首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 794 毫秒
1.
 研究了等渗透势(-0.44、-0.88 MPa)NaCl和PEG 6000处理对六叶龄芦荟(Aloe vera)幼苗叶片生长速率、干物质积累、电解质渗漏和离子吸收、分配的效应。结果表明: -0.44、-0.88 MPa NaCl和PEG处理10 d均明显抑制芦荟幼苗叶片伸长生长,植株干物质积累速率显著降低, 叶片含水量降低,叶片细胞电解质渗漏率上升。NaCl对芦荟幼苗生长的抑制作用显著大于PEG处理的。不同器官离子含量、根系和叶片横切面X-射线微区分析结果表明, NaCl胁迫导致芦荟体内Na+、Cl-含量显著上升,根中增幅明显高于叶片,其中Cl-尤为显著。NaCl胁迫严重抑制芦荟对K+ 和Ca2+ 的吸收及其向叶片的运输,根、叶K+/Na+、Ca2+/Na+ 比率显著下降,而PEG胁迫对离子平衡的干扰较轻,是芦荟对水分胁迫的适应能力高于盐胁迫的主要原因之一。但芦荟对 -0.44~-0.88 MPa NaCl胁迫仍有一定的适应能力,主要原因是:1) 根系对离子的选择性吸收和运输较强,并随着盐胁迫强度增加其选择性增强; 2) 芦荟叶片中的盐分在贮水组织中显著积累,明显高于其它组织细胞。同时,芦荟是CAM(景天酸代谢)途径植物,蒸腾极小,盐分随蒸腾流进入地上部的机会小。  相似文献   

2.
A salt marsh species, Jaumea carnosa, was used in hydroponic experiments to test the effects of increasing NaCl concentrations on leaf succulence and plant accumulations of K, Ca, Mg, Na and Cl. A nested experimental design was used with four salinity levels. Plants were grown in full Hoagland's solution plus different amounts of NaCl (0.0–1.2 osmoles). Leaf succulence was measured as percent water content as well as vertical elongation of mesophyll cells. There were no corresponding increases in leaf succulence with increasing concentrations of NaCl in the root zone. Plants receiving aerosol spray (40 mg/dm2/day) did not show significant increases in leaf succulence. Leaf succulence was significantly increased when the plants were removed from the NaCl solutions and placed in non-salinized Hoagland's solution. Osmotic concentrations of cell sap in leaf tissues showed significant increases as NaCl concentrations increased in the root zone. The concentrations of K, Ca and Mg were higher in plants grown without NaCl than in those grown with NaCl. The accumulations of K in the root tissues were always higher than those of the shoot tissues. Although there was a two-fold difference in NaCl concentrations at the highest levels, the concentrations of Na in the shoot tissues were relatively similar. The results of the Cl analyses of shoot tissues showed a similar pattern of regulation of uptake. This regulation of salt uptake may be important in preventing injury by limiting accumulations of salt in plant tissues when growing in soils of high osmotic potentials.  相似文献   

3.
The response of Thellungiella (Thellungiella holophila) and Arabidopsis (Arabidopsis thaliana) callus to salt stress was investigated. The relative growth rate of Arabidopsis calli decreased with increased levels of NaCl. However, the relative growth rate of Thellungiella calli increased with higher levels of NaCl, reaching maximal growth at 100 mM NaCl, but then subsequently declined. A similar pattern of accumulation of proline, glycine betaine, and total flavonoid was observed; whereas, accumulation of treholase continued to increase with increasing NaCl levels in both Thellungiella and Arabidopsis calli. Overall, with increasing NaCl levels, accumulation of glycine betaine, total flavonoid, and treholase was higher in Thellungiella than in Arabidopsis calli; while, proline and sucrose contents were higher in Arabidopsis than in Thellungiella calli. These results indicated that compatible solutes were involved in the response of plant calli to salt stress, and that the halophyte Thellungiella and glycophyte Arabidopsis selected different compatible solutes to adapt to salt stress environments. X. Zhao and H. J. Tan have contributed equally to the paper.  相似文献   

4.
Salt stress may impose osmotic and respiratory costs on nonhalophytes that limit the availability of carbohydrates for growth. This was examined in kenaf (Hibiscus cannabinus L.) by the analysis of soluble carbohydrates, starch, and respiration rates in mature and expanding leaves from plants exposed to moderate salt stress. Plants were grown for 35 days in solution culture at 1, 37, and 75 mM NaCl under greenhouse conditions. Total carbohydrates increased in mature and expanding leaves with increasing salinity. The majority of this increase was as starch. Mature leaf respiration also increased under salt stress. The net accumulation of non-osmotically active carbohydrates in expanding leaves suggests that growth was not limited by the generation or availability of carbohydrates but rather by the ability of the plant to effectively utilize this substrate in osmotic adjustment and growth.  相似文献   

5.
Water-use characteristics and potential salt accumulation rates were studied in three halophytes, Salicornia virginica, Balis marítima and Borrichia frutescens, inhabiting a salinity gradient in the high marsh. Xylem pressure potential (ψρ), leaf osmotic potential (ψπ) and leaf relative water content were measured seasonally in the three species. Species growing on the high end of the salinity gradient developed more negative xylem pressure potentials compared to species growing at lower soil salinities. This trend was also observed for leaf osmotic potentials. Low mean leaf ψπ (below –15 to –36 bars) and high ash contents (0.27–0.48 g NaCl/g DW) indicated salt accumulation in transpiring tissues. However, calculations of potential salt accumulation, based on rates of transpiration and substrate salinity, suggest that some mechanism of salt exclusion at the roots may be operating.  相似文献   

6.
Kenaf responded to salt stress in a manner that was typical of moderately salt tolerant non-halophytes. Increase in leaf area was more sensitive to salinity than either leaf emergence rate or dry matter accumulation. Dry weight was reduced only above a threshold of approximately 37 mM NaCl while leaf area was already significantly reduced at this salt concentration. Measurement of epidermal cell cross sectional area and epidermal cell numbers showed that the salt induced reduction in leaf area was due primarily to smaller epidermal cell size. Epidermal cell numbers were also significantly reduced by salinity. Stomatal density increased with increasing salt stress and there was no effect on leaf thickness.  相似文献   

7.
Seeds and seedlings of the halophyte Atriplex patula were exposed to 0–2% NaCl to determine the effect of salt stress on germination and growth. Seeds germinated and plants survived and grew in solutions of up to 2.0% NaCl. Both seed germination and dry mass production were negatively affected by increased salinity. Dry mass production declined to 1% of controls and seed germination to 17% of controls in the 2% NaCl treatments, indicating that seeds were less inhibited than growing plants. Also, recovery treatments indicated that high salinity did not permanently injure seeds. Percent ash, and Na+ and Cl ions increased in shoots with each salt increment, while the K+ ion content decreased sharply. Atriplex patula is a facultative halophyte, and is limited to low and moderately saline sites because both seed germination and growth are severely reduced at salinities > 1% NaCl.  相似文献   

8.
苗期玉米叶片碳氮平衡与干旱诱导的叶片衰老之关系   总被引:1,自引:0,他引:1  
为了探究干旱诱导的碳氮平衡破坏与干旱诱导的叶片衰老之间的关系,该实验以8个在干旱胁迫下叶片衰老进程有明显差异的玉米品种为实验材料,采用PEG模拟干旱处理,通过测定光合速率、叶绿素含量和叶绿素荧光参数等叶片衰老指标以及非结构性碳水化合物(可溶性糖、淀粉)和全氮含量等变化,分析玉米中干旱诱导的叶片衰老与叶片中碳氮平衡(碳氮比)之间的关系。结果显示:(1)干旱胁迫下,8个玉米品种叶片净光合速率受到严重抑制,Fv/Fm大幅下降,叶绿素含量显著降低,说明干旱诱导了玉米叶片的衰老;(2)干旱诱导玉米叶片衰老的同时,8个玉米品种的叶片中可溶性糖含量显著升高,淀粉含量小幅上升,全氮含量大幅降低,碳氮比显著升高,碳氮平衡遭到了破坏;(3)8个玉米品种叶片的叶绿素含量与非结构性碳水化合物含量以及碳氮比呈极显著负相关关系,与全氮含量呈极显著正相关关系。因此,碳氮代谢与干旱诱导的叶片衰老紧密联系,碳氮平衡可能参与了干旱诱导的叶片衰老调控。  相似文献   

9.
10.
As a traditional Chinese medicinal plant, Lyciumbarbarum is of high economic value and has attracted many considerable interests in recent years. The plant is a perennial halophyte grown under extreme conditions, especially under highly saline soil. A pot experiment was carried out to quantify the responses of L. barbarum plants to soil salinity applied at 100 and 200 mM NaCl. The results demonstrate that 100 mM NaCl soil improves the growth of L. barbarum seedlings. Because the 100 mM NaCl soil enhanced plant height and dry matter by 20% and 30% compared with the nonsalinised soil, it is considered suitable, and the 200 mM NaCl soil showed negative effects, too extreme for the growth of L. barbarum. The leaf cations and betaine content increased significantly under salt stress. The leaf chlorophyll, gas exchange, photochemical efficiency, leaf area and soluble sugar contents showed a significant decrease under 200 mM NaCl stress compared with the nonsalinised and the 100 mM NaCl‐affected soil. The results do not provide a basic mechanism for the observed growth stimulation; however, they suggest that L. barbarum may be an economic species for cultivation in moderately saline areas such as northwest China.  相似文献   

11.
According to sequences of several vacuolar Na+/H+ antiporter genes from Xinjiang halophytic plants, a new vacuolar Na+/H+ antiporter gene (HcNHX1) from the halophyte Halostachys caspica was obtained by RACE and RT-PCR using primers corresponding to conserved regions of the coding sequences. The obtained HcNHX1 cDNA was 1,983 bp and contained a 1,656 bp open reading frame encoding a deduced protein of 551 amino acid residues. The deduced amino acid sequence showed high identity with other NHX1 we have cloned previously from halophyte in Xinjiang desert area. The phylogenetic analysis showed that HcNHX1 formed a clade with NHX homologs of Chenopodiaceae. Expression profiles under salt treatment and ABA induction were investigated, and the results revealed that expression of HcNHX1 was induced by NaCl and ABA. To compare the degree of salt tolerance, we over-expressed HcNHX1 in Arabidopsis. Two transgenic lines grew more vigorously than the wild type (WT) under salt stress. The analysis of ion contents indicated that under salt stress, the transgenic plants compartmentalized more Na+ in the leaves compared with wild-type plants. Together, these results suggest that the products of the novel gene HcNHX1 from halophyte Halostachys caspica is a functional tonoplast Na+/H+ antiporter.  相似文献   

12.
To understand the mechanisms of salt tolerance in a halophyte, sea aster (Aster tripolium L.), we studied the changes of water relation and the factors of photosynthetic limitation under water stress and 300 mM NaCl stress. The contents of Na+ and Cl- were highest in NaCl-stressed leaves. Leaf osmotic potentials (Ψ s) were decreased by both stress treatments, whereas leaf turgor pressure (Ψ t) was maintained under NaCl stress. Decrease inΨ s without any loss ofΨ t accounted for osmotic adjustment using Na+ and Cl- accumulated under NaCl stress. Stress treatments affected photosynthesis, and stomatal limitation was higher under water stress than under NaCl stress. Additionally, maximum CO2 fixation rate and O2 evolution rate decreased only under water stress, indicating irreversible damage to photosynthetic systems, mainly by dehydration. Water stress severely affected the water relation and photosynthetic capacity. On the other hand, turgid leaves under NaCl stress have dehydration tolerance due to maintenance of Ψ t and photosynthetic activity. These results show that sea aster might not suffer from tissue dehydration in highly salinized environments. We conclude that the adaptation of sea aster to salinity may be accomplished by osmotic adjustment using accumulated Na+ and Cl-, and that this plant has typical halophyte characteristics, but not drought tolerance. Electronic Publication  相似文献   

13.
Salt marshes constitute major sinks for heavy metal accumulation but the precise impact of salinity on heavy metal toxicity for halophyte plant species remains largely unknown. Young seedlings of Kosteletzkya virginica were exposed during 3 weeks in nutrient solution to Cd 5 µM in the presence or absence of 50 mM NaCl. Cadmium (Cd) reduced growth and shoot water content and had major detrimental effect on maximum quantum efficiency (Fv/Fm), effective quantum yield of photosystem II (Y(II)) and electron transport rates (ETRs). Cd induced an oxidative stress in relation to an increase in O2?? and H2O2 concentration and lead to a decrease in endogenous glutathione (GSH) and α‐tocopherol in the leaves. Cd not only increased leaf zeatin and zeatin riboside concentration but also increased the senescing compounds 1‐aminocyclopropane‐1‐carboxylic acid (ACC) and abscisic acid (ABA). Salinity reduced Cd accumulation already after 1 week of stress but was unable to restore shoot growth and thus did not induce any dilution effect. Salinity delayed the Cd‐induced leaf senescence: NaCl reduced the deleterious impact of Cd on photosynthesis apparatus through an improvement of Fv/Fm, Y(II) and ETR. Salt reduced oxidative stress in Cd‐treated plants through an increase in GSH, α‐tocopherol and ascorbic acid synthesis and an increase in glutathione reductase (EC 1.6.4.2) activity. Additional salt reduced ACC and ABA accumulation in Cd+NaCl‐treated leaves comparing to Cd alone. It is concluded that salinity affords efficient protection against Cd to the halophyte species K. virginica, in relation to an improved management of oxidative stress and hormonal status.  相似文献   

14.
ABSTRACT

The differences in salt tolerance between Hordeum maritimum and H. murinum were studied. Seeds were collected at horn maturity from wild populations growing respectively near the Orbetello Lagoon and S. Piero a Grado (Tuscany, Italy) and were used in germination and growth tests at increasing salinity (NaCl) levels. H. maritimum was confirmed to be a true halophyte as compared to H. murinum, which exhibited germination behavior typical of many wild glycophytes. The higher salt sensitivity of H. murinum compared to H. maritimum was also shown by its shoot length values, which decreased only in H. murinum, albeit in 100 mM NaCl treatment. The higher degree of salt tolerance of H. maritimum is further demonstrated by the Na : K ratio. H. maritimum can accumulate a greater amount of sodium than potassium in both roots and shoots, even in the absence of salt treatment. However, in NaCl solutions H. maritimum showed a higher Na : K ratio for shoots — an index of better uptake and translocation of sodium to leaves — as has been demonstrated for many halophyte includers. These results thus help to enhance knowledge on wild relatives of barley, whose potential contribution to genetic improvement in salinity tolerance has previously not been thoroughly explored.  相似文献   

15.
To understand the mechanisms of salt tolerance in a halophyte, sea aster ( Aster tripolium L.), we studied the changes of water relation and the factors of photosynthetic limitation under water stress and 300 mM NaCl stress. The contents of Na(+) and Cl(-) were highest in NaCl-stressed leaves. Leaf osmotic potentials ( Psi(s)) were decreased by both stress treatments, whereas leaf turgor pressure ( Psi(t)) was maintained under NaCl stress. Decrease in Psi(s) without any loss of Psi(t) accounted for osmotic adjustment using Na(+) and Cl(-) accumulated under NaCl stress. Stress treatments affected photosynthesis, and stomatal limitation was higher under water stress than under NaCl stress. Additionally, maximum CO(2) fixation rate and O(2) evolution rate decreased only under water stress, indicating irreversible damage to photosynthetic systems, mainly by dehydration. Water stress severely affected the water relation and photosynthetic capacity. On the other hand, turgid leaves under NaCl stress have dehydration tolerance due to maintenance of Psi(t) and photosynthetic activity. These results show that sea aster might not suffer from tissue dehydration in highly salinized environments. We conclude that the adaptation of sea aster to salinity may be accomplished by osmotic adjustment using accumulated Na(+) and Cl(-), and that this plant has typical halophyte characteristics, but not drought tolerance.  相似文献   

16.
水杨酸和阿斯匹林对小麦幼苗生长过程中盐害的缓解作用   总被引:11,自引:0,他引:11  
以小麦为材料,研究盐分胁迫对小麦幼苗生长的影响以及水杨酸和阿斯匹林对小麦幼苗生长过程中盐害的缓解作用。结果表明,水杨酸和阿斯匹林能够相对提高盐分胁迫条件下小麦幼苗叶片的相对含水量,降低叶片质膜透性和盐害对细胞膜的伤害,提高幼苗体内超氧化物歧化酶、过氧化物酶等细胞保护酶的活性,抑制过氧化作用产物丙二醛的积累;同时发现外源水杨酸和阿斯匹林还能够提高幼苗体内ATP的含量,维持幼苗能量代谢和供应的正常进行,从而提高小麦对盐分胁迫的适应性  相似文献   

17.
采用同源克隆的方法,获得盐生植物灰绿藜的液泡膜焦磷酸酶基因(VP1)全长cDNA,命名为CgVP1。生物信息学预测分析表明,CgVP1基因包含一个2 292bp的开放阅读框,编码763个氨基酸。CgVP1不仅具有与植物液泡膜焦磷酸酶共有的氨基酸序列DVGADLVGKVE,而且CgVP1与其它植物的VP1相似性达86%。跨膜结构域预测显示,CgVP1氨基酸序列含有12个跨膜螺旋区,可能定位于细胞膜系统上。RT-PCR检测表明,200mmol/L NaCl条件下萌发生长的灰绿藜,再进行800mmol/L NaCl胁迫处理24h后,CgVP1基因表达显著增强。不同浓度KCl、CaCl2、MgCl2分别处理24h,KCl和MgCl2浓度增高,CgVP1基因表达下降,CaCl2则不影响CgVP1基因表达。研究结果表明,灰绿藜CgVP1基因表达对不同种类盐胁迫响应不同,NaCl胁迫可以上调CgVP1基因表达。该研究结果有助于阐明盐胁迫对盐生植物灰绿藜CgVP1基因表达的调控作用。  相似文献   

18.
盐胁迫对竹柳幼苗生理响应及结构解剖的研究   总被引:2,自引:0,他引:2  
为了解盐胁迫对竹柳(Salix spp.)幼苗生长的影响,采用土培方法,对NaCl胁迫下半年生竹柳扦插苗的成活率、生理响应和根叶部结构进行研究。结果表明,在0.25%Na Cl胁迫(轻度盐胁迫)下竹柳能正常生长,而在0.5%NaCl(中度、重度盐胁迫)下生长受到抑制,推断竹柳的耐盐阈值是0.5%。随着NaCl浓度的增大,叶片相对含水量、叶绿素a含量、叶绿素总含量和叶绿素a/b均呈下降趋势;但叶绿素b含量、脯氨酸含量和MDA含量呈升高趋势。在轻度盐胁迫下,叶片SOD活性和可溶性蛋白含量均升高,在中、重度盐胁迫下显著下降。从根叶解剖结构来看,叶片、角质层、栅栏组织厚度和根部周皮和直径在轻度盐胁迫时最大,但在中度盐胁迫时叶片栅栏组织细胞长度减小且排列越来越疏松,根部输导组织细胞不正常。这表明竹柳在轻度胁迫时具有一定的耐盐性,但在中高度盐胁迫下生长不良。  相似文献   

19.
杨瑞瑞  曾幼玲 《广西植物》2015,35(3):366-372
当前土壤盐渍化日益严重,是限制植物生长的一个主要环境因子,然而在盐碱自然环境中生长着许多耐盐植物,为更好地了解盐生植物的耐盐机理,该文从无机离子Na+,K+,Ca2+含量、脯氨酸水平、水势变化、丙二醛含量和盐胁迫的表型等生理参数以及半定量RT-PCR检测脯氨酸合成关键酶基因(P5CS)的表达规律等方面探讨盐胁迫下盐爪爪的耐盐特性。结果表明:(1)随着盐浓度的升高,Na+在根和肉质化的叶中显著地富集,且叶中积累的Na+比根中更多;(2)在盐胁迫条件下,随着盐浓度的增加,脯氨酸的含量和脯氨酸合成关键酶基因的表达显著地增强;(3)Na+和脯氨酸是植物有效的渗透调节剂,可使处于低水势的植物细胞仍能从细胞外高浓度的盐溶液中吸收水分;(4)在0和700 mmol·L-1Na Cl处理下,盐爪爪肉质化叶中丙二醛的含量较其它处理高,这表明植物在这两个处理下可能受到了氧化胁迫;(5)从盐胁迫3个月的生长表型来看,低盐环境中生长的盐爪爪植株的生物量更多,肉质化的叶嫩且绿。综上所述,结合对野外生境的调查和实验室长期的盐胁迫表型结果表明盐爪爪的生长是需盐的,相对低的盐浓度环境对盐爪爪的生长是顺境,而无盐或高浓度盐环境对于盐爪爪的生长来说都是逆境。该研究结果为全面深入研究盐爪爪的耐盐特性,以及更好地利用盐爪爪的生物和基因资源改良土壤和提高作物和林木的耐盐性奠定基础。  相似文献   

20.
盐胁迫对空心莲子草生长和光合作用的影响   总被引:5,自引:0,他引:5  
用NaCl浓度为0(对照)、50、100、150、200、250、300、350mmol/L处理空心莲子草[Alternantheraphiloxeroides(Mart.)Griseb]。结果表明:盐胁迫下,植株鲜重、干重和根冠比都下降,含水量和肉质化程度先略高于对照,而后逐渐下降;根、茎和叶中Na 含量呈上升趋势,而K 含量呈下降趋势,且在同一浓度的盐处理下,叶的Na 和K 含量最高,茎的次之,根的最低;游离氨基酸(free amino acid,FAA)逐渐减少,脯氨酸(proline,Pro)含量先略低于对照,而后则急剧上升,可溶性糖含量(soluble sugar,SS)的变化正相反;净光合速率(net photosynthetic rate,Pn)、气孔导度(stomatal conductance,Gs)和蒸腾速率(transpirationrate,Tr)呈下降趋势,胞间CO2浓度(intercellular CO2concentration,Ci)呈上升趋势;膜稳定性呈下降趋势。因此,空心莲子草是一种盐生植物,且最适盐浓度较低;Na 主要积累在地上部的茎和叶中。推测它有可能向盐渍土壤蔓延。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号