the mutant cells was comparable to that of the parent strain. The catalase mutation did not affect aerobic growth, but rendered cells sensitive to hydrogen peroxide. Cytochrome c peroxidase activity could not be detected. An upregulation of several thiol-dependent oxidative stress-protective systems was observed in an aerobically growing ndh mutant deficient in type II NADH dehydrogenase (Zm6-ndh). It is concluded that the electron transport chain in Z. mobilis contains at least two electron pathways to oxygen and that one of its functions might be to prevent endogenous oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号