首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the mechanisms of salt tolerance in a halophyte, sea aster (Aster tripolium L.), we studied the changes of water relation and the factors of photosynthetic limitation under water stress and 300 mM NaCl stress. The contents of Na+ and Cl- were highest in NaCl-stressed leaves. Leaf osmotic potentials (Ψ s) were decreased by both stress treatments, whereas leaf turgor pressure (Ψ t) was maintained under NaCl stress. Decrease inΨ s without any loss ofΨ t accounted for osmotic adjustment using Na+ and Cl- accumulated under NaCl stress. Stress treatments affected photosynthesis, and stomatal limitation was higher under water stress than under NaCl stress. Additionally, maximum CO2 fixation rate and O2 evolution rate decreased only under water stress, indicating irreversible damage to photosynthetic systems, mainly by dehydration. Water stress severely affected the water relation and photosynthetic capacity. On the other hand, turgid leaves under NaCl stress have dehydration tolerance due to maintenance of Ψ t and photosynthetic activity. These results show that sea aster might not suffer from tissue dehydration in highly salinized environments. We conclude that the adaptation of sea aster to salinity may be accomplished by osmotic adjustment using accumulated Na+ and Cl-, and that this plant has typical halophyte characteristics, but not drought tolerance. Electronic Publication  相似文献   

2.
BACKGROUND AND AIMS: Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. METHODS: Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. KEY RESULTS: Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. CONCLUSIONS: Plants preconditioned by salinity stress maintained a better leaf water status during drought stress due to osmotic adjustment and the accumulation of Cl(-) and Na(+). However, high levels of salt ions impeded recovery of leaf water status and photosynthesis after re-irrigation with non-saline water.  相似文献   

3.
盐胁迫下盐地碱蓬体内无机离子含量分布特点的研究   总被引:18,自引:2,他引:16  
用不同浓度NaCl溶液处理盐地碱蓬(Suaeda salsa)植株后,测定并比较老叶、幼叶及根部的无机离子含量和对K的选择性,叶片及根部的Na^ 、Cl^-含量随盐度的增加而升高,且累积趋势相似,盐胁迫下根部Na^ 、Cl^-及总离子含量(K^ 、Na^ 、Ca^2 ,NO3^-,Cl^-)明显低于叶片,说明盐地碱蓬地盐胁迫下,以叶片优先积累大量离子(如Na^ ,Cl^-) 为其适应特征。NaCl处理下,叶片的K^ ,Ca^2 含量低于对照,但随盐度的增加保持相对稳定,而根部K^ 含量,K/Na比、对K的选择性则高于叶片,这对盐胁迫下地上部的K^ 亏缺有一定补偿作用。低盐度处理(100mmol/LNaCl)促进NO3^-的吸收,另外随盐度的增加,叶片渗透势下降,渗透调节能力增强,幼叶渗透势低于老叶,但渗透调节能力相同。  相似文献   

4.
Additive effects of Na+ and Cl- ions on barley growth under salinity stress   总被引:3,自引:0,他引:3  
Soil salinity affects large areas of the world's cultivated land, causing significant reductions in crop yield. Despite the fact that most plants accumulate both sodium (Na(+)) and chloride (Cl(-)) ions in high concentrations in their shoot tissues when grown in saline soils, most research on salt tolerance in annual plants has focused on the toxic effects of Na(+) accumulation. It has previously been suggested that Cl(-) toxicity may also be an important cause of growth reduction in barley plants. Here, the extent to which specific ion toxicities of Na(+) and Cl(-) reduce the growth of barley grown in saline soils is shown under varying salinity treatments using four barley genotypes differing in their salt tolerance in solution and soil-based systems. High Na(+), Cl(-), and NaCl separately reduced the growth of barley, however, the reductions in growth and photosynthesis were greatest under NaCl stress and were mainly additive of the effects of Na(+) and Cl(-) stress. The results demonstrated that Na(+) and Cl(-) exclusion among barley genotypes are independent mechanisms and different genotypes expressed different combinations of the two mechanisms. High concentrations of Na(+) reduced K(+) and Ca(2+) uptake and reduced photosynthesis mainly by reducing stomatal conductance. By comparison, high Cl(-) concentration reduced photosynthetic capacity due to non-stomatal effects: there was chlorophyll degradation, and a reduction in the actual quantum yield of PSII electron transport which was associated with both photochemical quenching and the efficiency of excitation energy capture. The results also showed that there are fundamental differences in salinity responses between soil and solution culture, and that the importance of the different mechanisms of salt damage varies according to the system under which the plants were grown.  相似文献   

5.
The domestication of halophytes has been proposed as a strategy to expand cultivation onto unfavorable land. However, halophytes mainly have been considered for their performance in extremely saline environments, and only a few species have been characterized in terms of their tolerance and physiological responses to moderately high levels of salinity. Salvadora persica is an evergreen perennial halophyte capable of growing under extreme conditions, from very dry environments to highly saline soils. It possesses high potential economic value as a source of oil and medicinal compounds. To quantify its response to salinity, S. persica seedlings were exposed to 200 mM NaCl for 3 weeks, and growth, leaf gas exchange and solute accumulation were measured. The presence of NaCl induced a 100% increase in fresh weight and a 30% increase in dry weight, relative to non-salinized controls. Increases in fresh weight and dry weight were not associated with higher rates of net CO(2) assimilation, however. Analysis of ion accumulation revealed that S. persica leaves accumulated Na(+) as a primary osmoticum. The concentration of Na(+) in leaves of salinized plants was approximately 40-fold greater than that measured in non-salinized controls, and this was associated with significant reductions in leaf K(+) and Ca(2+) concentrations. In addition, a significant accumulation of proline, probably associated with osmotic adjustment and protection of membrane stability, occurred in roots of salinized plants.  相似文献   

6.
Two components of salinity stress are a reduction in water availability to plants and the formation of reactive oxygen species. In this work, we have used quinoa (Chenopodium quinoa), a dicotyledonous C3 halophyte species displaying optimal growth at approximately 150 mM NaCl, to study mechanisms by which halophytes cope with the afore-mentioned components of salt stress. The relative contribution of organic and inorganic osmolytes in leaves of different physiological ages (e.g. positions on the stem) was quantified and linked with the osmoprotective function of organic osmolytes. We show that the extent of the oxidative stress (UV-B irradiation) damage to photosynthetic machinery in young leaves is much less when compared with old leaves, and attribute this difference to the difference in the size of the organic osmolyte pool (1.5-fold difference under control conditions; sixfold difference in plants grown at 400 mM NaCl). Consistent with this, salt-grown plants showed higher Fv/Fm values compared with control plants after UV-B exposure. Exogenous application of physiologically relevant concentrations of glycine betaine substantially mitigated oxidative stress damage to PSII, in a dose-dependent manner. We also show that salt-grown plants showed a significant (approximately 30%) reduction in stomatal density observed in all leaves. It is concluded that accumulation of organic osmolytes plays a dual role providing, in addition to osmotic adjustment, protection of photosynthetic machinery against oxidative stress in developing leaves. It is also suggested that salinity-induced reduction in stomatal density represents a fundamental mechanism by which plants optimize water use efficiency under saline conditions.  相似文献   

7.
盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用   总被引:43,自引:0,他引:43  
用含有NaCl0、50、100、200、300、400mmol/L的Hoagland培养液处理盐芥幼苗一定时间后,分别测定其根和叶含水量、渗透势、几种无机和有机渗透调节物质含量,并计算了渗透调节物质在不同条件下的计算渗透势值(COP).结果表明:随盐处理浓度的增加,盐芥根和叶的含水量和渗透势逐渐降低;Na 和Cl-是根和叶积累的无机渗透调节物质;SS、OA和FAA是根积累的有机渗透调节物质,Pro是叶和根积累的有机渗透调节物质.Na X-ray微区分析表明液泡是积累Na 的主要部位.  相似文献   

8.
等渗盐胁迫下Na^+和Cl^-对大豆幼苗光合作用的离子效应   总被引:1,自引:0,他引:1  
研究和比较了等渗(-0.53MPa)的PEG-6000、NaCl、钠盐(无Cl-)和氯化物(无Na )溶液处理6d对栽培大豆品种‘Lee68’(耐盐性较强)和‘N23674’(耐盐性较弱)幼苗光合作用的离子效应。结果表明:PEG-6000处理使两品种叶片叶绿素含量和Rubisco活性较对照低,但降幅不如同样渗透压的NaCl、钠盐(无Cl-)和氯化物(无Na )溶液明显。PSII最大光化学效率(Fv/Fm)、电子传递速率(ETR)和PSII光化学的有效量子产额(Fv'/Fm')在PEG-6000处理2d和6d时显著下降,但在3种等渗盐处理下,多显著下降。两品种叶片气孔导度(Gs)和净光合速率(Pn)在4种胁迫处理下均显著下降,其中在3种盐处理下更明显,但胞间CO2浓度(Ci)仅在PEG-6000处理时下降,在盐处理下反而升高。两品种叶片叶绿素含量、Rubisco活性、Fv/Fm、ETR、Fv'/Fm'、Pn、Gs等在氯化物(无Na )溶液处理的下降幅度和叶绿体中Cl-含量及其与Na 总量的增加幅度均大于钠盐(无Cl-)处理的,在耐盐性弱的‘N23674’品种中更明显。可见,在NaCl胁迫对栽培大豆幼苗光合作用的毒害效应中,渗透胁迫较轻,离子毒害较重,其中Cl-的毒害大于Na 的。  相似文献   

9.
The combination of NaCl and low temperature stress makes winter a critical time for evergreen halophytes at temperate latitudes. As part of a study of ecotypic differentiation of the evergreen Armeria maritima (Mill.) Willd., inland and salt-marsh populations were compared with respect to their growth and survival, osmotic adjustment and NaCl concentrations (based on dry weight) under salt stress in pot experiments in winter. Increased leaf necrosis in all populations under salt stress indicated a higher NaCl sensitivity in winter than in summer. Plants from inland populations were more sensitive than salt-marsh populations. Inland and salt-marsh populations showed similar capacities for seasonal osmotic adjustment, high seasonal increase of praline concentration and long-term betaine accumulation. Inland and salt-marsh populations allocated Na and Cl preferentially to the shoot. In inland populations, Na and Cl accumulated to high concentrations in leaves, whereas the much lower NaCl concentration in salt-marsh populations suggested that in these plants, Na uptake was regulated to match the growth-dependent ion demand of the shoot. The prevention of NaCl accumulation in times of slow growth by a NaCl homoeostasis system seemed to be an important adaptation with respect to the survival of evergreen plants in salt marshes.  相似文献   

10.
One strategy to increase the level of drought and salinity tolerance is the transfer of genes codifying different types of proteins functionally related to macromolecules protection, such as group 2 of late embryogenesis abundant (LEA) proteins or dehydrins. The TAS14 dehydrin was isolated and characterized in tomato and its expression was induced by osmotic stress (NaCl and mannitol) and abscisic acid (ABA) [Godoy et al., Plant Mol Biol 1994;26:1921-1934], yet its function in drought and salinity tolerance of tomato remains elusive. In this study, transgenic tomato plants overexpressing tas14 gene under the control of the 35SCaMV promoter were generated to assess the function of tas14 gene in drought and salinity tolerance. The plants overexpressing tas14 gene achieved improved long-term drought and salinity tolerance without affecting plant growth under non-stress conditions. A mechanism of osmotic stress tolerance via osmotic potential reduction and solutes accumulation, such as sugars and K(+) is operating in tas14 overexpressing plants in drought conditions. A similar mechanism of osmotic stress tolerance was observed under salinity. Moreover, the overexpression of tas14 gene increased Na(+) accumulation only in adult leaves, whereas in young leaves, the accumulated solutes were K(+) and sugars, suggesting that plants overexpressing tas14 gene are able to distribute the Na(+) accumulation between young and adult leaves over a prolonged period in stressful conditions. Measurement of ABA showed that the action mechanism of tas14 gene is associated with an earlier and greater accumulation of ABA in leaves during short-term periods. A good feature for the application of this gene in improving drought and salt stress tolerance is the fact that its constitutive expression does not affect plant growth under non-stress conditions, and tolerance induced by overexpression of tas14 gene was observed at the different stress degrees applied to the long term.  相似文献   

11.
In view of the need to exploit saline water resources in agriculture in arid zones, we investigated the salt tolerance of Opuntia ficus-indica in plants growing in solution culture. Salt (NaCl) was added in concentrations ranging from 5 (control) to 200 mol m-3. Cladode growth was sensitive to salinity, being 60% of the control at 50 mol m-3 NaCl. The root-to-stem ratio decreased significantly only at 200 mol m-3. Various other parameters were studied, such as water content, Na, K and Cl content, osmotic pressure, and CO2 uptake. Of these parameters the decreases in cladode water content and CO2 uptake were related to the decrease in cladode growth. Raised salinity increased cladode osmotic pressure, which was associated with tissue dehydration. We concluded that osmotic adjustment does not occur in prickly pear under salt stress.  相似文献   

12.
13.
The influence of arbuscular mycorrhizal (AM) fungus Glomus versiforme on plant growth, osmotic adjustment and photosynthesis of tangerine (Citrus tangerine) were studied in potted culture under well-watered and water stress conditions. Seven-day-old seedlings of tangerine were transferred to pots containing Glomus versiforme or non-AMF. After 97 days, half of the seedlings were subject to water stress and the rest were well-watered for 80 days. AM colonization significantly stimulated plant growth and biomass regardless of water status. The soluble sugar of leaves and roots, the soluble starch of leaves, the total non-structural carbohydrates (NSC) of leaves and roots, and the Mg(2+) of leaves were higher in AM seedlings than those in corresponding non-AM seedlings. The levels of K(+) and Ca(2+) in leaves and roots were higher in AM seedlings than those in non-AM seedlings, but differences were only significant under water stress conditions. Moreover, AM colonization increased the distributed proportions of soluble sugar and NSC to roots. However, the proline was lower in AM seedlings compared with that in non-AM seedlings. AM seedlings had higher leaf water potential (Psi), transpiration rates (E), photosynthetic rates (Pn), stomatal conductance (g(s)), relative water content (RWC), and lower leaf temperature (Lt) than corresponding non-AM seedlings. This research also suggested that AM colonization improved the osmotic adjustment originating not from proline but from NSC, K(+), Ca(2+) and Mg(2+), resulting in the enhancement of drought tolerance.  相似文献   

14.
The interaction between soil drying and salinity was studied in the perennial halophyte, Sesuvium portulacastrum. Rooted cuttings were individually cultivated for three months in silty-sandy soil under two irrigation modes: 100 and 25% of field capacity (FC). The amount of the evapotranspirated water was replaced by a nutrient solution containing either 0 or 100 mM NaCl. Whole-plant growth, leaf water content, leaf water potential (Psi(w)), and Na+, K+, and proline concentrations in the tissues were measured. When individually applied, both drought and salinity significantly restricted whole-plant growth, with a more marked effect of the former stress. However, the effects of the two stresses were not additive on whole-plant biomass or on leaf expansion. Root growth was more sensitive to salt than to soil drying, the latter being even magnified by the adverse impact of salinity. Leaf water content was significantly reduced following exposure to water-deficit stress, but was less affected in salt-treated plants. When simultaneously submitted to water-deficit stress and salinity, plants displayed higher values of water and potassium use efficiencies, leaf proline and Na+ concentrations, associated with lower leaf water potential (-1.87 MPa), suggesting the ability of S. portulacastrum to use Na+ and proline for osmotic adjustment.  相似文献   

15.
盐胁迫对盐芥生长及硝酸还原酶活性的影响   总被引:10,自引:0,他引:10  
盐胁迫处理导致盐芥植株鲜重、干重、含水量、肉质化程度和根冠比都下降;根中有机物含量上升,而无机物含量下降,叶的变化与根的相反;渗透调节能力、Na 含量和根系活力上升;硝酸还原酶活性显著增加;超氧阴离子(O2-)含量先降低后升高.表面扫描电镜图像显示:盐芥叶片表面没有盐腺或盐囊泡,所以它不是泌盐盐生植物.盐芥生长状况、Na 含量和Na X-ray微区分析结果表明:盐芥也不是拒盐盐生植物,而很可能是稀盐盐生植物.  相似文献   

16.
The intestinal epithelium of the euryhaline teleost fish, Anguilla anguilla, absorbs Cl(-) transepithelially. This gives rise to a negative transepithelial potential at the basolateral side of the epithelium and to a measured short circuit current. Cl(-) absorption occurs via bumetanide-sensitive Na(+)-K(+)-2Cl(-) cotransport, localized on the luminal membrane. The cotransport operates in parallel with a luminal K(+) conductance that recycles the ion into the lumen. Cl(-) leaves the cell across the basolateral membrane by way of Cl(-) conductance and presumably via a KCl cotransport. The driving force for this process is provided by the electrochemical sodium gradient across the plasma membrane, generated and maintained by the basolateral Na(+)-K(+)-ATPase. The resulting NaCl absorption process is active and enables marine fish to take up water, thereby compensating for water that was lost passively from the body. Fresh water acclimatized eel also absorb Cl(-) actively, although in smaller quantities, utilizing the same ion transport mechanisms as marine eels. This mechanism is basically the same as the model proposed for the thick ascending limb (cTAL). Cl(-) absorption is regulated by a number of cellular factors, such as HCO(3) (-), pH, Ca(2+), cyclic nucleotides, and cytoskeletal elements. It is sensitive to osmotic stress, and therefore is a good physiological model to study ion transport mechanisms that are activated when osmotic stress induces cell volume regulation. The activation of these various ion transport pathways is dependent on cellular transduction mechanisms in which phosphorylation events (mainly by PKC and MLCK for the hypertonic response) and cytoskeletal elements, either microfilaments or microtubules, seem to play key roles.  相似文献   

17.
在缓慢干旱条件下,小麦叶片渗透调节能力在一定范围内随胁迫程度的加剧而增加,而在快速干旱下,渗透调节能力丧失。小麦叶片通过渗透调节使光合速率和气孔导度对水分胁迫的敏感性降低,叶片维持较高的电子传递能力、RuBP羧化酶活性和叶绿体光合能量转换系统活性,并推迟了小麦叶片光合速率受气孔因素限制向叶肉细胞光合活性限制转变的时间。  相似文献   

18.
The effects of water deficit stress on growth, Na+, K+ and osmolyte accumulation in the halophyte species Cakile maritima were investigated. Two Tunisian provenances, Tabarka and Chaffar, belonging to different bioclimatic stages, humid and arid, respectively, were compared. After germination, thirty-day-old seedlings were cultivated for 4 weeks under optimal or limiting water supply, at 100% and 25% of field capacity (FC), respectively. A subset of stressed plants was thereafter rehydrated. The final harvest was carried out after 60 days of treatment. Upon water deficit stress, Chaffar provenance showed significantly lower reduction in biomass production, net CO2 assimilation and stomatal conductance as well as of leaf water content. Leaf malondialdehyde (MDA) content was significantly increased in the two provenances but this effect was more pronounced in Tabarka plants than in Chaffar ones. Several criteria seem to be associated with the relative tolerance of Chaffar to water deficit: a slow growth rate, a greater ability to control photosynthetic gas exchange, a high ability to preferentially allocate photoassimilates to its roots, and a greater capacity for osmotic adjustment ensured by K+ and some compatible solutes such as proline and glycine betaine, but not soluble sugars. The superiority of Chaffar provenance also appeared at the level of its ability to recover after a severe water deficit stress (irrigation at 25% FC only during one month). The data suggest that compatible osmolytes (proline and glycine betaine) accumulated upon water deficit stress play important roles in this halophyte, being involved not only in osmotic adjustment but probably serving also in preservation of the structural and functional integrity at the cellular level during water deficit.  相似文献   

19.
Lv S  Zhang K  Gao Q  Lian L  Song Y  Zhang J 《Plant & cell physiology》2008,49(8):1150-1164
Salinity is one of the major environmental factors limiting plant growth and productivity. An H(+)-PPase gene, TsVP from Thellungiella halophila, was transferred into cotton (Gossypium hirsutum) in sense and antisense orientations under control of the cauliflower mosaic virus (CaMV) 35S promoter. Southern and Northern blotting analysis showed that the sense or antisense TsVP were integrated into the cotton genome and expressed. Transgenic plants overexpressing the vacuolar H(+)-PPase were much more resistant to 150 and 250 mM NaCl than the isogenic wild-type plants. In contrast, the plants from the antisense line (L-2), with lower H(+)-PPase activity, were more sensitive to salinity than the wild-type plants. Overexpressing TsVP in cotton improved shoot and root growth and photosynthetic performance. These transgenic plants accumulated more Na(+), K(+), Ca(2+), Cl(-) and soluble sugars in their root and leaf tissues under salinity conditions compared with the wild-type plants. The lower membrane ion leakage and malondialdehyde (MDA) level in these transgenic plants suggest that overexpression of H(+)-PPase causes the accumulation of Na(+) and Cl(-) in vacuoles instead of in the cytoplasm, thus reducing their toxic effects. On the other hand, the increased accumulation of ions and sugars decreases the solute potential in cells, and facilitates water uptake under salinity, which is an important mechanism for the increased salt tolerance in TsVP-overexpressing cotton.  相似文献   

20.
Yang Y  Zheng Q  Liu M  Long X  Liu Z  Shen Q  Guo S 《Plant & cell physiology》2012,53(6):1083-1092
Among different mechanisms of salt resistance, regulation of ion distribution among various tissues and intracellular compartmentation are of great importance. In this study, we investigated the effects of salt stress on growth, photosynthesis, and Na(+) accumulation and distribution in leaf apoplast and symplast of two canola (Brassica napus L.) cultivars (NYY 1 and BZY 1). The results showed that the declines in shoot dry mass, leaf water potential and net photosynthetic rate of BZY 1 (salt sensitive) were higher than those of NYY 1 (salt resistant) in response to salt stress. Stomatal limitation to photosynthesis was mainly affected under moderate salinity, whereas the reduction in assimilation rate under severe salt stress was due to both stomatal and non-stomatal limitations. We also found that more Na(+) was distributed to leaf veins in NYY 1 than in BZY 1; simultaneously, less Na(+) accumulated in the leaf blade in NYY 1 than in BZY 1. The percentage of Na(+) in the leaf symplast in NYY 1 was markedly lower than that in BZY 1. Also, Na(+) diffusion in leaves through apoplastic and symplastic pathways of BZY 1 was stronger than that in NYY 1, and the transpiration rate in BZY 1, especially at the leaf edges, decreased more than in NYY 1. Our results showed that NYY 1 accumulated less Na(+) in the shoot, especially in leaf blades, and confined Na(+) to the apoplast to avoid leaf salt toxicity, which could be one reason for the higher resistance of NYY 1 than BZY 1 plants to salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号