首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Glucose-fructose oxidoreductase (GFOR) is a periplasmic enzyme of the ethanologenic, Gram-negative bacterium Zymomonas mobilis . It contains tightly bound NADP+ as cofactor. In Z. mobilis GFOR-recombinant strains, a precursor form of GFOR was accumulated. To assay the preGFOR for its NADP(H) content and enzymatic activity, it was purified from an overproducing strain. Using SDS-PAGE, the precursor subunit size was determined to approximately 45 kDa (compared with a 40 kDa subunit size for the mature GFOR subunit). The N-terminal amino acid sequence of the precursor was determined. The N-terminal residues of the GFOR matched with the signal sequence from the DNA sequence of the gene gfo . The precursor form of GFOR was enzymatically active and contained the cofactor NADP(H).  相似文献   

2.
Abstract Two constitutive acetyl-CoA acetyltransferases (3-ketothiolases A and B) were purified from Alcaligenes eutrophus . Enzyme A was active with only acetoacetyl-CoA and 3-ketopentanoyl-CoA, whereas enzyme B was active with all the 3-ketoacyl-CoAs (C4−C10) tested. Enzyme A appeared to be a tetramer ( M r 70 000) with identical subunits ( M r 44 000) and enzyme B had a similar M r of 168 000 (containing M r 46 000 subunits). Enzymes A and B had isoelectric points of 5.0 and 6.4, respectively. The stoichiometry of the reactions catalysed by each enzyme was confirmed. K m values of 44 μM and 394 μM for acetoacetyl-CoA, and 16 μM and 93 μM for CoA, were determined with enzymes A and B, respectively. Enzymes A and B gave K m values of 1.1 mM and 230 μM, respectively, for acetyl-CoA. The condensation reaction was potently inhibited by CoA in both cases.  相似文献   

3.
Abstract Deprivation of Paracoccus denitrificans of iron in sodium molybdate-containing medium caused a slower rate of growth and lower final cell yield, in contrast to our previous studies in non-sodium molybdate-containing medium, where iron deprivation had little effect on growth rate. Five high M r outer membrane proteins and catechol production were induced in iron-deprived cultures. The fifth protein, M r 72 000, was produced later than the others. Growth of iron-deprived cells in medium containing 20 μM ferric citrate repressed siderophore and iron deprivation-induced protein production, and led to production of an M r 23 000 outer membrane protein (half maximum production after 5 h). Synthesis of the M r 23 000 and high M r proteins appeared to be mutally exclusive, and to be regulated by the cell's iron status. Cells inoculated into medium containing 20 μM ferric citrate took up 92% of the iron within 1 h, suggesting the occurrence of a nonsiderophore mediated, 'low affinity' iron uptake pathway.  相似文献   

4.
Abstract cAMP-dependent phosphoprotein changes were determined using 1-dimensional SDS-gel electrophoresis in a cAMP-requiring yeast mutant ( Saccharomyces cerevisiae AM18). During cAMP starvation, the yeast cells accumulated 3 32P-labeled bands with M r/ 72000, 54000, and 37000. The M r/ 72000 protein was the most prominent phosphorylated protein. After the readdition of cAMP, these phosphoproteins lost their 32P-label while phosphoproteins with M r/ 76000, 65000, 56000 and 30000 were accumulated. Similar phosphoprotein changes were also detected in cdc35 at the nonpermissive temperature, but not in wildtype (A363A) or cdc7 strains of S. cerevisiae .  相似文献   

5.
Abstract The nicotine dehydrogenase from Arthrobacter oxidans was purified 40-fold to homogeneity with 26% recovery. SDS-polyacrylamide gel electrophoresis of the enzyme revealed three protein bands corresponding to M r of 82 000, 30 000 and 15 000. The M r of the native enzyme was calculated to be 12 0000 by gel chromatography. The enzyme contained about 1 FAD, 1 molybdenum, 4 iron and 2 labile sulfur.  相似文献   

6.
Abstract Two constitutive acetoacetyl-CoA (AcAc-CoA) reductases were purified from Alcaligenes eutrophus . Incorporation of [1-14C]-acetyl-CoA into poly-3-hydroxybutyrate (PHB) by systems reconstituted from purified preparations of either 3-ketothiolase, AcAc-CoA reductase and PHB synthase, occurred only when NADPH-AcAc-CoA reductase was present. The NADH reductase was active with all of the d (−)- and l (+)-3-hydroxyacyl-CoA substrates tested (C4-C10), whereas the NADPH reductase was only active with d (−)-3-hydroxyacyl-CoAs (C4-C6). The products of AcAc-CoA reduction by the NADH- and NADPH-linked enzymes were l (+)-3-hydroxybutyryl-CoA and d (−)-3-hydroxybutyryl-CoA, respectively. The NADH-linked enzyme had an M r of 150,000 (containing identical M r 30,000 sub-units) and the NADPH-linked enzyme appeared to be a tetramer ( M r 84,000) with identical sub-units ( M r 23,000). K mapp values of 22 μM and 5 μM for AcAc-CoA and 13 μM (NADH) and 19 μM (NADPH) for the coenzymes were determined for the NADH- and NADPH-linked enzymes, respectively.  相似文献   

7.
Abstract Type I DNA topoisomerase was purified from the lower eukaryote Lentinus edodes . Like the topoisomerase I from other eukaryotic cells, the L. edodes enzyme removed both positive and negative superhelical turns. The M r of the enzyme was determined to be 71,500 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). On gel filtration by Sephacryl S-200, the enzyme appeared to be an aggregate with a native M r of about 235 000 daltons. No energy cofactor was required and ATP did not affect the enzyme. Activity was enhanced about 10-fold by Mg2+ (10 mM) and about 8-fold by KCl (100 mM).  相似文献   

8.
Abstract Protein antigens from whole cell sonicates of Porphyromonas gingivalis W50, previously shown to be discriminatory antigens for patients with adult periodontitis, were purified using SDS-PAGE. Electroeluted proteins were used to immunize mice for the production of monoclonal antibodies (mAbs). A combination of enzyme-linked immunosorbent assay (ELISA) and Western blotting were used to screen hybridoma supernatants for mAbs. MAbs were successfully raised against M r 115 000, M r 55 000 and M r 47 000 antigens together with a second M r 55 000 polypeptide which was a contaminant of the M r 55 000 antigen. No immunological cross-reactivity was found between these four proteins. The mAbs were used to examine the distribution of these antigens among fifteen P. gingivalis strains together with related oral bacteria using immunostaining of dot blots and Western blots. The antigens were confined to P. gingivalis with the M r 115 000 and M r 47 000 antigens being present in all strains tested . The distribution of the M r 55 000 antigens were slightly more restricted: one M r 55 000 (outer membrane location) was present in nine of the fifteen P. gingivalis strains tested, while the other M r 55 000 (location unknown) was only absent from one strain. Whole cell ELISA demonstrated that the M r 115 000 and the outer membrane M r 55 000 antigen possess epitopes which are located on the surface of the bacterium.  相似文献   

9.
Genetic improvements of Zymomonas mobilis for pentose utilization have a huge potential in fuel ethanol production. The production of xylitol and the resulting growth inhibition by xylitol phosphate have been considered to be one of the important factors affecting the rates and yields from xylose metabolism by the recombinant Z. mobilis , but the mechanism of xylitol formation is largely unknown. Here, we reported that glucose–fructose oxidoreductase (GFOR), a periplasmic enzyme responsible for sorbitol production, catalyzed the reduction of xylose to xylitol in vitro , operating via a ping-pong mechanism similar to that in the formation of sorbitol. However, the specific activity of GFOR for sorbitol was higher than that for xylitol (68.39 vs. 1.102 μmol min−1 mg−1), and an apparent substrate-induced positive cooperativity occurred during the catalyzed formation of xylitol, with the Hill coefficient being about 2. While a change of the potential acid–base catalyst Tyr269 to Phe almost completely abolished the activity toward xylose as well as fructose, mutant S116D, which has been shown to lose tight cofactor binding, displayed an even slower catalytic process against xylose.  相似文献   

10.
Abstract Extracts of Cyanophora paradoxa contain 2 activities for phenylalanyl-tRNA synthetase (PRS), when assayed with yeast and eubacterial tRNA as substrate. These enzymes can be separated by salting-out chromatography. Subsequent gel filtration revealed a striking difference in M r between the 2 enzymes. Whereas the M r of the enzyme aminoacylating yeast tRNA is 260 000, typical for PRS from lower eukaryotic organisms, the second enzyme has a unique M r of 80 000. It aminoacylates eubacterial tRNA, but shows no immunological relationship to the corresponding enzyme from Escherichia coli .  相似文献   

11.
Abstract A novel cell-associated proteinase was purified to homogeneity from cytoplasmic antigen preparations of Trichophyton rubrum by sequential isoelectric focusing and gel filtration chromatography. The enzyme exhibited relative molecular masses of 34,000- M r (non-reduced sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE)), 15,000- M r (reduced SDS-PAGE) and 37,000- M r (substrate SDS-PAGE). It had a pH optimum of 7.5 and a p I of 4.5. The proteinase exhibited broad substrate specificity and it was strongly inhibited by the serine proteinase inhibitors phenylmethylsulfonyl fluoride and chymostatin. The N-terminal amino acid sequence of the 34,000- M r proteinase shared 50% homology with the deduced amino acid sequence of a Coccidioides immitis wall-associated chymotrypsin-type serine proteinase. This is the first cell-associated proteinase to be purified and characterised from T. rubrum and it would appear to be related to the chymotrypsin-type serine proteinases, a class of enzymes that have rarely been isolated from fungi. The function of the proteinase remains speculative although it may play a role in the development and subsequent proliferation of the fungus in vivo.  相似文献   

12.
Abstract The methyl-CoM reductase from Methanothrix soehngenii was purified 18-fold to apparent homogeneity with 50% recovery in three steps. The native molecular mass of the enzyme estimated by gel-fitration was 280 kDa. SDS-polyacrylamide gel electrophoresis revealed three protein bands corresponding to M r 63 900, 41 700 and 30 400 Da. The methyl-coenzyme M reductase constitutes up to 10% of the soluble cell protein. The enzyme has K m apparent values of 23 μM and 2 mM for N -7-mercaptoheptanoylthreonine phosphate (HS- HTP = component B ) and methyl-coenzyme M (CH3CoM) respectively. At the optimum pH of 7.0 60 nmol of methane were formed per min per mg protein.  相似文献   

13.
Abstract Membrane-bound l -lactate dehydrogenase has been purified almost to homogeneity from Acinetobacter calcoaceticus . The enzyme is an oligomeric protein of sub-unit M r 40 000 containing non-covalently bound FMN as a prosthetic group. Purified l -lactate dehydrogenase has an apparent K m of 83 μM for l -lactate but has no activity with, and is not inhibited by, d -lactate. The enzyme is strongly inhibited by HgCl2, but other thiol reagents and metal-chelating compounds have little or no effect upon its activity.  相似文献   

14.
Abstract Poly(3-hydroxybutyric acid) granules, which harbored only four major granule-associated proteins as revealed by SDS polyacrylamide gel electrophoresis, were isolated from crude cellular extracts of Chromatium vinosum D by centrifugation in a linear sucrose gradient. N-Terminal amino acid sequence determination identified two proteins of M r 41 000 and M r 40 000 as the phaE Cv and phaC Cv translational products, respectively, of C. vinosum D. In a previous study it was shown that both proteins are required for the expression opf poly(3-hydroxyalkanoic acid) synthase activity. The N-terminus of the third protein ( M r 17 000) exhibited no homology to other proteins. Lysozyme, which was during purification of the granules, exhibited a strong affinity to PHB granules and was identified as the fourth protein enriched with the granules.  相似文献   

15.
Abstract The presence of a regular array (RA) was demonstrated on the outer layer of the cell wall in Clostridium difficile GAI0714 by electron microscopy. The RA was composed of squarely arranged subunits with a center-to-center spacing of about 8.2 nm. The outer wall layer carrying the RA was isolated from the wall fragments of early log-phase cells by autolysis. The outer wall layer was composed of two main proteins with apparent M rs of about 45 000 and 32 000 upon sodiumdodecylsul-fate-polyacrylamide gel electrophoresis (SDS-PAGE). Similar RAs were also present in the cell walls of the other 9 strains of C. difficile . These strains were divided into two groups on the basis of the wall protein composition: one containing M r 45 000–47 000 and 32 000 proteins and the other containing M r 42 000 and 38 000 proteins.  相似文献   

16.
Abstract Phage reactivation systems in Bacteroides fragilis were induced by far-UV irradiation, O2 and H2O2. These three treatments also induced the synthesis of 3, 6, and 4 protein bands, respectively, which were easily detectable by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Two proteins with apparent M r s of approx. 90 000 and 70 000 were induced by all three treatments. Caffeine completely inhibited UV- and O2-induced phage reactivation and prevented the synthesis of the M r 90 000 and M r 70 000 proteins. The results suggest that these two proteins may be involved in phage reactivation processes induced by UV, O2 and H2O2 in B. fragilis .  相似文献   

17.
Abstract Crystals from Bacillus thuringiensis var. israelensis appeared to contain three major proteins of M r 230 000, 130 000 and 28 000. These proteins were solubilized from the crystals by incubation in 10 mM DTT, pH 9.5, and purified by sucrose gradient centrifugation. The M r 230 000 and 130 000 crystal proteins showed mosquitocidal properties, whereas the M r 28 000 crystal protein contained haemolytic activity. Immobilization of these proteins on latex beads did not alter these properties. Partial proteolytic degradation showed that the M r 130 000 and 28 000 proteins are structurally different.  相似文献   

18.
Abstract Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) followed by immunoblotting was employed to detect intracellular precursors of endo-β-1,4-glucanases (EGs) in Trichoderma reesei QM9414 under conditions of de novo induction by sophorose and de novo carbon catabolite derepression by lactose. Secretion of EGs was always preceded by intracellular accumulation of lower M r precursors, which became processed to larger M r forms immediately prior to their extracellular appearance. Treatment of the larger M r forms with α-mannosidase converted them to forms with the same M r as the smaller forms, whereas Endo H treatment was without effect. These results are consistent with a requirement of O -linked glycosylation for secretion of EGs by T. reesei .  相似文献   

19.
For the continuous, enzymatic synthesis of sorbitol and gluconic acid by cell-free glucose-fructose oxidoreductase (GFOR) from Zymomonas mobilis, the principal determinants of productivity have been identified. Most important, the rapid inactivation of the soluble enzyme during substrate conversion can be avoided almost completely when weak bases such as tris(hydroxymethyl)aminomethan or imidazol are used for the titration of the produced gluconic acid and when 5-10 mM dithiothreitol are added to prevent thiol oxidations. With regard to a long-term operational stability of the enzyme for continuous syntheses, thermal deactivation becomes significant at reaction temperatures above 30 degrees C. Without any additional purification being required, the crude cell extract of Z. mobilis can be employed in a continuous ultrafiltration membrane reactor over a time period of more than 250 h without significant decrease in substrate conversion or enzyme activity. The use of soluble GFOR thus appears to be an interesting alternative to employing permeabilized cells of Zymomonas for the production of sorbitol and gluconic acid and may be superior with regard to reactor productivities, at comparable operational stabilities.  相似文献   

20.
Abstract The monomethyl sulfate-degrading bacterium, Hyphomicrobium MS 223 , contains a NAD(P)-independent methanol dehydrogenase (EC 1.1.99.8) which was isolated and characterized. The enzyme was activated by ammonium ions, had an M r of 118000 and was composed of two subunits of identical M r. It showed a broad substrate specificity for primary alcohols and was able to oxidize secondary alcohols and several aliphatic aldehydes. The new competitive inhibitor acetaldehyde oxime inhibited aldehyde oxidation more strongly than alcohol oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号