首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
以地被菊品种‘紫重楼’为试材,设置4种光环境梯度:L0(CK,全光照)、L1(80%全光照)、L2(60%全光照)和L3(40%全光照),研究花序不同发育期遮光处理对‘紫重楼’开花过程中叶绿素含量、干重、干重比、花色苷含量、可溶性糖含量和CmUFGT基因表达量的影响,以探讨光在花色苷合成和降解过程中的作用。结果表明:(1)现蕾期、露色期遮光处理下,叶绿素a、b含量随光照强度的降低而逐渐增加,其中L3处理下叶绿素a、b含量显著高于其他处理;盛花期遮光处理下,叶绿素a、b含量随光照强度的降低呈先增后降的趋势,其中L1处理下叶绿素a、b含量极显著高于其他处理。(2)花序干重随着光照强度的降低呈下降趋势,花序干重比呈先升后降的趋势,其中L1处理下花序干重比增加。(3)现蕾期、露色期遮光处理下花色苷含量随着花序发育呈先升后降的变化趋势,盛花期遮光处理下呈下降趋势;花序发育第3、4阶段,光照越强花色苷含量越高;第7、8阶段,光照越弱花色苷含量越高。(4)遮光处理下舌状花可溶性糖含量随着花序发育呈先升后降趋势,其中L1处理下可溶性糖含量增加。(5)遮光处理极显著抑制花序发育第5阶段CmUFGT基因的表达,且表达量随着光照强度的降低而逐渐降低;现蕾期、露色期L1处理下,花序发育第3、4阶段CmUFGT基因表达量降低。研究表明,地被菊花序发育中期(第3、4阶段)轻度遮光(L1)抑制CmUFGT基因表达,促进可溶性糖含量增加,有利于花色苷的合成;花序发育后期(第7、8阶段)重度遮光(L3)有利于缓解花色苷的降解。  相似文献   

2.
花色苷是一类重要的色素,对李红色的形成必不可少。本研究以‘脆红李’为试材,研究了果实发育过程中叶绿素含量、总花色苷含量及果皮主要花色苷组分和含量的变化规律,并分析了Ps PAL、Ps CHS、Ps CHI、Ps F3H、Ps DFR、Ps ANS和Ps UFGT基因在果实不同发育阶段的表达规律。结果表明,随着‘脆红李’果实的生长发育,果皮和果肉中总叶绿素含量呈逐渐下降的趋势;‘脆红李’果肉中不含花色苷,果皮中的花色苷在转色期才开始积累,成熟时达到最大值,为404.37μg/(g·FW),并以矢车菊素-3-O-葡萄糖苷和矢车菊素-3-O-芸香糖苷为主;花色苷合成相关基因在‘脆红李’不同生长发育时期的果皮和果肉中有着特异性的表达,但只有Ps PAL和Ps UFGT基因的转录水平与花色苷含量的正相关性达到极显著水平,表明这两个基因对‘脆红李’果实的着色有着异常重要的调控作用。  相似文献   

3.
以2个不同红色石榴品种‘红宝石’和‘墨石榴’为试验材料,采用荧光定量PCR方法,分析花色苷合成相关基因CHS、CHI、F3H、DFR、ANS、UFGT等6个基因在果实发育过程中的转录表达特性,同时分析基因表达量与果皮花色苷积累的关系。结果表明:(1)在整个果实发育期内‘墨石榴’花色苷含量明显高于‘红宝石’;随着果实的发育,‘红宝石’果皮中总花色苷含量不断增加,而‘墨石榴’中总花色苷含量初期很高,随后迅速下降,后期维持在较低水平。(2)‘红宝石’中CHS、CHI、F3H、DFR、UFGT等5个基因均在果实发育的早期和晚期出现2个表达高峰,而ANS基因的表达量在整个果实发育期内不断升高;在‘墨石榴’中CHS、CHI、F3H、DFR、ANS等5个基因的表达高峰均出现在早期,随着果实的发育表达量均呈下降变化趋势,但UFGT基因在中期时表达量最高。(3)‘红宝石’石榴的ANS基因表达量与总花色苷含量呈显著正相关,‘墨石榴’中CHS和ANS基因的表达水平与总花色苷含量显著相关。研究认为,花色苷合成相关基因的初期和末期表达差异是2个石榴品种着色差异的主要原因,ANS在‘红宝石’着色中起关键作用,CHS和ANS可能在‘墨石榴’花色苷积累中起重要作用。  相似文献   

4.
环境因子调控植物花青素苷合成及呈色的机理   总被引:1,自引:0,他引:1  
花青素苷(anthocyanin)是决定被子植物花、果实和种皮等颜色的重要色素之一。花青素苷的合成与积累过程往往与植物发育过程密切相关,由内外因子共同控制。环境因子通过诱导植物体内花青素苷合成途径相关基因的表达来调控花青素苷的呈色反应。该文追踪了国内外相关研究,认为光是影响花青素苷呈色的主要环境因子之一,光质和光强均能在一定程度上影响花青素苷的合成,其中光质起着更为关键的作用;低温能诱导花青素苷的积累,高温则会加速花青素苷的降解;不同的糖类物质均能影响花青素苷的合成,大部分结构基因和调节基因的表达均受糖调控。关于花发育与花青素苷呈色的关系、观赏植物花色对环境因子的响应以及花青素苷抵御逆境的机理尚待深入研究。因此,综合考察花发育与植物花青素苷合成及其呈色之间的关系,特别是光周期对花发育的影响导致花青素苷合成及呈色的机理是花色研究的一个重要课题。利用环境因子调控花色将会极大地提高花卉的观赏价值。  相似文献   

5.
环境因子调控植物花青素苷合成及呈色的机理   总被引:11,自引:0,他引:11  
胡可  韩科厅  戴思兰 《植物学报》2010,45(3):307-318
花青素苷(anthocyanin)是决定被子植物花、果实和种皮等颜色的重要色素之一。花青素苷的合成与积累过程往往与植物发育过程密切相关, 由内外因子共同控制。环境因子通过诱导植物体内花青素苷合成途径相关基因的表达来调控花青素苷的呈色反应。该文追踪了国内外相关研究, 认为光是影响花青素苷呈色的主要环境因子之一, 光质和光强均能在一定程度上影响花青素苷的合成, 其中光质起着更为关键的作用; 低温能诱导花青素苷的积累, 高温则会加速花青素苷的降解;不同的糖类物质均能影响花青素苷的合成, 大部分结构基因和调节基因的表达均受糖调控。关于花发育与花青素苷呈色的关系、观赏植物花色对环境因子的响应以及花青素苷抵御逆境的机理尚待深入研究。因此, 综合考察花发育与植物花青素苷合成及其呈色之间的关系, 特别是光周期对花发育的影响导致花青素苷合成及呈色的机理是花色研究的一个重要课题。利用环境因子调控花色将会极大地提高花卉的观赏价值。  相似文献   

6.
以红肉葡萄新种质‘钟山红玉’为实验材料,通过高效液相色谱-质谱联用(HPLC-MS)检测‘钟山红玉’从幼果到成熟期果皮、果肉中的花青苷组分及含量,并利用实时荧光定量PCR检测不同发育时期花青苷合成相关基因的表达水平,研究其不同果实发育时期果皮、果肉中的花青苷组分变化,以及相关基因表达规律,探索红肉葡萄果实呈色机制,为葡萄果实品质改良育种提供理论依据。结果表明:(1)‘钟山红玉’果皮和果肉中共检测出13种花青苷且都为单糖苷花青苷,与欧亚种葡萄亲缘关系较近。(2)‘钟山红玉’果皮、果肉中均检测出了欧亚种葡萄中很少有的天竺葵素3-O-葡萄糖苷;果皮中飞燕草素类(飞燕草素-、锦葵色素-、矮牵牛素-)花青苷衍生物含量显著高于矢车菊素类(矢车菊素-、芍药素-)花青苷衍生物,而在果肉中则两大类花青苷含量相近,这与果皮中较高的F3′5′H基因表达量有关,且在果皮中酰基化花青苷比例显著高于果肉。(3)花青苷合成相关基因MYBA2和UFGT在‘钟山红玉’不同发育时期的表达变化规律一致,UFGT基因在果肉中基本不表达,而MYBA2可能是决定‘钟山红玉’果肉转色的关键因子;并且ABA响应相关基因PYL1在‘钟山红玉’发育时期的表达规律与OMT和LDOX基因一致。  相似文献   

7.
不同荔枝品种采后果实衰老的比较   总被引:1,自引:0,他引:1  
比较了5个荔枝(Litchi chinensis Sonn.)品种("怀枝"、"糯米糍"、"桂味"、"红蜜荔"和"水晶球")果实采后在常温下的衰老表现.其中,"糯米糍"果实衰老褐变快,而"桂味"衰老最为缓慢.果实褐变过程伴随失水,但品种间脱水速度与果实衰老的速度无显著相关性.果皮的褐变潜力、果皮细胞壁糖醛酸含量、果胶甲酯化程度、果皮和果肉总钙含量、果皮水溶性钙含量与果实衰老均无显著的相关性,但膜透性与坏果率呈显著的正相关,而果皮结构钙与之有显著的负相关性.  相似文献   

8.
荔龙宝叶面肥对荔枝果实产量及品质的影响   总被引:1,自引:0,他引:1  
1998年和1999年连续两年的田间试验表明,喷施荔龙宝可显著提高妃子笑和糯米糍荔枝的产量,显著增加两品种的单果重和可溶性固形物含量。按1999年数据计算,在妃子笑和糯米糍上应用荔龙宝的投入产出比分别是1:35和1:57。  相似文献   

9.
以‘双红’山葡萄果实为试材,采用HPLC—MS/MS技术,分析山葡萄果实发育过程中果皮中花色苷和非花色苷酚成分及其含量的变化。结果表明,转色期前果皮内没有花色苷积累,随着果实的成熟,花色苷含量逐渐增加,成熟期的含量最高;非花色苷酚自花后2周至成熟期间的含量变化呈下降趋势。在山葡萄果实发育过程中检测出花色苷10种,其中双糖苷5种、单糖苷5种;非花色苷酚类物质检测到14种,其中苯甲酸类2种、肉桂酸类3种、黄烷-3-醇类2种、黄酮醇类5种、白藜芦醇类2种。  相似文献   

10.
该研究以幼果期、白果期、转色期的离体‘北陆’蓝莓果实为试材,设置0(CK)、5、10、15min紫外光辐照处理,24h后取样分析蓝莓果实中可溶性糖、总酚、类黄酮和花青苷含量,以及苯丙氨酸裂解酶(PAL)和查尔酮异构酶(CHI)活性的变化,探究UV-B紫外照射处理对不同发育时期蓝莓主要果实品质及相关酶活的影响。结果显示:(1)对于幼果期蓝莓,5min UV-B处理可显著增加果实内可溶性糖含量;10min UV-B处理果实PAL活性增加效果最为显著;15min UV-B处理对果实总酚和花青苷积累的促进作用最大,但显著降低了类黄酮含量和CHI活性。(2)对于白果期蓝莓,5min UV-B处理显著增加了果实类黄酮含量和CHI活性,10min处理使果实可溶性糖和总酚含量较对照分别增加25%和18%;15min处理对果实花青苷含量和PAL活性影响作用最大。(3)对于转色期蓝莓,各处理除果实可溶性糖及类黄酮含量降低外,其余物质含量均显著增加。(4)UV-B处理并未改变果实发育过程中可溶性糖、总酚、类黄酮和花青苷含量及PAL、CHI酶活性的积累规律。(5)蓝莓果内PAL活性与其可溶性糖、总酚和类黄酮的积累呈极显著正相关关系,而CHI活性仅与其可溶性糖呈极显著正相关。研究表明,UV-B辐照处理促进了幼果期和白果期可溶性糖的积累,也能促进不同发育时期蓝莓果实总酚和花青苷及白果期类黄酮的积累,对蓝莓果实主要品质能够产生积极的影响。  相似文献   

11.
研究了不同颜色果袋对‘云红梨2号’果实着色的影响,比较了不同套袋处理下果皮外观着色、叶绿素、类黄酮、总酚、花色素苷含量以及花色素苷合成相关酶活性的差异.结果表明: 发育期的黑暗处理有利于解袋后梨果皮着色;不同套袋处理中,采前解袋自然光照射下梨果皮中花色素苷含量最高,着色最好,白色纸袋次之.不同套袋处理显著影响果皮中叶绿素、类黄酮、总酚和花色素苷含量,从而影响梨果皮的外观色泽.不同套袋处理的花色素苷合成酶活性差异显著;相关性分析表明,果皮中花色素苷含量与二氢黄酮醇-4-还原酶(DFR)和类黄酮3-O-葡萄糖基转移酶(UFGT)活性呈显著正相关,而与苯丙氨酸解氨酶(PAL)活性相关性不显著.  相似文献   

12.
Two litchi cultivars, a well-coloured ‘Nuomici’ and a poorly coloured ‘Feizixiao’, were used to investigate changes in endogenous abscisic acid (ABA) concentration and ethylene production during fruit maturation and to test the effects of exogenous growth regulators on litchi fruit maturation. Abscisic acid concentration in both the aril and pericarp increased with fruit maturation. Transfusion of ABA into the fruit 3 weeks before harvest accelerated, whereas transfusion of 6-benzyl aminopurine (6-BA) retarded sugar accumulation and pigmentation. The effect of 6-BA was assumed to link with the resultant decrease in ABA. In contrast, 1-aminocyclopropane-1-carboxylic acid (ACC) concentration and ACC oxidase (ACO) activities in the aril remained relatively constant during sugar accumulation. Transfusion of aminooxyacetic acid (AOA) significantly decreased ACC concentration but had no effect on sugar accumulation in the aril. These results suggested that endogenous ABA, but not ethylene, was critical for the sugar accumulation. However, the roles of ABA and ethylene in pericarp pigmentation were rather complicated. Application of exogenous ABA promoted anthocyanin synthesis significantly, but had very little effect on chlorophyll degradation. Ethylene production in litchi fruit decreased with development, but a transient increase of endogenous ethylene production was detected just around the colour break in ‘Nuomici’. Enhanced ACO activity in the pericarp was detected during pigmentation. Ethrel at 400 mg l−1 showed no effect on pericarp coloration, but accelerated chlorophyll degradation and anthocyanin synthesis at a much higher concentration (800 mg l−1). Fruit dipped in ABA solution alone yielded no effect on chlorophyll degradation, but the combined use of ABA and Ethrel at 400 mg l−1 enhanced both chlorophyll degradation and anthocyanin synthesis. These results indicated the possible synergistic action of ethylene and ABA during litchi fruit colouration. ABA is suggested to play a more crucial role in anthocyanin synthesis, while ethylene is more important in chlorophyll degradation. ABA can increase the sensitivity of pericarp tissue to ethylene.  相似文献   

13.
Xyloglucan endotransglycosylase (XET) catalyses the transglycosylation of xyloglucan, the major hemicellulose polymer, which has been thought to mediate the cross-linking of cellulose microfibrils in cellular walls and proposed to be involved in the control of cell wall relaxation. To understand the relationship between litchi fruit cracking and gene expression patterns, three XET genes from litchi fruit were identified and then examined for their expression profiles in pericarp and aril tissues at different development stages, using a cracking-resistant cultivar, 'Huaizhi', and a cracking-susceptible cultivar, 'Nuomici'. Three full-length cDNAs of 1267, 1095 and 1156 bp encoding XETs, named LcXET1, LcXET2 and LcXET3, respectively, were isolated from expanding fruit using RT-PCR and RACE-PCR (rapid amplification of cDNA ends) methods. Northern blotting analysis showed that LcXET1 mRNA accumulation occurred much earlier in aril tissues at 59 days after anthesis (DAA) than in pericarp tissues at 73 DAA in 'Nuomici'. However, it appeared at almost the same time (66 DAA) in pericarp and aril tissues in 'Huaizhi', which suggested that differential accumulation of LcXET1 in pericarp and aril tissues in 'Nuomici' and 'Huaizhi' was closely associated with fruit cracking. LcXET2 mRNA accumulation could be detected in pericarp and aril tissues throughout fruit development but exhibited a differential accumulation pattern between pericarp and aril tissues. In the aril of 'Nuomici', intensive signal bands were detectable at 59-73 DAA in rapidly expanding fruits of 'Nuomici' but only weak bands could be found in the pericarp tissues. In contrast, moderate signal bands were detectable both in pericarp and aril tissues of 'Huaizhi' fruits. Furthermore, LcXET3 showed constitutive expression in both pericarp and aril tissues of developing 'Nuomici' and 'Huaizhi' litchi fruit. In addition, differential expression patterns of three XETs genes were observed in different tissues of litchi, with only LcXET1 being fruit-specific. To further address the role of LcXET in fruit cracking, alpha-naphthalene acetic acid (NAA) was used to treat 'Nuomoci' to reduce fruit cracking. Enhanced LcXET1 mRNA accumulation appeared in pericarp while LcXET2 and LcXET3 mRNA accumulation enhanced in aril tissues in the NAA-treated fruits. Thus, LcXET1 is more likely to play a role in reducing litchi fruit cracking than LcXET2 and LcXET3.  相似文献   

14.
Reflectance spectra of four apple (Malus domestica Borkh.) cultivars were studied and chlorophyll, carotenoid, anthocyanin and flavonoid content in sunlit and shaded peel was determined. In all cases sunlit peel accumulated high amounts of phenolics (flavonoid glycosides). Adaptation to strong sunlight of an apple cultivar with limited potential for anthocyanin biosynthesis (Antonovka) was accompanied by a decrease in chlorophyll and a significant increase in total carotenoid content. The increase in carotenoids also took place in sunlit sides of the Zhigulevskoye fruits, accumulating high amounts of anthocyanins, but chlorophyll content in sunlit peel was higher than that in shaded peel. Significant increases in carotenoids and anthocyanins were detected during fruit ripening when chlorophyll content fell below 1.5–1.8 nmol cm–2. Chlorophyll in sunlit fruit surfaces of both cultivars was considerably more resistant to photobleaching than in shaded (especially of Zhigulevskoye) sides. Induced by sun irradiation, the photoadaptive responses were cultivar-dependent and expressed at different stages of fruit ripening even after storage in darkness. The development of sunscald symptoms in susceptible apple cultivars (Granny Smith and Renet Simirenko) led to a dramatic loss of chlorophylls and carotenoids, which was similar to that observed during artificial photobleaching. The results suggest that apple fruits exhibit a genetically determined strategy of adaptation of their photoprotective pigments to cope with mediated by reactive oxygen species photodynamic activity of chlorophyll under strong solar irradiation. This includes induction of synthesis and accumulation of flavonoids, anthocyanins and carotenoids that could be expressed, if necessary, at different stages of fruit development  相似文献   

15.
The synthesis of anthocyanin, the xanthophyll cycle, the antioxidant system and the production of active oxygen species (AOS) were compared between red and non‐red apple cultivars, in response to either long‐term sunlight exposure (high light intensity) during fruit development, or to exposure of bagged fruits to lower light intensity late in fruit development. During fruit development of red and non‐red apples, the xanthophyll cycle pool size decreased much more in red apple peel late in development. With accumulation of AOS induced by long‐term sunlight exposure, enhancement of the antioxidant system was found. However, this change became significantly lower in red apple than non‐red apple as fruit developed, which might serve to accelerate the anthocyanin synthesis in red apple peel. When, late in fruit development, bagged fruits were exposed to sunlight, the accumulation of AOS was lower in red apple peel than in non‐red peel. This could be due to the higher anthocyanin concentration in the red peels. Meanwhile, compared with that in non‐red cultivar, the xanthophyll cycle and the antioxidant system in red apple peel were protected first but then down‐regulated by its higher anthocyanin concentration during sunlight exposure. In conclusions, red and non‐red apples peel possess different photoprotective mechanisms under high light conditions. The relationship between anthocyanin synthesis and the xanthophyll cycle, and the antioxidant system, depends on the light conditions that fruit undergoes.  相似文献   

16.
对穗醋栗花色苷合成的分子机理知之甚少。拟探究穗醋栗花色苷合成关键基因dfr对不同颜色醋栗花色苷的影响,以黑穗醋栗(Ribes nigrum L.)、红穗醋栗(Ribes rubrum L.)和白穗醋栗(Ribes albrum L.)果实为试材,通过RACE方法克隆二氢黄酮醇4-还原酶(dfr)基因cDNA全长序列,分别命名为Rndfr、Rrdfr和Radfr(KY786100、KY786101和KY786102)。系统发育分析表明,Rndfr、Rrdfr和Radfr在进化上具有较高的同源性。测定果实发育不同时期的花色苷含量,结果显示,黑穗醋栗和红穗醋栗花色苷含量较高且随着果实的发育成熟而逐渐增加。而白色醋栗中花色苷含量极低,几乎检测不到花色苷。定量PCR分析表明,dfr在黑穗醋栗中的表达量在果实成熟的各个时期均高于红穗和白穗醋栗。随着果实直径不断变大和果皮着色加深,在黑穗醋栗中,dfr的表达量总体呈现持续上升的趋势;在红穗醋栗中,果实着色约75%时dfr的表达量最高,之后下降;在白穗醋栗中,dfr的表达量总体呈现下降趋势,其表达量最低。推测dfr基因在醋栗果实呈色中发挥作用。  相似文献   

17.
The accumulation of anthocyanin pigments is one of the most important traits that turn strawberry fruit attractive to consumers. During ripening, strawberry fruit color development is associated to anthocyanin synthesis through the phenylpropanoid pathway. Phenylalanine ammonia-lyase (PAL) is a key enzyme in this pathway, having a determining role in strawberry fruit quality. In this work, we studied the level of anthocyanins during fruit ripening of two cultivars that differ in color development (Camarosa and Toyonoka). Toyonoka showed a lower anthocyanin accumulation that was limited to external fruit tissue, while Camarosa accumulated higher amount of anthocyanins in both internal and external sections. In addition, we cloned a full-length gene (FaPAL6) and analyzed its expression in different strawberry plant tissues. The expression of this gene is fruit specific, and increases during fruit ripening in both cultivars along with anthocyanin accumulation. The mRNA level of FaPAL6 was higher in Camarosa. PAL enzyme activity increased at similar rates in both cultivars at early ripening stages, but at the end of ripening PAL activity diminished in Toyonoka while it rose markedly in Camarosa. PAL activity was higher in internal fruit tissue, showing no correlation with anthocyanin level of the same section in both cultivars. The higher FaPAL6 expression and activity detected in Camarosa could be associated to the enhanced anthocyanin accumulation found in this cultivar.  相似文献   

18.
Shades ranging from violet to black pigmentation in pepper (Capsicum annuum L.) are attributed to anthocyanin accumulation. High-performance liquid chromatography and mass spectrometry analysis of violet and black fruit tissue identified a single anthocyanin that was determined to be delphinidin-3-p-coumaroyl-rutinoside-5-glucoside. Leaf tissue of a black-pigmented foliage genotype contained the same anthocyanin found in fruit but at a considerably higher concentration in comparison to violet and black fruit tissue. Fruit chlorophyll concentration was approximately 14-fold higher in black fruit in comparison to violet fruit that contained relatively little chlorophyll. Beta-carotene, lutein, violaxanthin, and neoxanthin carotenoid concentrations in black fruit were also significantly greater in comparison to violet fruit. High concentrations of delphinidin in combination with chlorophyll and accessory carotenoid pigments produced the characteristic black pigmentation observed in fruits and leaves of selected genotypes. Anthocyanins were accumulated in the outer mesocarp of violet and black fruit and in the palisade and mesophyll cells of black leaves. Consistent with chlorophyll content of respective genotypes, chloroplast density was greater in cells of black fruits. Utilizing Capsicum pigment variants, we determine the biochemical factors responsible for violet versus black-pigmented pepper tissue in the context of described pepper color genes.  相似文献   

19.
Effect of ABA upon anthocyanin synthesis in regenerated torenia shoots   总被引:4,自引:0,他引:4  
To elucidate the mechanism of anthocyanin synthesis induction concomitant with chlorophyll degradation, we established a system in which anthocyanin synthesis and degradation of chlorophyll in regenerated torenia (Torenia fournieri) shoots was induced on medium containing 7% sucrose. Here, we studied the effect of several plant-growth regulators on anthocyanin synthesis and the degradation of chlorophyll in the torenia shoot regenerating system. Exogenous abscisic acid (ABA) could induce anthocyanin synthesis and chlorophyll senescence in regenerating torenia shoots on the medium containing a low concentration of sucrose (1.5%). We determined the changes in the amount of endogenous ABA in the regenerated shoots during the process of anthocyanin synthesis on the medium containing 7% sucrose. It was revealed that the 7% sucrose treatment elevated endogenous ABA levels before the induction of anthocyanin synthesis and chlorophyll degradation. However, while retransfer to the 1.5% sucrose medium resulted in a gradual decrease in the ABA level and a failure of induction of anthocyanin synthesis, normal shoot regeneration. These results suggest that changes in the amount of endogenous ABA may play an important role in the induction of anthocyanin synthesis and chlorophyll degradation in regenerated torenia shoots.  相似文献   

20.
Results are reported which support the view that the photosynthetic photosystems are not involved in the high irradiance response (HIR) phenomenon of light-dependent anthocyanin biosynthesis in dark-grown Zea mays L. seedlings. A negative correlation between change in greening rates and change in light-dependent anthocyanin accumulation rates with age was demonstrated. Lack of chlorophyll synthesis in a strain of maize possessing a temperature-sensitive lesion for chlorophyll synthesis could not be correlated with light-induced anthocyanin accumulation. Furthermore, seedlings totally lacking photosynthetic capabilities, either due to a genetic lesion or to excision of all photosynthetic tissue, had an enhanced rate of photoinduced anthocyanin formation. This evidence indicates that the HIR results in the initiation of processes that are in competition with chloroplast development for substrate in normal, intact seedlings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号