首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 127 毫秒
1.
根据蒙古黄芪(Astragalus membranaceus(Fisch.)Bge.var.mongholicus(Bge.)Hsiao)123个样本点数据和19个环境数据,采用4种生态位模型对蒙古黄芪在中国的潜在适生区进行综合分析,并采用受试者工作特征曲线ROC和Kappa统计量,比较不同模型的预测效果。结果显示:4个模型预测精度良好,一致性显著。AUC值均达到0.8以上,Kappa值均达到0.6以上;其中DOMAIN模型的AUC值和Kappa值均最大,说明该模型的预测精度最佳,预测结果最稳定。潜在适生区的预测结果发现,GARP模型预测的最适宜区范围最广;MAXENT和BIOCLIM模型预测结果较为相似;DOMAIN模型预测结果比较分散。4个模型预测结果均表明西北一带可以作为蒙古黄芪栽培引种的主要产区。蒙古黄芪潜在适生区主要分布于中国北纬33°以北地区;最适宜区主要分布于甘肃、宁夏、陕西、山西、河北和内蒙古等地区。  相似文献   

2.
基于生态位模型预测天麻全球潜在适生区   总被引:2,自引:0,他引:2       下载免费PDF全文
目前对药用植物天麻(Gastrodia elata)的全球潜在适生区研究较少,基于多个生态位模型预测天麻在全球范围内的潜在适生区,对天麻人工引种栽培及其产业发展具有重要意义。该文收集220个天麻全球分布点和19个生态因子数据,最终筛选出8个环境变量参与模型训练,基于3个生态位模型(BIOCLIM、DOMAIN和MAXENT)预测天麻全球潜在适生区,并采用受试者工作特征曲线ROC和Kappa统计量分析比较不同模型的预测效果。结果表明:3个模型的预测结果基本一致,天麻全球潜在适生区主要分布在20°–50°N的亚洲地区,其中中国、日本和韩国是集中分布地,此外,印度、尼泊尔以及欧洲地中海附近有少量适生区。其中最适宜区主要分布在:中国四川盆地附近的省区以及中东部;韩国中东部的忠清北道、庆尚北道和庆尚南道;日本本州岛、九州岛以及四国岛,因此中国、日本和韩国是天麻的主要产区。3个模型的受试者工作特征曲线下面积(AUC值)平均值均达到0.9以上,Kappa平均值均达到0.65以上,能较好地预测天麻的潜在适生区,其中MAXENT模型的精度较高,其次是DOMAIN和BIOCLIM模型。  相似文献   

3.
高危性外来入侵种福寿螺严重危害我国的农业生产、生态系统完整性和人体健康.为制定有效的防控策略提供科学依据,本研究通过选取最适的生态位模型以预测福寿螺在我国的潜在适生区.结合福寿螺在我国的337条分布记录和年均温、年降水量等19个生物气候变量数据,本文采用MaxEnt、GARP、BIOCLIM和DOMAIN等4种生态位模型分别模拟预测了福寿螺在我国的潜在适生区,并利用受试者工作特征曲线(ROC)和Kappa统计量分析比较不同模型的预测效果.结果表明: 4种模型均能较好地模拟福寿螺在我国的分布,其中MaxEnt模型的模拟准确度最高(受试者工作特征曲线下的面积AUC=0.955±0.004,Kappa=0.845±0.017),其次是GARP和DOMAIN,准确度相对较小的是BIOCLIM,但其平均AUC也达0.898±0.017,平均Kappa值为0.771±0.025.MaxEnt模型的预测结果显示,福寿螺的潜在适生区主要分布在30° N以南地区,但其中也有部分地区地处30°N以北.适生区面积占国土面积的13.2%,广东、广西、湖南、重庆、浙江和福建沿海地区具有高度潜在入侵风险.本研究可以为福寿螺的科学防控提供参考,并且对大尺度上外来水生生物的适生区预测具有一定的借鉴意义.  相似文献   

4.
为了解滇黄精(Polygonatum kingianum)的适宜生长区,运用Maxent模型模拟其潜在分布区,探讨其引种栽培的适宜气候条件。结果表明,预测模型的AUC值为0.974~0.980,表明模型具有良好的预测能力。滇黄精主要适生区位于我国西南地区,适生面积约81.34×10~4 km~2,占全国适生区面积的88.24%。云南的高度适生区面积最大(19.96×10~4 km~2);四川次之(5.49×10~4 km~2)。75%的高度适生区分布于海拔2 492 m以下的地区,3 400 m以上的地区不适宜于滇黄精生长。最冷月最低温度、7月最低温度、5-8月太阳辐射、最干月降水量、4月和9-11月平均降水量是限制滇黄精分布的主要气候变量。因此,海拔1 400~2 100 m的亚热带地区是滇黄精最适宜的生长区。  相似文献   

5.
为研究气候变化对4种扁桃亚属植物在中国潜在适生分布区的影响,本文收集4种扁桃亚属植物的193个地理分布坐标和19个生物气候变量,利用Max Ent生态位模型预测扁桃(Amygdalus communis L.)、矮扁桃(Amygdalus nana L.)、蒙古扁桃(Amygdalus mongolica (Maxim.) Ricker.)和西康扁桃(Amygdalus tangutica (Batal.) Korsh.)在中国过去(末次间冰期和末次冰盛期)、当代和未来(2050年) 4个时期气候条件下的潜在适生区。结果表明:当代气候条件下,扁桃主要分布于中国新疆裕民县、巩留县、莎车县、英吉沙县、和田县、乌鲁木齐等地区,与过去相比,乌鲁木齐地区的低适生区面积有所减少;与当代相比,未来气候条件下扁桃的适生区面积增加0.17%,甘肃省酒泉市境内低适生区面积增加。当代气候条件下,矮扁桃主要分布于新疆布尔津县、额敏县和裕民县等;与过去相比,矮扁桃总分布面积主要在布尔津县和额敏县等地区,先减小再增加;与当代相比,未来气候条件下总分布面积减少0.85%;当代气候条件下,蒙古扁桃主要分布于东戈壁、呼和浩特和阿拉善戈壁、鄂尔多斯市等地区;与过去相比,蒙古扁桃的适生区分布面积先减小再增加;与当代相比,未来气候条件下分布面积减少3.39%;当代气候条件下,西康扁桃主要分布于四川省马尔康县、茂县等地区;与过去相比,西康扁桃适生区分布面积呈现出增长趋势;与当代相比,未来气候条件下总面积增加0.25%,低适生区面积有所增加。年均降水量是影响扁桃地理分布的主要环境因子;降水量变异系数是影响矮扁桃的主要环境因子;温度季节性变化标准差是影响蒙古扁桃和西康扁桃的主要环境因子。  相似文献   

6.
基于MaxEnt模型的珙桐在中国潜在适生区预测   总被引:2,自引:0,他引:2  
珙桐为我国特有珍稀树种,预测珙桐潜在适生区可为珙桐物种保护与研究提供重要参考。基于387条中国境内样本分布数据和27个环境因子,利用MaxEnt模型与地理信息系统(geographic information system,GIS),对珙桐在中国的潜在适生区进行预测,并通过受试者工作特征(receiver operating characteristic,ROC)曲线对模型精度进行验证。结果表明:ROC曲线下面积(AUC)平均值为0.951,模型预测结果准确性较高,适合珙桐的潜在适生区预测;珙桐潜在适生区主要位于四川、云南、贵州、湖南、湖北、重庆、陕西和西藏等地区,高适生区呈不规则环状分布,西起横断山区,北达秦岭-武当山-荆山一线,东抵张家界-雪峰山一带,南至贵阳,在西藏东南部的雅鲁藏布江河谷和安徽西部的大别山地区也有分布;气温年较差、年降水量、最冷月最低温、昼夜温差、降水量变异系数等5个环境因子对珙桐潜在适生区预测影响最大,其他环境因子,如地形、土壤、水文等影响较小。  相似文献   

7.
《植物生态学报》2018,42(9):946
模拟物种的潜在分布区是保护管理受威胁物种的重要手段。该研究对海南岛石灰岩特有种、濒危植物——海南凤仙花(Impatiens hainanensis)的潜在适宜生境分布进行预测, 旨在为海南凤仙花的有效保护及重引入工作提供基础的科学依据。研究基于海南凤仙花8个种群分布点和12个环境变量, 利用最大熵模型(MaxEnt)和GIS技术构建海南凤仙花适宜生境预测模型, 模拟了当前时期海南凤仙花在海南岛的潜在分布区; 同时基于5个实际分布数据和5个不存在数据, 采用受试者工作特征曲线下的面积(AUC)、Kappa系数、真实技巧统计值(TSS)及总体精度4个评估指标综合评价模型的预测精度。研究结果表明: 4个评估指标值均在0.9以上, 说明MaxEnt模型能够很好地预测海南凤仙花潜在适宜生境的分布。限制其分布的主要环境因子为坡度、最干季降水量、降水量季节性变异系数。当前, 海南凤仙花的最适宜生境占海南岛总面积的1.8%, 主要分布于白沙西部与南部、昌江中部和南部、东方东部、乐东东北部。海南凤仙花潜在适宜生境分布狭窄, 且破碎化严重, 迫切需要保护。因此建议: 收集海南凤仙花各种群种子, 建立种质资源库; 将东方天安乡、江边乡及乐东东北部(佳西保护区)等可能存在最适宜生境的地区, 作为今后野外深入调查的首选区域和重引入的重点区域。  相似文献   

8.
石灰岩特有植物海南凤仙花潜在适宜生境分布模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
模拟物种的潜在分布区是保护管理受威胁物种的重要手段。该研究对海南岛石灰岩特有种、濒危植物——海南凤仙花(Impatiens hainanensis)的潜在适宜生境分布进行预测, 旨在为海南凤仙花的有效保护及重引入工作提供基础的科学依据。研究基于海南凤仙花8个种群分布点和12个环境变量, 利用最大熵模型(MaxEnt)和GIS技术构建海南凤仙花适宜生境预测模型, 模拟了当前时期海南凤仙花在海南岛的潜在分布区; 同时基于5个实际分布数据和5个不存在数据, 采用受试者工作特征曲线下的面积(AUC)、Kappa系数、真实技巧统计值(TSS)及总体精度4个评估指标综合评价模型的预测精度。研究结果表明: 4个评估指标值均在0.9以上, 说明MaxEnt模型能够很好地预测海南凤仙花潜在适宜生境的分布。限制其分布的主要环境因子为坡度、最干季降水量、降水量季节性变异系数。当前, 海南凤仙花的最适宜生境占海南岛总面积的1.8%, 主要分布于白沙西部与南部、昌江中部和南部、东方东部、乐东东北部。海南凤仙花潜在适宜生境分布狭窄, 且破碎化严重, 迫切需要保护。因此建议: 收集海南凤仙花各种群种子, 建立种质资源库; 将东方天安乡、江边乡及乐东东北部(佳西保护区)等可能存在最适宜生境的地区, 作为今后野外深入调查的首选区域和重引入的重点区域。  相似文献   

9.
目的:明确国家Ⅱ级重点保护野生植物对开蕨的潜在适生区,分析影响其适生区分布的主导环境因子,是对其种群开展保护和恢复的基础。方法:基于现有的对开蕨分布点和环境数据,利用MaxEnt模型预测对开蕨在吉林省的潜在适生区并划分适生等级,进而以刀切法,结合每个环境因子的贡献率和置换重要值来综合评估影响对开蕨分布的主导环境因子。结果:训练集的受试者工作特征曲线下的面积(AUC)平均值为0.991,测试集的AUC平均值为0.987,表明MaxEnt模型预测结果准确。对开蕨的潜在适生区主要分布于吉林省东南部的白山市和通化市,辽源市、吉林市和延边州也存在零散分布,而白城市、长春市、松原市和四平市均为非适生区,其中高适生区潜在分布面积共计2 139.67 km2,中适生区潜在分布面积共计2 950.20 km2,低适生区潜在分布面积共计7 309.44 km2。影响对开蕨潜在分布的4个主导环境因子为最暖季度的降雨量、海拔、坡度和最冷月的最低温度,其适宜阈值分别是500~560 mm、700~1 250 m、14°以上和-25.5~-23.5...  相似文献   

10.
山荆子(Malus baccata (L.) Borkh.)具有较高的观赏、经济价值,是苹果属(Malus)植物的重要种质资源。本文利用ENMeval数据包调整Max Ent模型的调控倍频和特征组合参数,根据602条现代分布记录和筛选的8个生物气候变量,模拟预测山荆子在末次盛冰期、中全新世、现代、2070年(RCP 8.5) 4个时期的潜在分布区。采用贡献率、置换重要值比较和刀切法进行检验,综合分析各环境变量对山荆子潜在地理分布的影响。结果显示,当RM值为2、FC为LQHPT时,Max Ent模型的复杂度和过拟合程度较低,该参数下AUC值的均值为0.9272±0.0019,表明模型预测极准确;山荆子现代高度适生区为山西的太行山、管涔山和吕梁山,吉林、辽宁东北部,陕甘宁交界处,河北北部,鲁中南地区;末次盛冰期山荆子适生区整体上显著向东南偏移,北方的高度适生区消失;中全新世适生区轮廓与现代基本一致,但略微有向高海拔地区收缩的趋势; 2070年山荆子在国内的适生区将向高海拔地区急剧收缩,中度、高度适生区面积急剧减少;山荆子现代潜在地理分布受温度和降水因子的共同影响,但后者的影响更大。本研究预测气候变化对山荆子分布范围的影响,将对其种质资源保护和管理提供重要的参考价值。  相似文献   

11.
以孑遗濒危植物四合木( Tetraena mongolica Maxim.)为对象,利用MaxEnt模型和Bioclim模型预测其在我国的潜在适生区,结合刀切法及环境变量响应曲线评估影响四合木分布的主导环境因素,运用ArcGIS软件自然间断法对其适生等级进行划分。结果显示:四合木主要分布于我国新疆、西藏、甘肃、宁夏、内蒙古、青海、陕西、山西、河北、辽宁、吉林和黑龙江等省区;在中国的适生区面积为1. 49 × 10 6 km 2 ,高适生区集中在乌海市毛乌素沙地、阿拉善左旗腾格里沙漠、阴山南部和贺兰山低山地区;2050年四合木潜在分布区将向内蒙古地区北部和东北地区西部方向缩减;两个模型的受试者工作特征曲线下的面积(AUC值)平均值均达到0. 8以上,预测结果较准确;环境因子评估结果显示,影响四合木分布的主要环境因子是最冷季度的平均降水量和年温的变化范围,其次是降水量变异系数和温度季节性变化的标准差。  相似文献   

12.
基于39个地理分布信息和19个生物气候因子,利用BIOCLIM生态位模型对紫玉兰(Yulania liliiflora(Desr.) D. L. Fu)潜在适生区进行预测。结果显示,紫玉兰自然分布于云南、四川、贵州、湖北、甘肃、重庆、福建等地海拔300~1600 m的中低山区。当前气候条件下,贵州苗岭是其主要适生区;随着全球气候变暖(CO2浓度倍增情况下),紫玉兰的适生区有向高海拔地区收缩的趋势,而在分布区的东北界,其潜在分布范围将扩散至湖南中部和浙江东部地区。影响紫玉兰地理分布格局的重要因素是水热条件的综合效应。ROC曲线检验的AUC值(0.998)表明,采用BIOCLIM模型对紫玉兰潜在分布区的预测结果准确性较高。本研究在气候变暖的大环境下分析紫玉兰的适生性,可为紫玉兰种质资源的保护利用提供依据。  相似文献   

13.
【目的】白纹伊蚊入侵力极强,也是广东省登革热传播的主要媒介,预测其在广东省的适生区可为制定防疫策略提供科学依据。【方法】针对传统方法没有考虑环境因子权重的问题,本研究构建了4种适生区预测组合模型。首先采用4种因子权重模型对相关性分析筛选出的环境因子进行权重划分,然后分别与相似离度值公式结合,最后基于GIS技术对白纹伊蚊在广东省的适生区进行预测。【结果】精度验证和适生区预测分布表明,地理探测器与相似离度模型组合的模型预测精度最高,AUC平均值为0.944,标准差为0.008,预测的白纹伊蚊入侵低风险地区处于广东省北部,占广东省总面积的4.05%,绝大部分地区处于中风险地区和中高风险地区,占广东省总面积的85%以上,而广东省中部的广州、佛山和东莞等地处于高风险地区,占广东省总面积的8.77%。【结论】与不考虑因子权重的相似离度模型相比,考虑因子权重的组合模型能有效提高适生区预测精度,其中地理探测器模型通过探究空间异质性划分因子权重,比传统统计学模型效果好,其组合模型适生区预测精度最高。  相似文献   

14.
蜡梅(Chimonanthus praecox)是我国二级濒危珍稀植物,是重要的冬季传统观花植物。利用已报道的246个分布点和worldclim中提取的19个气候因子,基于最大熵(Maxent)模型和地理信息系统(Arc Gis)对蜡梅在中国的潜在适生区分布进行预测分析,采用受试者工作特征(ROC)曲线对预测结果进行检验和评价。结果表明蜡梅的潜在适生范围相对集中,主要集中在西南的四川盆地、华中、华东及华北的中南部地区,其他地区则适应性较低。温度是影响蜡梅分布的决定性因子,其中,当最冷季度平均温度接近0℃,等温性范围为0—10℃,降雨量变异系数约为45时,蜡梅的分布概率最大。与原分布区相比较,蜡梅的适生区范围正向中国东部地区和北部地区迁移。ROC曲线检验评价结果表明,Maxent模型的ROC曲线分析法的面积(AUC)值为0.986,预测结果达到了极高精度。  相似文献   

15.
木本能源植物文冠果的生态特征及区划   总被引:2,自引:0,他引:2  
利用文冠果(Xanthoceras sorbifolia Bunge)160个分布点和19个生态因子数据,采用BIOCLIM、DOMAIN、MAXENT和GARP四种模型预测文冠果的生态适宜区,分析其生态特征并以受试者工作特征曲线ROC对各模型进行评价。结果显示,文冠果最适宜生态区主要分布于西北黄土高原一带,如陕西、山西、宁夏、河北、内蒙古等省区。模型评估结果显示上述4个模型的AUC值均达到0.75以上,表明预测精度良好,均可用来预测文冠果的生态适宜区。文冠果的生态特征为:年平均温度1.9~16℃,昼夜温差月平均8.3~16℃,昼夜温差与年温差比值为22~33,温度变化方差值为7523~14198;最热月份最高温度为20.1~33.5℃;年平均降水量37~952 mm,最湿月份降水量11~219 mm,最干月份降水量0~29 mm,雨量变化方差值为40~137。研究结果表明文冠果适宜生态区包括我国西部的黄土高原地区和北方土石山区以及新疆北部地区。  相似文献   

16.
李白尼  魏武  马骏  张润杰 《昆虫学报》2009,52(10):1122-1131
本研究首先对3种重要生态位模型BIOCLIM, DOMAIN和Maxent(基于最大熵值原理模型)的分布预测精确度进行了分析和比较, 再结合分布点记录以及一系列环境数据图层对3种重要外来入侵性检疫害虫(葫芦寡鬃实蝇Dacus bivittatus、埃塞俄比亚寡鬃实蝇D. ciliatus和西瓜寡鬃实蝇D. vertebratus)的潜在适生性分布区域进行了预测和分析。在模型预测精确度的比较过程中, 3种评估指标(ROC/AUC, Kappa, TSS)均显示Maxent拥有最好的预测结果和最好的运行性能。由Maxent对葫芦寡鬃实蝇、埃塞俄比亚寡鬃实蝇和西瓜寡鬃实蝇的预测结果显示, 这3种实蝇在中美洲、南美洲、东南亚和澳大利亚沿岸的广大地区在总体上具有相似的分布区域。相对而言, 埃塞俄比亚寡鬃实蝇在全球范围具有最为广泛的分布区域, 除前述地区外, 其潜在适生区还包括地中海沿岸、沙特阿拉伯、也门、安曼和伊朗南部的大片地区, 这也意味着在3种寡鬃实蝇中, 它能忍受变化幅度最广的生态、环境条件。在中国, 云南和海南都极适宜于3种实蝇的生存, 同时广东南部及台湾的部分地区也是它们的潜在适生区。基于Maxent的预测结果显示, 相对而言, 埃塞俄比亚寡鬃实蝇在中国范围也具有最为广泛的分布区域, 除前述省份和地区外, 四川、贵州和西藏的南部部分地区以及中国南部的部分沿海地区, 也都是它的潜在适生区。综合所得出的预测结果, 3种寡鬃实蝇从境外传入广东并在此定殖的风险可能性是实际存在的。Jackknife分析显示, 温度以及与此有关的环境因子对于3种实蝇在全球和局部地区的分布模式和分布情况都有极大的影响, 并需要进一步的研究。  相似文献   

17.
【摘要】芬芳安息香(Styrax odoratissimus Champ.)为安息香科落叶乔木, 具有很高的观赏价值和开发利用潜力, 明确芬芳安息香的潜在分布格局及其对气候变化的响应, 对于有效利用其野生资源及科学引种具有重要意义。本文基于198条现代分布记录和6个生物气候变量, 利用MaxEnt模型对其现在和2070年(温室气体排放情景为典型浓度目标8.5)的潜在地理分布进行模拟预测, 采用贡献率、置换重要值比较和刀切法进行检验, 综合分析各环境变量对芬芳安息香潜在分布格局的影响。结果表明, MaxEnt模型模拟预测精度较高(AUC=0.974±0.004); 芬芳安息香现代高度适生区主要集中在我国浙江大部, 福建东部, 安徽南部, 安徽、湖北交界, 江西、湖南、广西交界处以及湖北西南部地区; 2070年芬芳安息香的适生分布区往东南方向偏移, 高度适生区面积急剧减少; Jackknife检验表明, 降水因子和温度因子共同影响着芬芳安息香的分布, 其中最干季降水量可能是制约其地理分布的关键因素。  相似文献   

18.
《环境昆虫学报》2013,35(1):28-32
掌握球果角胫象Shirahoshizo conifera Chao在云南潜在分布区,对了解其危害和防控具有重要的意义。本文利用球果角胫象的分布点数据和环境因子数据,通过Maxent生态位模型预测其在云南的潜在分布区。结果表明:球果角胫象的潜在分布区主要集中滇中地区;在ArcGIS中进行显示与风险等级划分,按栅格数值的大小将球果角胫象的适生范围分为4级,分级标准为:高适生区、中适生区、低适生区、非适生区,经ROC曲线分析法验证,Maxent生态位模型的AUC值为0998,表明预测获得了较好的效果。  相似文献   

19.
新疆草原面积广阔,农牧业地位突出,蝗灾对当地经济、生态威胁很大,近年新疆极端天气日渐频发,蝗灾监测与防治任务艰巨。以意大利蝗、西伯利亚蝗和亚洲飞蝗为代表的蝗虫数据为基础,综合考虑对蝗虫各生命周期有重要影响的环境因素,运用BIOCLIM模型、领域模型(DOMAIN)、马氏距离模型(MAHAL)、广义线性模型(GLM)、随机森林模型(RF)、提升回归树模型(BRT)、支持向量机模型(SVM)、最大熵模型(MaxEnt)等八种经典物种分布模型及集成模型对新疆典型蝗虫适生区展开了预测。结果表明:(1)不同模型对新疆典型蝗虫适生区预测存在差异,其中DOMAIN最差(曲线下面积(AUC)=0.688,真实技巧统计(TSS)=0.301),而提升回归树(BRT)最佳(AUC=0.920,TSS=0.910),基于BRT、SVM和MaxEnt 3个集成模型预测的新疆蝗虫适生区可靠性更高;(2)新疆典型蝗虫不同等级适生区面积约56.844万km2,占新疆总面积的36%,其中高适生区面积16.568万km2;(3)新疆典型蝗虫适生区主要集中于北疆阿勒泰、塔城地区,此外东部哈密地区及南疆绿洲边缘地带亦有分布。研究可为新疆草原工作部门推进蝗虫监测防治工作提供支持。  相似文献   

20.
冬虫夏草(Ophiocordyceps sinensis)是分布在青藏高原高寒地区稀缺的可再生生物资源, 是我国传统名贵中药材, 具有很高的药用价值和经济价值。目前对冬虫夏草的潜在适生区研究较少, 对虫草资源的空间分布格局尚不清晰。明确冬虫夏草在我国的地理分布, 对其保护及有效利用具有重要意义。研究共收集了175个分布点及24个环境因子数据, 最终筛选出12个环境变量数据参与模型训练, 利用Maxent模型预测冬虫夏草中国潜在适生区, 通过ROC曲线分析模型预测效果, 结合贡献率、置换重要值和刀切法检验分析环境变量对冬虫夏草分布的影响。结果显示: 我国虫草主要分布于西藏、青海、甘肃、四川和云南五省, 适生区总面积(高适宜分布区与中适宜分布区)为8.82927×105 km2。ROC评价结果显示, Maxent模型训练数据的AUC值高达0.959, 表明预测结果准确度极高。对环境变量进行分析, 影响冬虫夏草地理分布的主要环境因子是海拔, 最暖季度平均温度, 最暖季度降水量。本研究明确了冬虫夏草在我国的潜在适生分布区, 为虫草的资源明确及生境保护提供了理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号